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Abstract—In this paper, a solution to ESENSEI data mining
challenge concerning the analysis of microscopic hair images is
described. The task of the challenge was to detect locations of
hair follicles in closeup images of a human scalp. The proposed
solution is based on a convolutional neural network architecture.
To improve generalization performance, we enhance training and
test datasets using image transformations applied to both input
and output. The chosen transformations are two axis symmetries
and switching axes, all of which are possible to apply regardless of
resolution without producing interpolation artifacts. Since these
can be combined, 2

3
= 8 possible views of each image can be

created to expand both training and test data. We demonstrate
the effects of dataset enhancement in both training and classifying
on results achievable on the competition dataset. The solution
placed 2nd in the final challenge evaluation.

I. INTRODUCTION

I
N RECENT years, convolutional neural networks (CNN)

have become the standard for machine learning tasks

concerning image analysis. Following the introduction [1],

breakthrough results in recognition of handwritten digits [2],

and significant speed improvements achieved with GPU com-

puting [3], over the past decade the deep learning approach

has been widely recognized as the current state of the art

in image classification tasks. The capability of convolutional

networks to perform well on raw data has freed machine

learning researchers of the need to design features with specific

invariance properties that are expected in image analysis (in-

variance to scaling, rotations, transposition). Simultaneously,

developments in areas of GPU processing and big data made it

more feasible to deploy these complex architectures, requiring

large amounts of training data, on real datasets for practical

problems.

The weaknesses of convolutional networks related to the

complexity of the models have been since an object of

attention. In widely publicised result presented in [4], an ob-

servation was made that it is possible to completely "confuse"

neural networks by altering images in ways imperceptible to

humans. This has shown that the CNN’s generalization ability

still does not directly correspond to our perception of visual

data. One possible approach to lessen this problem comes in

form of data enhancement: creation of additional samples in

the dataset that cover potential cases in which the network

could not otherwise learn by generalizing training data. These

can include noise disturbances, adversarial samples, and trans-

formations such as rotation by few degrees or scaling.

In this paper, we describe a CNN-based solution developed

during the ESENSEI data mining competition [5] to the task

of detecting hair follicles in microscopy images. The crucial

insight that allowed the proposed approach to place 2nd in

the final evaluation is that expanding the dataset by rotation

and symmetrical reflections can significantly improve results.

However, due to the nature of the data (specifically, the

output being a low-resolution binary image), enhancing the

data using transformations that require interpolation does not

produce good results. Therefore, the final submission limited

transformations to combinations of three different ones that do

not require interpolation.

The paper is organised as follows: in section II, chal-

lenge data is described and analysed. Section III outlines

the implemented approach: preprocessing applied to the data,

convolutional network architecture and data enhancement.

In section IV we experimentally demonstrate the influence

on data enhancement on results. Section V summarizes the

conclusions.

II. CHALLENGE DESCRIPTION

The task of ESENSEI data mining challenge was to predict

the locations of hair follicles on microscopic images. The

dataset consists of 1920x1080 images in color. Fig. 1 shows

sample images from the dataset, demonstrating the significant

variability in hue, lighting, hair color and the number of folli-

cles on each image. The dataset has 4880 images for training

and 1000 for testing. During the competition, leaderboard

evaluation was based on 10% of the test set.

Hair follicles are marked on a 16x9 grid. Output variables

are binary, i.e., either the 144x144 square corresponding to

the position on the grid contains a follicle or does not. The

submissions format was the same as annotations, i.e., binary

values on a 16x9 grid. These were evaluated using F-score as

a metric, with F-score calculated for each image separately

and then averaged over the dataset.

III. METHOD DESCRIPTION

The proposed approach uses a fairly standard convolutional

neural network architecture with downscaled images as an
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Fig. 1: Sample images from training data with significant

differences in hue, lighting, hair color and hair density

input. As CNNs are known to function well with raw data,

we strived to minimize the preprocessing steps.

A. Data preprocessing

All images are first resized to 1/8 of the original height

and width. This partially removes significant noise present in

the challenge images, while making processing of the images

significantly less resource-heavy. Then, simple normalization

is applied by first scaling all channels to (0,1) interval by

dividing them by 255, and then transposing each channel to

zero mean. This is done for each image separately to alleviate

differences in hue and lighting between images.

B. Network Architecture

The neural network employed for follicle detection consists

of convolutional layers and pooling only. Each convolutional

layer utilizes ReLU activation and 3x3 filters. Layer size was

set to 40 for all layers. Full network is shown in Fig. 2. A

single residual connection [6] between layers is used, adding

the output of the 1st layer to the output of layer 4 as the input

of layer 5. This allows faster training given the model depth.

We built this architecture though iterative deepening, i.e., we

started with 6 layers of convolution with 2 pooling layers in

between, and then added new layers as long as performance

improvements were seen on both validation set during training,

as well as leaderboard after uploading test set results. The

residual connection was added when problems in propagating

gradients first appeared at 10 layers depth.

With two pooling layers, the image is downscaled 15 times,

to 16x9, which means the network output can be compared di-

rectly with the ground truth grid. As the problem is effectively

mapping images onto images, we did not find it necessary

to use any fully connected layers on top of the network.

For optimization objective, we chose standard Mean Square

Error loss. The network weights are optimised with Adadelta

adaptive gradient descent method [7].

As the output is real-valued, thresholding must be applied

to obtain locations marked as follicles. The threshold that has

to be exceeded in order to mark a particular pixel in the 16x9

Fig. 2: CNN architecture for the final submission. Plus sign

denotes a residual connection.
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Fig. 3: 20x20 resolution picture and its rotation by 10 degrees.

Interpolation results are clearly seen and will affect training

of a CNN.

output as a follicle is chosen based on validation set results.

We test treshold values from 0.01 to 0.5 (every multiple of

0.01) and choose the one that maximises F1 score on the

validation set. The split of data into training and validation

is done randomly, using 4400 images out of 4880 for training.

C. Dataset Enhancement

As convolutional networks do not possess invariance proper-

ties regarding scaling or rotation naturally and are expected to

learn these from data, we utilize data enhancement to improve

results.

For a model where (x, y) is a valid input-output training

sample, we seek transformations T for which (T (x), T (y)) is

also a valid input-output training sample that can be added to

the data. Rotations and symmetries are among these transfor-

mations - the locations of follicles in a rotated image should

be possible to obtain by rotating the follicle locations on the

original image, and the same is true for symmetric reflections.

However, due to the very small resolution of the output

grid, interpolation artifacts produced by rotations that are not

multiples of 90 degrees could influence results in a significant

way. Fig. 3 presents results of rotation requiring interpolation

on a 20x20 resolution picture. Due to concerns of interpolation

affecting the output values, we limit the transformations to

three that do not require interpolation:

• X axis symmetry

• Y axis symmetry

• switching X and Y axes

By combining these, we can obtain 8 possible transforma-

tions, including rotations by multiples of 90 degrees. These

are shown in Fig. 4.

Additionally, some other enhancement transformations that

could be considered are scaling and random noise distortion.

However, we decided not to include these in the dataset

based on our intuitions concerning the data. Enhancing the

training dataset is applicable only when the enhancement

improves generalization ability on the test data. For rotations

and symmetries, it can be intuitively justified. As the hair on

training and test images grow in different directions and at

different angles, we would like training samples to cover most

Fig. 4: Possible transformations resulting from different com-

binations of two axis symmetries and axis switching.

angles possible, and one way to do this is to expand the data

with rotations and symmetries.

For random noise and scaling, such intuitions are not in

place. Random noise distortions would be justifiable if there

was a noise pattern present in test data that was missing

from training data and can be replicated. We failed to identify

such a pattern. Scaling, similarly to rotations, would require

interpolation, with the possible exception of scaling by an

integer number. However, an upscaled picture will show hair at

a different zoom level than the original photos. Our knowledge

of microscopic hair imaging is insufficient to tell whether

widely varying zoom levels are expected between training and

test data.

In practice, the dataset enhancement is implemented as

follows: during training, for a particular batch, we apply

each of the three listed transformations with 50% probability.

During testing, all 8 possible views are considered by the same

neural network, and a position on the grid is considered a

follicle if in more than half of the views it was marked as a

follicle.

IV. RESULTS

Fig. 5 demonstrates the performance on validation set over

the duration of training. For obtaining these results, the same

training-validation split was used for each experiment.

The comparison includes proposed approach applied to

the training data, test data or both, as well as a baseline

with no dataset enhancement. We also test enhancement with

random rotations with rotation angle uniformly sampled from

(−10, 10) interval, applied in addition to already mentioned

symmetries and axis switching. This is to test whether the

problem of interpolation outweighs the potential gains from

expanding the data by a wider range of rotations.

It can be seen that the biggest boost in performance is

achieved by enhancing the training set. Without it, the network

starts overfitting very fast. This can be seen in the graph as

decreasing performance on the validation set from epoch 10

onwards. Networks trained with training data enhancement do

not overfit within the 100 epochs period, but it can be seen that

adding an expanded range of rotations worsens performance

instead of increasing it.
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Fig. 5: Performance over the course of training, depending on where the data enhancement was applied. Expanded rotations

include rotations between -10 and 10 degrees, possibly requiring interpolation.

TABLE I: Results of the competition - top submissions

Team RMSE

rs 0.76299467

jj 0.74934757

podludek 0.71388834

Based on these results, the approach of enhancing training

and test data with symmetries and axis switching was chosen

for the final competition submission. Scores achieved by top

3 submissions in the competition are shown in Table 1.

V. CONCLUSIONS

We have described an approach to the task of hair follicle

detection, based on a CNN trained with dataset enhancement.

The proposed approach to the task has proven successfull

in ESENSEI data mining challenge, achieving 2nd place out

of 16 submissions. Experimental results show that the good

results are largely reliant on the chosen approach to enhancing

the training and test data. In general, the described approach

can be applied to any kind of image data, regardless of

resolution, due to the fact that all applied transformations

require no interpolation.

Our results showcase the importance of dataset enhancement

for training CNN. However, care should always be taken

when choosing specific ways to enhance data. Tests with

transformations that require interpolation on the competition

dataset show that the produced artifacts have a negative

impact on performance as expected, likely due to the small

resolution of the desired output image. However, the observed

improvement from utilizing rotations and symmetries is also

an effect specific to the competition data. For hair imaging, the

choice of symmetries and rotations by multiples of 90 degrees

results from two basic insights. First is that we need to expand

the range of angles at which hair grow in training pictures,

and second is that the very low resolution of the output grid

prevents us from using transformations with interpolation. In

practice, any approach to enhancing a dataset should be reliant

on reasonable intuitions concerning the particular type of data.
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