


Abstract—In this positional paper we propose a model-

driven approach which addresses challenges related to

modeling, development and deployment of software

applications that follow the microservice architecture (MSA)

design principles. We argue in favor of a model-driven tool

which can be used to resolve challenges from the MSA

establishment domain by providing a domain-specific language

for MSA modeling and code generators for producing: (i)

program and configuration code for MSA implementation; and

(ii) program procedures for MSA building, packaging and

installation. We give a brief description of two approaches to

software application development which emerged in the last

decade: the monolithic architecture approach and the MSA

approach. We focus on challenges related to MSA

establishment and argue that our model-driven approach could

be suitable for their resolution. We also propose a plan of

research activities aimed at improving our approach and which

will lead to the final implementation of a model-driven tool to

support such an approach

I. INTRODUCTION

N THE past decade two approaches to software

application development became dominant among the

majority of engineers: (i) software application that follows

the Monolithic Software Architecture (MTA) design

principles; and (ii) software application that follows the

Microservice Software Architecture (MSA) design

principles [1].

I

 MTA is composed of software modules (SM) that mainly

cannot exist and run independently from the core application

they belong to [2]. Therefore, the whole business logic layer

of the application typically runs within a single operating

system process and all SMs execute within that process.

Since all SMs are tightly coupled, development of individual

SMs is hard to strictly divide between engineering teams.

Accordingly, MTA software solutions are harder to develop,

test and maintain [3]. Also, there is no possibility to choose

different software technologies for individual SM

 The research presented in this paper was supported by the Ministry of

Education, Science and Technological Development of the Republic of

Serbia, Grant III-44010

development, so engineers are forced to make a final

selection of technologies at the beginning of the

development process. Sometimes, such decisions, which

were made in the past, may turn out wrong after the years of

development, leading to a great waste of time and even to

the project failure. The configuration of MTA must be done

at the level of the whole application rather than at the level

of an individual SM. Therefore, there is a great possibility

that an individual SM requires a usage of certain software

libraries which are incompatible with the libraries in other

SMs. Nevertheless, there are specialized modularization

techniques and frameworks, for some programming

languages, that can be used to overcome MTA configuration

challenges. For example, Open Service Gateway Initiative

(OSGi) [4] is the Java programming language framework

which can be used for developing modular SMs within

MTA. Horizontal scaling of an MTA must be done at the

application level also, without the opportunity to scale

individual SMs. Nevertheless, these types of applications are

usually scaled vertically by increasing the infrastructure

resources such as processing power and memory [5]. Thus,

resources of an execution platform infrastructure cannot be

adjusted in accordance with the requirements of individual

SMs. Accordingly, engineers are forced to build “one size

fits all” execution platforms, which result in irrational

resource consumption and maintenance cost increase [6].

Deployment of MTA implies procedures for building,

packaging and installation of the complete MTA, without a

possibility to deploy individual SMs [7].

On the other hand, MSA was introduced as a suite of

loosely coupled SMs, called microservices [8]. Each

microservice exists and runs within a separate operating

system process, independently from the other microservices.

A microservice has well defined set of responsibilities and

functionalities exposed through its application programming

interface (API) [9]. Accordingly, engineers are able to group

up into development teams in charge of developing different

microservices, choosing technologies vendors and technical

A Model-Driven Approach to Microservice

Software Architecture Establishment

Branko Terzić, Vladimir Dimitrieski, Slavica Kordić, Ivan Luković
University of Novi Sad, Faculty of Technical Sciences,

Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia

Email: {branko.terzic, dimitrieski, slavica, ivan}@uns.ac.rs

Position Papers of the Federated Conference on

Computer Science and Information Systems pp. 73–80

DOI: 10.15439/2018F370

ISSN 2300-5963 ACSIS, Vol. 16

c©2018, PTI 73

characteristics which are the most suitable for their needs.

MSA testing comes down to testing of individual

microservices, which eases locating bugs and bug fixing. The

configuration of an MSA can be done separately for each

microservice, eliminating possibilities for software library

incompatibility. Horizontal scaling becomes a natural

procedure to increase the MSA availability and it is done by

running additional instances of a required microservices

[10]. Since microservices are independent SMs, the

adaptation of infrastructure resources to the needs of the

individual microservices becomes easier and resource

consumption becomes more rational [11]. MSA deployment

procedure implies building, packaging and installation of the

individual microservices, rather than the whole ecosystem.

Thus, multiple versions of the same microservice can be run

in order to compare them in production.

The MSA-specific infrastructure and the large number of

microservices introduce several challenges to:

 MSA modeling, as there is a need for the MSA modeling

framework which should provide a formal modeling

technique and modeling tool which will ensure a higher

abstraction viewpoint to engineers while specifying

microservice business logic, microservice API,

microservice configuration and inter-microservice

communication patterns. The usage of such a modeling

framework should decrease the ecosystem complexity in

early phases of MSA specification, while enabling the

usage of the MSA model specifications in the later

development and deployment stages;

 MSA development, as there is a need for the

implementation of mechanisms and infrastructure for:

user request acceptance and routing, microservice auto-

discovery and registry, microservice frontend and

backend load-balancing, microservice fault-tolerance and

health check; and

 MSA deployment, in regard to provisioning automated

procedures for the MSA ecosystem building, packaging,

monitoring, horizontal scaling and installation to the

dedicated or cloud execution platforms.

Since the MSA approach has become dominant in the past

several years [12], [13], there are plenty of development

frameworks introduced by the large software companies and

the open-source software community [14]. These

frameworks address the majority of the aforementioned

development and deployment challenges by introducing

well-defined software libraries which wrap-up the core

functionality of a framework. On the other hand, the usage of

the aforementioned frameworks requires redundant program

and configuration code to be written for different layers of

the MSA ecosystem. Since the MSA ecosystem usually

comprises a lot of microservices, this can lead to mistakes as

engineers unintentionally introduce errors to repetitive code

constructs. Also, workflow procedures used for ecosystem

deployment need to be written repeatedly for individual

microservices within the MSA ecosystem. Such a procedure

development is often harder for average engineers and needs

to be done by engineers which are specialized for the MSA

deployment tasks.

Therefore, the first goal of this research is to provide a

formal procedure for MSA specification in order to address

the MSA modeling challenges. The second goal is to address

the development and deployment challenges by using the

MSA model specification for generation of program,

configuration and infrastructure program code constructs. In

this way, first, we want to ease the usage of MSA

development frameworks and to generate all the repetitive

code constructs in order to eliminate potential errors.

Second, we want to generate all required procedures for the

MSA ecosystem deployment in order to ease this process,

make it less dependent from the specialized engineering

teams and therefore less time consuming.

In order to achieve the aforementioned goals, it could be

beneficial for engineers to have a domain-specific language

(DSL) which will provide a formal technique for MSA

modeling, as well as a set of code generators which will

generate all the aforementioned artifacts based on a MSA

specification written in the DSL. In order to enable usage of

a DSL and code generators, we plan to develop a model-

driven software tool which will support this approach.

Apart from introduction and conclusion, this paper is

divided into 3 sections. In Section 2, we discuss in detail all

of the challenges caused by the large number of

microservices within MSA and MSA-specific infrastructure.

We also propose a model-driven approach as a possible

solution to these challenges. In Section 3, we present our

previous research efforts to the MSA establishment,

alongside the plan of research activities that should lead to

its improvement and implementation of a model-driven tool

which will support the realization of such an approach. In

Section 4, we give an overview of related works.

II. MSA ECOSYSTEM ESTABLISHMENT CHALLENGES

In this section, we present challenges that engineers

typically face during modeling, development and deployment

of the MSA ecosystem. We also propose a model-driven

approach as a possible solution to these challenges.

Since MSA was introduced in 2011 [15], this software

development style has become the fundamental for many

engineers [16] as it overcomes the most of the challenges

encountered in the monolithic software application

development. Large companies have adopted MSA and

developed many open-source frameworks which are

constantly maintained and improved by the large MSA

developer community. For example, An American media

streaming service Netflix has developed a set of open-source

frameworks called Netflix OSS [17]. Netflix OSS was used

by Netflix to divide their monolithic software system into a

MSA. Today, Netflix software system consists of over 900

microservices [18]. Currently, the MSA development

frameworks are introduced in almost all mainstream

74 POSITION PAPERS. POZNAŃ, 2018

programming languages [14], with a strong development and

maintenance support by the community.

On the other hand, MSA have introduced the new

challenges to software development process, particularly

caused by the large number of microservices within the MSA

ecosystem and MSA-specific infrastructure features which

are required for the ecosystem establishment.

A. MSA Modeling Challenges

The first challenge is related to the MSA modeling

process. Usually, at the beginning of the MSA development,

it is hard for engineers to have the complete overview over

the individual layers of the MSA ecosystem. The situation is

even more complex if existing monolithic software is

required to be migrated to MSA. Therefore, engineers are

trying to decrease the MSA ecosystem complexity by

specifying different types of MSA models. These models

usually comprise microservice business entity models,

microservice API models, inter-microservice communication

pattern models and deployment strategy specification. Thus,

MSA models are often specified by using an informal

modelling techniques and, at the end, used just for

documentation purposes. On the other hand, Model-Driven

Software Engineering (MDSE) practitioners argue in favor

of models as a formal way to describe the entities from the

specific domain and use of such specifications as primary

artifacts in the development process [19]. Domain entities,

their attributes and relationships are described in a form of a

meta-model which represents the abstract syntax of a DSL

[20]. In order to use such a DSL for the specification of

meta-model concept instances, called models, a concrete

DSL syntax must be developed [20]. Therefore, in order to

address MSA modeling challenges, the application of MDSE

should introduce a DSL as a formal way for the MSA

ecosystems modeling. The MSA DSL should provide an

abstraction level which is high enough to decrease MSA

modeling complexity, but which provides enough

information that can be used for automation of the MSA

development and deployment process. In order to use the

MSA DSL in practice, a model-driven tool should be

developed. Such a tool should provide a SM which will

support the usage of the MSA DSL concrete syntax, used for

the MSA model specification (MDM), and an appropriate

file format for the MDM storage and representation.

B. MSA Development Challenges

The second challenge is related to the MSA development

process. After the end of the MSA modelling process,

usually begins the MSA development process which consists

of: (i) development of the user-defined microservice (UMS)

layer, i.e. microservices which implement the MSA

ecosystem business logic; (ii) development of the

infrastructure microservice (IMS) layer, i.e. microservices

which ensure accessibility, availability, durability and

monitoring of individual microservices within the UMS

layer; and (iii) development of the inter-microservice

communication patterns (MSC), i.e. selection and

implementation of microservice communication patterns and

the message distribution infrastructure.

The first step in the UMS layer development comprises

configuration of individual microservices, including: (i)

specification of the UMS API settings, such as microservice

name, host name, port number and data persistence layer;

and (ii) specification of a software library list, necessary for

using the chosen software framework. Therefore, UMS

which use the same technology stack, have common

configuration properties with specific values for each UMS.

As engineers try to reduce the development time, by copying

repeatable configuration code to the different UMS

specifications, they are unintentionally introducing errors by

skipping values for common configuration parameters. For

example, UMS name misconfiguration can cause

microservice auto-discovery and registry inconsistent

behavior within the IMS layer which is usually hard to

understand and debug. Also, data persistence layer

misconfiguration can cause the inconsistency and data

collisions for UMS using the common database management

systems. In this case, engineers usually forget to change

database connection profile settings for database-specific

object names. In such a situation, different UMS can try to

use the same database objects, such as database tables, for

storing different business model objects, or different UMS

try to create their own database objects with the same name.

Further, since there is a certain set of programming libraries

which are required for the usage of a chosen MSA

development framework, engineers easy forget some of them

or misconfigure their versions. This type of the UMS

misconfiguration leads to unintuitive error messages in

runtime and results in a great waste of time. Accordingly, it

can be beneficial for engineers if configuration and

technology stack settings can be specified during the MSA

modeling process, within a single MDM specification. In this

way, first, engineers are able to write an in-place UMS

configuration specifications without writing any boilerplate

or redundant code. Second, engineers do not need to specify

individual software libraries within the MDM. It is enough to

specify which development framework they want to use and

that is enough information which software libraries need to

be included in the UMS configuration. Thus, such a MDM

specification further can be used as an entry artifact for the

generation of configuration code required for the individual

UMS.

The second step in the UMS development is the

specification of the UMS business layer (BL) which

comprises the UMS business entity models and

implementation of the UMS business logic. The UMS

business logic functionalities are exposed to the end user or

the other UMS in a form of the UMS API. The UMS API is

typically developed applying the REST API design

principles [21] and using the HTTP application protocol

[22]. The UMS REST API method specifications have a

BRANKO TERZIC ET L.: A MODEL-DRIVEN APPROACH TO MICROSERVICE SOFTWARE ARCHITECTURE ESTABLISHMENT 75

similar structure, depending on the REST method type [21],

but with parameters specific to the individual UMS. The

“copy-paste” problem is even more conspicuous in this case,

because developers usually forget to change microservice-

specific API settings, such as the REST method name, type

or HTTP request content type for example. Therefore, it can

be beneficial if engineers could use a DSL in order to specify

the BL API within the same MDM, avoiding the need for the

repetitive code constructs and potential mistakes. Such a

specification can be then used in order to generate the BL

API program code templates for the chosen technology

stack. The generated code templates then can be manually

filled out with program code which implements the concrete

business logic for the specific UMS API.

In order to resolve the aforementioned UMS development

challenges in practice, a model-driven tool should provide a

separate SMs, which can be used for the UMS configuration

and business logic code generation, using a MDM as its

input.

The IMS layer is the heart of the MSA ecosystem as it

provides the following infrastructure features:

1. user request acceptance and routing, i.e. exposing a

unified access interface and a single entry point to the

whole MSA ecosystem,

2. microservice auto-discovery and registering, i.e.

providing a single point for microservice instances

monitoring and microservice name, host and port

registry,

3. frontend load-balancing, i.e. providing an improvement

of workload distribution during the inter-microservice

communication,

4. backend load-balancing; i.e. providing an improvement

of workload distribution for incoming user requests

across the MSA ecosystem,

5. microservice fault tolerance and circuit-breaking, i.e.

providing a mechanism for microservice failure

resistance,

6. the MSA ecosystem monitoring, i.e. providing

procedures for acquisition and presentation of the MSA

ecosystem metrics of interest, and

7. the MSA ecosystem scaling, i.e. increasing the

availability of the ecosystem by provisioning the

additional microservice instances in the UMS layer.

 According to the aforementioned features, we can argue

that implementation of the IMS layer is crucial to the MSA

ecosystem establishment in practice. Depending on a chosen

technology stack, there are different requirements which are

not so trivial to fulfill and require repetitive procedures to be

performed for each of the microservices from the UMS

layer. Thus, configuration of the IMS layer depends on the

configuration parameters of the individual microservices

from the UMS layer, such as microservice names, host

addresses and port numbers. Since the record about the

aforementioned setting can be obtained from the MDM

specification, automation of the IMS configuration and

development can be achieved. Such and automation can

reduce engineering efforts and radically decrease

development time since the infrastructure microservice

development requires knowledge of framework specifics,

which depends on a chosen technology stack. For example,

in order to enable microservice auto-discovery for the newly

specified UMS, engineer can set one additional parameter

within the existing MDM specification. This parameter can

be a Boolean flag which determines if certain UMS should

be added to the IMS auto-discovery settings. On the other

hand, in order to achieve the same goal using the Netflix

OSS framework, for example, engineer needs to write

program and configuration code separately for all, the newly

created UMS and the auto-discovery microservice from the

IMS layer. Therefore, it could be beneficial if another code

generator module could be built within a model-driven tool.

This module should be dedicated to generation of

configuration and program code for the IMS layer, so no

significant manual and repeatable configuration or

development is needed.

 The development of the MSC layer implies specification

and development of the communication patterns which

enable inter-microservice communication and message

exchange. Synchronous inter-microservice communication

happens when microservice which initiates communication

(client) consumes the functionality of the other microservice

(server) using its API [23]. The client microservice API is

blocked while it waits for the server microservice API to

answer. On the other hand, asynchronous communication is

done through messages sent to mediator (message provider)

rather than directly to the server microservice [23]. The

Client microservice API is not blocked while waiting for the

server microservice API answer. In situations when a large

number of microservices exist within the ecosystem, it is

hard for engineers to have a clear overview on the individual

microservice communication links, their type, message

format and message content. This is especially pronounced

in early phases of the MSA ecosystem establishment, when

engineers have not developed individual microservice APIs

yet, but they have to specify how microservices will

communicate and which type of communication technique

they will use in order to determine microservice roles and

responsibilities. Therefore, the usage of a DSL can be

beneficial in this situation since it can provide higher

abstraction level for the specification of the inter-

mircoservice communication templates, avoiding the need

for the complete MSA API existence. Thus, such a

specification can provide enough information that can be

used to generate program code templates which implement

the basic nutshell for communication infrastructure, business

rules, and message format. The separate code generator

module should be developed within a model-driven tool in

order to generate required code templates using the MDM as

its entry artifact. Later, as a MSA development moves on,

these code templates should be filled-out with program code

which implements required communication business roles

and the message content.

76 POSITION PAPERS. POZNAŃ, 2018

C. MSA Deployment Challenges

The third challenge to MSA establishment is related to the

MSA deployment process which comprise: (i) the MSA

ecosystem building; (ii) the MSA ecosystem packaging; and

(iii) the MSA ecosystem installation to the target execution

platform.

The MSA building procedure differs depending on the

chosen technology stack. Building procedure utilize a set of

commands which need to be executed over the microservice

program code, using program code build engine. For

example, if Java and Netflix OSS are chosen, then Maven

[24] or Gradle [25] build engines could be used for

ecosystem building. Anyhow, the procedure is the same and

repeatable for each microservice utilizing the same

technology stack, no matter if it belongs to the UMS or the

IMS layer.

The MSA packaging procedure depends on the chosen

technology stack, as well as on the target execution platform

type and configuration. For example, if Java and Netflix OSS

are chosen, microservices could be packaged to JAR (Java

Archive) [26] files, or could be packaged in a form of the

Docker image in order to be run as isolated Docker

containers [27]. However, the packaging procedure is also

repeatable for microservices which share common packaging

settings.

The MSA ecosystem installation to target execution

platform comprise the specification of a blueprint which

describes the structure of the MSA ecosystem and its desired

state. For example, if an Amazon Web Service (AWS) and

Docker packaging are chosen, the “Dockerrun.aws.json” file
needs to be specified [28]. This file typically comprises

specification of an individual microservice names, hosts,

ports, storage volume settings, allocation of infrastructure

resources and path to repository which keeps microservice

Docker images.

Based on what was previously stated, it is obvious that an

engineer needs to be familiar with many different fields of

software engineering in order to complete the MSA

deployment tasks. In practice, separate teams of engineers

are dedicated to these tasks. However, it could be beneficial

if the MSA deployment could be automated to certain extent.

This can reduce the time needed for such a procedure

development, and enable engineers from other teams to be

less dependent on the deployment team. This is particularly

important in situations when the MSA ecosystem, or some

parts of it, needs to be deployed on different type of

execution platforms [29]. In this case, it is crucial for the

deployment procedure to be flexible and adaptive in order to

provide rapid MSA migration and reduce the time needed for

its customization.

In practice, MSA building, packaging and deployment

procedures usually comprise well defined set of steps which

mutually stem from one another. For example, if the MSA

ecosystem is developed using the Java programming

language and the Netflix OSS framework, then Maven can

be used for a MSA building, Docker containers can be used

for a MSA packaging and AWS can be used as target

execution platform. In order to develop deployment

procedure which supports the aforementioned technology

stack and target execution platform, engineers need general

microservice settings such as microservice name, host name,

port number, desired number of microservice replicas,

amount of memory that needs to be reserved for the

microservice and so on. All these settings then need to be

packed within the Dockerrun.aws.json file, so MSA is able

to be installed to the AWS instance and to work correctly.

Thus, engineers need to be familiar with specific format and

individual settings of target execution platform blueprint.

Therefore, there is an opportunity to build deployment

templates, for different execution platforms, which consists

of common configuration parameters with specific values for

individual microservices. Further, using a DSL engineers do

not need to be familiar with all the configuration parameters

from specific deployment templates. Engineers just need to

specify build engine, packaging strategy and target execution

platform names as individual parameter within the same

MDM specification. Accordingly, code generators can use

the aforementioned general microservice settings from the

MDM in order to fill-out the appropriate deployment script

and blueprint setting parameters. Thus, changes in

technology stack or target execution platform type require

minor interventions in the MDM specification, re-generation

and re-execution of deployment procedures in order to apply

these changes in production.

In order to support the aforementioned MSA deployment

requirements in practice, a separate code generator module

within a model-driven tool can be developed. This module

should use the MDM specification as its input and generate

all required deployment procedures on the output.

III. MODEL-DRIVEN TOOL PROTOTYPE AND RESEARCH

ACTIVITY PLAN

During our previous research [30] we have developed

MicroBuilder, a model-driven tool for the specification of

software applications that follow Representational State

Transfer (REST) microservice software architecture design

principles. MicroBuilder comprises two modules: (i)

MicroDSL, a module that provides a DSL used for the

specification of the REST microservice software

architecture, and (ii) MicroGenerator, a module which

comprises a set of code generators which implement series of

model-to-text transformations (M2T). The M2T

transformations are used to generate executable program and

configuration code based on the model specification made

using MicroDSL. We have supported generation of the Java

program code for the implementation of the UMS layer and

REST-based synchronous inter-microservice

communication. We also generate the UMS configuration

code with no manual configuration needed. Talking about

UMS business logic code generation, we generate the Java

BRANKO TERZIC ET L.: A MODEL-DRIVEN APPROACH TO MICROSERVICE SOFTWARE ARCHITECTURE ESTABLISHMENT 77

Fig. 1 A Model-Driven Tool Prototype Architecture

program code for: (i) implementation of the UMS business

models; and (ii) create, update and delete (CRUD)

operations for data manipulation over a business models. For

generation of custom business logic, we generate API

templates which should be manually filled with program

code by engineers. We have also supported the generation of

the Java program code which applies the Netflix OSS

framework in implementation of the IMS layer. For the MSA

ecosystem monitoring, we have used Netflix Turbine [31],

for acquisition of the MSA ecosystem metrics, and Spring

Cloud Dashboard [32] for metric visualization.

We have also presented a detailed case study where we

have used the MicroBuilder tool in order to establish the web

shop MSA. The structure of generated Java code is also

discussed in order to explain all benefits of the MicroDSL

language usage. We have compared the number of lines of

code needed to specify the web shop MSA using MicroDSL

to the number of manually written lines of code needed to

specify the same MSA.

In order to understand MicroBuilder strengths and

shortcomings, we have performed the evaluation of the

MicroBuilder tool. We have applied two types of evaluation

approach: (i) evaluation by example in which have used the

MicroBuilder tool in order to specify various real-world

examples of the microservice software architectures in order

to iteratively improve the MicroDSL language and code

generators; and (ii) evaluation by questionnaire in which we

were using a series of questions in order to perform an

objective assessment of the MicroBuilder tool. Based on the

obtained results we have concluded that MicroDSL satisfies

the following DSL quality characteristics: functional

stability, usability, reliability, expressiveness, and

productivity.

To develop the MicroBuilder tool, we have used Eclipse

Modelling Framework (EMF) [33]. The MicroDSL abstract

syntax concepts conform to Ecore meta-meta-model [34].

The MicroDSL textual concrete syntax was developed using

the Xtext framework [35], while graphical concrete syntax

was developed using the Sirius framework [36]. Individual

code generators within the MicroGenerator module were

developed using the Xtend framework [37].

Since challenges related to the MSA deployment and

asynchronous inter-microservice communication were not

considered during the aforementioned research, in the

research proposed in this paper we plan to: (i) extend the

MicroDSL meta-model in order to enable specification of

missing MSA concepts and settings; (ii) implement the new

code generators which will generate required programcode;

and (iii) improve the existing code generators in order to

support the additional MSA development languages and

frameworkds

In order to support the asynchronous inter-microservice

communication, we plan to extend the MicroDSL meta-

model by adding concepts and attributes which will be used

for the specification of MSA events and event messages.

Events will comprise a list of event messages used for

relevant data exchange between the microservices.

In order to support automated deployment procedures, we

plan to add concepts describing basic building, packaging

and installation strategies within the MSA core concept. We

also plan to add the container concept, as additional

microservice resource type, in order to support the MSA

container configuration and packaging.

In Figure 1 we present the architecture of the model-

driven tool prototype which comprises two main modules:

the MsaDSL module and the MsaCodeGen module. The

MsaDSL module will provide a DSL which will be the

improved version of the MicroDSL language. The new

version of a DSL should provide additional concepts for

specification of: (i) asynchronous inter-microservice

communication patterns; and (ii) building, packaging and

installation settings.

The MicroGenerator module [30] will be transformed to

the MsaCodeGen module and divided into to several

submodules:

1. the MsaUMS submodule, used for the generation of

program and configuration code which implements the

UMS layer. MsaUMS supports the generation of the Java

executable program code,

2. the MsaIMS submodule, used for the generation of

program and configuration code which implements the

IMS layer. MsaIMS supports the generation of the Java

executable code which utilizes the Netflix OSS

framework,

3. the MsaIMC submodule, used for the generation of

program code which implements the synchronous and

asynchronous inter-microservice communication patterns.

For synchronous communication patterns, the Java

program code which uses the Hypertext Transfer

Protocol (HTTP) communication protocol is generated.

For asynchronous communication MsaIMC will support

generation of the Java program code which implements

the Apache Kafka message provider [38], and

4. the MsaDPY submodule which will provide a set of code

generators for generation of program code which

implements the MSA deployment procedures. We plan to

support generation of provisioning scripts for the IBM

Cloud Container services [39] and the AWS EC2

Multicontainer Docker Environments [40]. We also plan

to use the Netflix Spinnaker [41] platform to support the

MSA ecosystem continuous integration and continuous

78 POSITION PAPERS. POZNAŃ, 2018

delivery.

IV. RELATED WORK

While surveying the state-of-the-art literature in this area,

we have found several research papers that deal with the

specification of different MSA layers, using the MDSE

approach. In the rest of the section we discuss the individual

approaches and compare them with our approach.

In [42], the authors present an automated approach for the

selection and configuration of cloud providers for multi-

cloud microservices-based applications. They have

developed a DSL which can be used for the specification of

the application's multi-cloud requirements. Authors also

provide a systematic method for obtaining proper

configurations that comply with the application's

requirements and the cloud providers' constraints.

Comparing to our approach, authors were focused just on

one aspect of the MSA ecosystem deployment, which refers

to specification of installation settings for different cloud

providers. On the other hand, their approach provides an

opportunity for more fine-grained specifications, since they

have developed a DSL that is used just for this particular

use-case.

In [43], the authors try to answer the question if and to

what extent MSA might build upon existing findings of

Service-Oriented Architecture (SOA) research. They try to

find the answer to the aforementioned question in the area of

Model-driven Development (MDD), whose application to

SOA has been intensively studied. The presented meta-

model is divided into the three viewpoints Data, Service and

Operation, each of which encapsulates concepts related to a

certain aspect of MSA. The meta-model aims to support

DevOps-based MSA development and automatic

transformation of meta-model instances into MSA

implementations. Comparing to our approach, the authors

were focused on the MSA meta-model development by

utilizing the deduction procedure based on the several SOA

modeling approaches with the goal to identify the modeling

concepts which can be used for MSA specification.

Therefore, the main goal of the aforementioned research is

more related on the MSA meta-model specification

procedure, rather than to the MSA ecosystem establishment

in practice. Nevertheless, the presented meta-model and

approach seems to be still a work-in-progress towards a tool

which can be used in practice.

In [44], the authors present the Aji Modeling Language

(AjiL) which can be used for the MSA ecosystem

specification. The AjiL abstract syntax was derived from

several public MSA examples and is depicted as a Unified

Modeling Language (UML) class diagram. The AjiL

graphical concrete syntax was developed using the Sirius

framework. Comparing to our approach the aforementioned

authors have developed a DSL which can be used for the

basic specification of MSA. There is still no support for

specification of inter-microservice communication patterns

and deployment settings. Nevertheless, we have utilized the

similar set of techniques and technologies for the

specification and development of a DSL concrete syntax.

V. CONCLUSION

In this paper we argue in favor of MDSE utilization in

resolution of challenges related to the MSA ecosystem

establishment in practice. We propose a DSL as a formal

technique for the MSA ecosystem modeling in order to: (i)

decrease the system complexity in early phases of the MSA

ecosystem development; and (ii) use such a formal

specification as entry artifact to process of the MSA program

code generation.

Our goal is to improve our model-driven approach

established during previous research efforts [30] in order to

address all remaining challenges related to MSA modeling,

development and deployment.

In order to achieve this goal, we plan to improve

MicroBuilder, a model-driven tool which we have developed

during our previous research [30]. MicroBuilder has

addressed the majority of challenges related to MSA

modeling and development, including the automation of the

UMS and the IMS layer development and the REST-based

synchronous inter-microservice communication

specification. In order to address the challenges related to the

MSA deployment and asynchronous inter-microservice

communication, first, we plan to extend the MicroDSL meta-

model with additional concepts, attributes and constraints.

We also need to update textual and graphical concrete syntax

specifications in order to support the new concepts. Second,

we plan to improve existing code generators and build new

ones in order to support the generation of missing program

code constructs. In this way, we want to fulfill all the

prerequisites, so the new version of the MicroBuilder tool

can be used for MSA establishment in practice.

Since we have supported the generation of the Java

program code which uses the Netflix OSS framework, in our

future research we plan to extend technology stack by

implementing addition code generators for other

programming languages and frameworks. Since there is an

effort [45] in development and improvement of the Netflix

OSS framework for the Node.js language [46], we plan to

develop code generators which will support the Node.js code

generation. Also, we plan to support the usage of Zookeeper

[47] as an alternative for the Netflix Eureka [48].

After the completion of the model-driven tool, which we

propose in this research, we expect it to be used by software

engineers in real-world projects. The tool can be used in

order to develop the MSA ecosystem from scratch and

deploy it to different production environments. On the other

hand, the tool can be also used in situations when existing

MTA should be migrated to MSA. Anyhow, the usage of the

proposed model-driven tool should ease the process of the

MSA establishment in production and significantly reduce

development time and engineering effort.

BRANKO TERZIC ET L.: A MODEL-DRIVEN APPROACH TO MICROSERVICE SOFTWARE ARCHITECTURE ESTABLISHMENT 79

REFERENCES

[1] A. Balalaie, H. Abbas, and J. Pooyan. "Migrating to cloud-native

architectures using microservices: an experience report," In European

Conference on Service-Oriented and Cloud Computing, pp. 201-215.

Springer, Cham, 2015.

[2] A. Levcovitz, R. Terra, and M. Tulio Valente. "Towards a technique

for extracting microservices from monolithic enterprise systems,"

arXiv preprint arXiv:1605.03175 (2016).

[3] J.P. Gouigoux, and D. Tamzalit. "From Monolith to Microservices:

Lessons Learned on an Industrial Migration to a Web Oriented

Architecture," In Software Architecture Workshops (ICSAW), 2017

IEEE International Conference on, pp. 62-65. IEEE, 2017.

[4] “Open Services Gateway initiative” [Online], Available:
https://en.wikipedia.org/wiki/OSGi [Accessed: 27-Jun-2018].

[5] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R.

Casallas, and S. Gil. "Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud," In

Computing Colombian Conference (10CCC), 2015 10th, pp. 583-

590. IEEE, 2015.

[6] M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M.

Verano, R. Casallas. "Infrastructure cost comparison of running web

applications in the cloud using AWS lambda and monolithic and

microservice architectures," In Cluster, Cloud and Grid Computing

(CCGrid), 2016 16th IEEE/ACM International Symposium on, pp.

179-182. IEEE, 2016.

[7] E. Daniel, D. Cárdenas, R. Amarillo, E. Castro, K. Garcés, C. Parra,

and R. Casallas. "Towards the understanding and evolution of

monolithic applications as microservices," In Computing Conference

(CLEI), 2016 XLII Latin American, pp. 1-11. IEEE, 2016.

[8] N. Dragoni, G. Saverio, A. L. Lafuente, M. Mazzara, F. Montesi, R.

Mustafin, and L. Safina. "Microservices: yesterday, today, and

tomorrow," In Present and Ulterior Software Engineering, pp. 195-

216. Springer, Cham, 2017.

[9] T. Johannes. "Microservices." IEEE Software 32, no. 1 (2015): 116-

116.

[10] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and L.

Safina. "Microservices: How to make your application scale," In

International Andrei Ershov Memorial Conference on Perspectives of

System Informatics, pp. 95-104. Springer, Cham, 2017.

[11] D. S. Linthicum. "Practical use of microservices in moving workloads

to the cloud." IEEE Cloud Computing 3, no. 5 (2016): 6-9.

[12] K. Bakshi. "Microservices-based software architecture and

approaches," In Aerospace Conference, 2017 IEEE, pp. 1-8. IEEE,

2017.

[13] J. Bogner, and A. Zimmermann. "Towards integrating microservices

with adaptable enterprise architecture," In Enterprise Distributed

Object Computing Workshop (EDOCW), 2016 IEEE 20th

International, pp. 1-6. IEEE, 2016.

[14] “Awesome Microservices” [Online], Available:
https://github.com/mfornos/awesome-microservices. [Accessed: 03-

Jun-2018].

[15] “Microservices Martin Fowler and James Levis” [Online], Available:
https://www.martinfowler.com/articles/microservices.html [Accessed:

03-Jun-2018].

[16] G. Kecskemeti, A. C. Marosi, and A. Kertesz. "The ENTICE

approach to decompose monolithic services into microservices." In

High Performance Computing & Simulation (HPCS), 2016

International Conference on, pp. 591-596. IEEE, 2016.

[17] “Netflix OSS” [Online], Available: https://netflix.github.io/
[Accessed: 03-Jun-2018].

[18] “Adopting Microservices at Nerflix” [Online], Available:
https://netflix.github.io/ [Accessed: 03-Jun-2018].

[19] I. Lukovic, S. Ristic, S. Aleksic, A. Popovic. "An application of the

MDSE principles in IIS* Case," Model Driven Software Engineer-

ing-Transformations and Tools (2008): 85.AS

[20] J. Porubän, M. Sabo, J. Kollár, and M. Mernik. "Abstract syntax

driven language development: Defining language semantics through

aspects." In Proceedings of the International Workshop on

Formalization of Modeling Languages, p. 2. ACM, 2010.

[21] A. Rodriguez. “Restful web services: The basics. IBM

developerWorks”. 2008 Nov 6:33.

[22] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,

and T. Berners-Lee. “Hypertext transfer protocol--HTTP/1.1”. No.
RFC 2616. 1999.

[23] “Communication between the microservices” [Online], Available:
https://dzone.com/articles/communicating-between-microservices

[Accessed: 03-Jun-2018].

[24] “Maven” [Online], Available: https://maven.apache.org/ [Accessed:
03-Jun-2018].

[25] “Gradle” [Online], Available: https://gradle.org/ [Accessed: 03-Jun-

2018].

[26] “JAR file” [Online], Available:
https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.ht

ml [Accessed: 03-Jun-2018].

[27] “Docker” [Online], Available: https://www.docker.com/what-docker

[Accessed: 03-Jun-2018].

[28] “Aws Multicontainer Docker Configuration” [Online], Available:
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy

_docker_v2config.html [Accessed: 03-Jun-2018].

[29] C. Esposito, A. Castiglione, and K.-K Raymond Choo. "Challenges in

delivering software in the cloud as microservices." IEEE Cloud

Computing 3, no. 5 (2016): 10-14.

[30] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, and I. Luković.
"Development and evaluation of MicroBuilder: A Model-Driven tool

for the specification of REST Microservice Software Architectures,"

Enterprise Information Systems (2018): 1-24.

[31] “Netflix Turbine” [Online], Available:
https://github.com/Netflix/Turbine [Accessed: 03-Jun-2018].

[32] “Spring Cloud Dashobard” [Online], Available:

https://github.com/VanRoy/spring-cloud-dashboard [Accessed: 03-

Jun-2018].

[33] “EMF” [Online], Available: http://www.eclipse.org/modeling/emf/

[Accessed: 03-Jun-2018].

[34] “Ecore” [Online], Available:
http://download.eclipse.org/modeling/emf/emf/javadoc/2.7.0/org/eclip

se/emf/ecore/package-summary.html [Accessed: 03-Jun-2018].

[35] Eysholdt, Moritz, and Heiko Behrens. "Xtext: implement your

language faster than the quick and dirty way." In Proceedings of the

ACM international conference companion on Object oriented

programming systems languages and applications companion, pp.

307-309. ACM, 2010.

[36] “Sirius” [Online], Available: https://www.eclipse.org/sirius/

[Accessed: 03-Jun-2018].

[37] “Xtend” [Online], Available: http://www.eclipse.org/xtend/
[Accessed: 03-Jun-2018].

[38] “Apache Kafka” [Online], Available: https://kafka.apache.org/

[Accessed: 03-Jun-2018].

[39] “IBM Container Service” [Online], Available :

https://www.ibm.com/cloud/container-service [Accessed: 03-Jun-

2018].

[40] “Aws Multicontainer Docker Configuration” [Online], Available:
https://www.ibm.com/cloud/ [Accessed: 03-Jun-2018].

[41] “Netflix Spinnaker” [Online], Available: https://www.spinnaker.io/

[Accessed: 03-Jun-2018].

[42] G. Sousa, W. Rudametkin, and L. Duchien. "Automated setup of

multi-cloud environments for microservices applications," In Cloud

Computing (CLOUD), 2016 IEEE 9th International Conference on,

pp. 327-334. IEEE, 2016.

[43] F. Rademacher, J. Sorgalla, S. Sachweh, and A. Zündorf. "Towards a

Viewpoint-specific Metamodel for Model-driven Development of

Microservice Architecture," arXiv preprint arXiv:1804.09948 (2018).

[44] J. Sorgalla. "Ajil: A graphical modeling language for the development

of microservice architectures," In Extended Abstracts of the

Microservices 2017 Conference. 2017.

[45] “Slaying Monoliths at Netflix with Node.js” [Online], Available:
https://www.linux.com/news/event/nodejs/2017/3/slaying-monoliths-

netflix-nodejs/ [Accessed: 03-Jun-2018].

[46] “Node.js” [Online], Available: https://nodejs.org/en/ [Accessed: 03-

Jun-2018].

[47] “Apache Zookeeper” [Online], Available: https://nodejs.org/en/
[Accessed: 03-Jun-2018].

[48] “Nerflix Eureka” [Online], Available:
https://github.com/Netflix/eureka [Accessed: 03-Jun-2018].

80 POSITION PAPERS. POZNAŃ, 2018

