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Abstract—This paper presents a novel approach to synthesise
hybrid controllers. A two-phase multi-objective evolutive algo-
rithm was used to generate Unified Enhanced Timed Petri Net
(UETPN) models. These models combine capabilities of timed
Petri-nets, fuzzy logic systems and simple arithmetic operators.
They can handle both event-like and continuous inputs (and
outputs). The first phase of the algorithm uses Koza style genetic
programming combined with multi-objective methods such as
NSGA-II and SPEA2 to obtain an initial model. The second
phase improves the initial model with recombining the fuzzy rules
with genetic algorithm GA. In order to generate UETPN models
(with GP), an intermediate language was designed, called UETPN
Lisp. Four example are presented to exemplify the potential of
the proposed framework.

Index Terms—hybrid control, Petri nets, genetic programming

I. INTRODUCTION

HYBRID controllers have a substantial practical impor-

tance because almost every real application from simple

temperature control to complex robotic agents can have both

event-like inputs and outputs, and continuous ones. Well-

known examples of problems solved by Genetic Programming

(GP), such as the artificial ant and obstacle avoiding robot

(presented by Koza at [1]), are formulated in a way that only

one domain is involved. In this paper, a two-phased evolution-

ary algorithm is presented, which is capable of synthesising

controllers for discrete event systems, discrete time systems

and hybrid systems as well.

Unified Enhanced Timed Petri Net (UETPN) models are

used as the target platform for the proposed evolutionary

framework. They are based on Delayed Time Fuzzy Petri nets

[2]. For an effortless expression of control algorithms, they

were completed with mathematical operators. Their ability to

competently model reactive applications is shown in [3]. They

are fit for handling continuous (real number) variables and

fuzzy logic variables and for performing simple arithmetical

and logical operations. They are capable of modifying the

execution (split, join, select or block) depending on some

external or internal value.

The proposed platform generates a complete UETPN model

with GP, and in the second phase, it tries to improve it by

recombining the fuzzy rules with genetic algorithm (GA).

The overall proposed framework needs a fitness evaluator

for the given problem as input. This fitness evaluator consists

of a fitness function and a light-weigth simulator. The ouput

is an UETPN model which can be employed to control the

specified system.

In order to widen its applicability, the presented framework

supports the usage of Pareto front-based multiobjective meth-

ods such as NSGA-II [4] and SPEA2 [5]. These methods can

also help to reduce the bloat, an issue which typically affects

GP [6]. The presented experiments highlight the general ap-

plicability of the framework. The proposed method is applied

to four different problems, for which the fitness function has

been changed.

II. EVOLVING PETRI NETS

Fuzzy Petri nets are applied in various fields: path-tracking

control problems; adaptive task assignment; fault estimation,

detection, and diagnosis for power systems; urban and rail

traffic control and many more [2]. Despite the vast range of

applications, surprisingly few attempts were made to gener-

ate them automatically. Wong in [7] presents a framework

called LOGENPRO used to extract knowledge from databases.

LOGENPRO uses GP applied to logical grammars, based

on place-manipulation and transitions-manipulation operators

(such as sequential or parallel division). These operators

modify the predefined fuzzy Petri net (FPN). However, the

overall process restricts the structure of the FPN. The overall

result lacks any internal state, timing and inner loops. These

restrictions limit the applicability of the proposed framework

in control applications.

Nobile in [8] introduces a new type of PN called Resizable

Petri Net. This have divided the places and transitions into

two groups: hidden places (or transitions) and normal ones. In

the proposed framework only the number of the hidden nodes

varies, the resulted PNs resemble binary trees.

An entirely different approach is presented in [9], which

evolves some parameters. Based on these parameters and a

template the final PN is assembled. This approach allows the

use of the traditional real-coded genetic algorithm. Never-

theless, it can be applied only in case the structure of the

PN is known upfront. Another approach presented by [10]

addresses a biological problem modelled by PNs. In this case,
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TABLE I: Mapping table (i. e. MT) associated with t4 of the

first example (only the indices of the rules are marked)

P9/P8 X
−2 X

−1 X0 X1 X2 φ
X

−2 φ φ φ φ φ −2

X
−1 φ φ φ φ φ −1

X0 φ φ φ φ φ 0

X1 φ φ φ φ φ 1

X2 φ φ φ φ φ 2

φ −2 −1 0 1 2 φ

the authors establish the number of the places based on the

problem specification, traditional GA evolves only the arcs.

The presented problem is solved, still, their approach is far

too restrictive to be applied in a broader domain.

A more general idea is presented in [11], using traditional

GA. The gene, a transition-place pair, is decoded as an arc

linking them. They use their framework to synthesise PNs

starting from a structural and behavioural specification. Fol-

lowing the evolutionary process, additional steps are needed

to improve the result and to reduce its size. This approach

has potential, yet we believe that GP is abler to discover and

re-utilise building block in the case of a PN-like structure.

III. UNIFIED ENHANCED TIMED PETRI NET

The UETPN models ([12]) incorporate transitions that have

associated mapping tables (MT) and optional arithmetic oper-

ators. The MT is an organised form of the fuzzy rules which

determine the bahaviour of the transitions. The input token(s)

can activate the rules and if there is no operator, these rules

define the output of the transition and they decide whether a

transition is executable. UETPN supports transitions with one

or two input places and one or two output places.

The mapping of a transition can be defined as a function

between the current marking of the pre-places and post-places.

MT can have different shapes based on the numbers of

inputs and outputs. An MT with two inputs and one output is

exemplified in Table I, while another with one input and two

output in Table II. If the current marking of a place is marked

with xp, then one cell represents the following fuzzy rule:

IF xi0isX0 ∧ xi1isX−2 THEN xo1isX1 ∧ xo2isX2 (1)

Each place has an associated scale (sk). The token tk set

in a place is always in ([−sk, sk] ∪ φ), where φ means no

information. Petri nets express no information leaving the

place empty, nevertheless, in the case of the UETPN a place

always has a marking.

When a transition executes, the input tokens are fuzzified

in the first step. The limits of the membership functions are

defined based on the scale of the input place. Simple triangular

membership functions are used. Secondly, the fuzzy rules in

the MT are executed, the result is collected and defuzzified by

the center-of-gravity method. The scale of the output place(s)

determines the defuzzification intervals.

If an arithmetic operator is assigned to the transition, the

following equation is applied:

mapi(xi1, xi2) = (xi1 ◦ xi2) ⋆ FLMT (xi1, xi2) (2)

TABLE II: Mapping table (i. e. MT) associated with t3 of the

first example (only the indices of the rules are marked)

X
−2 X

−1 X0 X1 X2 φ
0, φ 0, φ φ, φ φ, 0 φ, 0 φ, φ

where ◦ ∈ {+,−, /,×}, and FLMT (xi1, xi2) stands for the

result of the mapping table deffuzified in the interval [−1, 1].
The fuzzy rules can alter the original result, but, if all the

conclusions are X2, the result of the operator is unchanged.

The obtained value is truncated based on the scale of the output

place. Only the transitions with two input places can have

operators.

The existence of every fuzzy rule is not compulsory for MT

construction. φ signals the missing rules. The MT also has φ
columns and rows, which supports the definition of rules even

if one (or both) of the input tokens are φ.

Another role of the MT is to decide whether a transition

is executable (referred to as enabledness). A transition is

allowed to fire if there is at least one fuzzy rule with non−φ
consequence (in the MT) which applies to the current input

marking.

This definition of enabledness and the possibility to put φ in

some cells of the MT facilitate the implementation of inhibitor

arcs, reset arcs, and transitions which are always enabled or

blocked.

A precise description of communication with the outside

world is pivotal for the UETPN to model hybrid controllers.

UETPN models represent input channels as input places. The

tokens set in these places can emerge from the exterior world

(environment) only. The output channels are represented as

output transitions. The output transitions do not have post-

places, they send the tokens outside the current component.

Multiple UETPN components can be connected in the previ-

ously described way.

A. Definition of UETPN

[3] contains not only the complete definition of the UTPN

models, but some significant examples and applications also.

In this section, only a brief introduction is given. The examples

do not resolve a real-life problem, however they illustrate some

of the capabilities of UETPN models (and they exemplify the

UETPN-Lisp introduced in the next section as well).

The definition of UETPN is:

UETPN = (P, T, pre, post , D, S,EFS ,Map,

Inp,Out , α, β, δ,M,M0)

where:

• P is the place set, T is the transition set (P ∪ T = ∅),

while pre ⊂ (P × T ) contains the arcs from places

to transitions, post ⊂ (T × P ) includes the arcs from

transitions to places. D is the delay set. δ is a mapping

δ : T → D, which associates delays to transitions. Their

meaning corresponds to the ones from classic Petri nets.

• Inp ⊂ P are the input places (channels), Out ⊂ T are

the output transitions (channels).
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Fig. 1: Structure of the expression (# (@ (@ i:br:0 (% (*

i:br:1 c:2.0) c:0)) o:c:0) d:1)

[t]

• S = {s0, s1, s2 . . . , sm} is a set of real numbers repre-

senting the scale factor set or bound set, α is a mapping

such that α : P → S, it assigns a scale to each place from

the set P.

• M is the marking vector, while M0 is the initial marking

vector.

• EFS is the extended fuzzy set

{X−2, X−1, X0, X1, X2} ∪ φ,

• Map = {mapi|i = 0, 1, 2, · · · , n} is the set of mappings.

A mapping consists of one particular fuzzy logic rule

set, expressed in a form of mapping table (MT) and an

optional arithmetic operator. β is a mapping β : T →
Map, it assigns a mapping from the set Map to each

transition

B. Example of a UETPN model

The first example illustrates how UETPN models can alter

their execution based on the value of an (input) token. It

demonstrates how mathematical operations can be imple-

mented too.

Figure 1 represents the structure of the first example of a

UETPN model. It has two input places and one output place.

If the zeroth input channel has a positive non-φ token, the

output equals two times the first input. Else, the output returns

a constant zero token. The transition t3 has a key role in this

behaviour. Its MT table returns a token to P6 if the value in

P3 is positive, and to P7 if it is negative. Table II specifies

the mentioned MT table. The constructions P17-t10-P18 and

P15-t7-P14 are responsible for providing the constant values,

P15 and P17 contain an initial token with the value of 2.0 and

0, respectively. T6 multiplies the input read from iP20 (via

P12) with the constant from P17 (via P13). T4 has to have

an MT table which enables if there is a non-φ token in P9 or

P8, because only one main branch is executed simultaneously.

Table I presents this MT. The transition oT14 fires the result

to the outside world. Note, that t0 has one delay before the

whole cycle starts over.

Figure 2 displays the behaviour of the described example.

It can be observed that when the zeroth input is -1 (between

the 0th and 10th time tick and between 20th and 30th time-

Fig. 2: Behavior of the first example

tick), the output is zero. When the zeroth input is 1, the output

doubles the sine wave of the first input.

The second example also alters its execution, however, in a

completely different way. In contrast with the first example, the

execution flow depends on whether a transition is executable.

Note that the definition of the UETPN models does not

prioritize the transitions, however, one can be sure that the

executor tries to fire the transitions with the lowest delay

at first. Another restriction is that in the case of conflicting

transitions, the executor behaves in a deterministic way.

Figure 3 displays the structure of the second example. This

example has two inputs and one output. All the places have

1.0 as scale. It contains an inner loop which executes until the

outside environment inserts a token to iP11, which in turn is

transmitted to P5. When a token appears at P4, t1 becomes

executable, and the model stops its execution. The inner loop

returns a token to the output oT9 if in the input place iP10 has

a token which activates the X0 rule of t5. Table III specifies

the MT of t5. If t5 is not fireable, T4 starts firing. After T4

finished its firing (it has one tick delay) the whole cycle begins

over via T3.

Figure 4 shows the behaviour of the second example. The

output is activated when the zeroth input is in the interval

[−0.5, 0.5] which corresponds to the activation of rule X0 after

fuzzification. It is also observable that after an event appears

in the first input (at the 30th time-tick), there is no more output

regardless of the inputs.

Note, that the transitions t12 and t13 from the first example,

t8 and t7 from the second example have the role in copying

the new input token regardless of the existence or value of the

previous inputs (stored in the buffer places after these transi-

tions). These structures are not essential from the functional

TABLE III: Mapping table (i. e. MT) associated with t5 of the

second example (only the indices of the rules are marked)

P2/P8 X
−2 X

−1 X0 X1 X2 φ
X

−2 φ φ −2 φ φ φ
X

−1 φ φ −1 φ φ φ
X0 φ φ 0 φ φ φ
X1 φ φ 1 φ φ φ
X2 φ φ 2 φ φ φ
φ φ φ φ φ φ φ
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Fig. 3: Structure of (& (#(?(@ i:eiz:0 o:c:0) d:1) d:0 )i:enp:1)

point of view, but since these models are direct correspondents

to some UETPN Lisp expressions, it would be imprecise to

omit them.

IV. MODEL CONSTRUCTION

The semi-automatic way of fabricating a UETPN model has

two phases. In the first one, an initial model is generated with

GP and UETPN Lisp. It constructs a complete UETPN model,

which is executable and evaluable with a fitness function.

However, the available MT tables are predefined, which limits

the possible behaviours. The result of the first phase is not

only the UETPN model itself but also a meta-data about the

context of transitions. Based on this metadata the MTs of some

transitions can be re-trained with GA. This preselection of

the transitions is necessary because in most cases the models

yielded by the first phase have so many transitions that it is

infeasible to optimize all of the MTs with GA.

There can be several reasons to employ the second phase.

First of all, if the fitness value produced by the result of GP

is not satisfactory, there is a chance that the second phase will

improve it. Secondly, the fitness itself can be adjusted, taking

into account other evaluation criteria. Thirdly, the parameters

of the problem can also be modified. In this case, the re-

training of the UETPN model achieved in the first phase may

lead to significant improvement.

Although the entirely automatic synthesis is possible, it is

highly recommended to analyse and evaluate the solutions

manually after the first phase. It is recommended to ensure

that the found solution has the desired behaviour, because the

GP often can find a workaround to achieve a high fitness value

without satisfying the real fitness criteria. The length of the

Fig. 4: Behavior of the second example

simulation for fitness evaluations is always a compromise, be-

cause the longer the simulation is, the more time it takes to run

the algorithm. It is advised to execute the first phase several

times and to choose a suitable solution before performing the

second phase. Also, the types of transitions whose MTs are

optimised have to be selected manually.

Finally, it has to be mentioned that in the case of problems

which do not benefit from the effect of fuzzy rules, the second

phase has no benefit. In these cases, the problem has to be

solved in the first phase.

A. First phase:GP with UETPN Lisp

In the first phase, classical tree-based Koza style GP is

used. The overall algorithm and the genetic-operators are not

specified here, they are applied as in the literature ([13] and

[1]). The focus of this section is on the UEPN Lisp, which

is a small language used by GP framework. It presents the

operators and the operands and exemplifies he conversation

from UETPN Lisp to UETPN model.

UTEPN Lisp is transformed to UEPN model by breadth-first

traversal. Every sub-expression is built up between two places.

The algorithm starts by adding the two principal places. The

root node is built between these. The first place has an initial

token which begins the execution of the model. Both in case

of the first example (Figure 1) and the second example (Figure

3), this starting token is placed in P0.

All of the operators of the UETPN Lisp have two operands.

The sequence operator denoted by @ is the simplest one, it

indicates that the two operands come after each other separated

by a place. In the second example, the place P7 separates

the transition T5 and T6, a structure which is the result

of decoding a sequential sub-expression ”(@ i:eiz:0 c:c0 )”.

The selection operator (marked with ?) builds up both of its

children between its original starting and ending place. It can

be noticed that either the transition t4 or the structure t5-P7-

t6 executes from the second example. This is the result of a

sub-expression of (? (@ i:eiz:0 c:c0 ) d1). The loop operator

(#) produces a similar structure, however, the direction of the

second child is reversed. In the second example, T3 is the

second child of a loop operator. T0 is the second child of a

loop node in the first example.

The structures produced by the concurrency operator (&),

positive-negative split operator (%), sum operator (+) and

multiplication operator (*) are the same, the only difference

are the MT tables and the mathematical operators associated

with the transition. In the first example, the structure from P3

to P2 is the result of the sub-expression (% (* i:br:1 c:2.0)

c:0.)), and the transition T3 and T4 are built as the part of

the positive-negative split operator. The T3 has an MT which

yields a token into one of its outputs only, based on the sign

of the input. In the structure mentioned above, the fragment

staring from P6 to P8 is built as the result of the sub-expression

(* i:br:1 c:2.0). The transitions T5 and T6 were added as a

result of the multiplication operator.

In case of the second example, the root of the expression

is a concurrency node. The transitions t0 and t1 are added as
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part of this operator. As the name suggests, in this case, both

branches are executed independently, and t1 becomes fireable

if both finish their execution. If the sum or multiplication

operator is used, T1 has the corresponding associated operator.

The most crucial operands are the input and the output

operands. They connect the main flow of the model to the

input place or output transition. They also have a type which

specifies the MT tables used in the connection transition. For

example, the input node i:eiz:0 means that the zeroth input

is read with a transition which is enabled if the input token

activates the X0 rule. In this case, the MT mentioned above

belongs to t8 (second example), and iP10 is the zeroth input.

The P8 is a buffer place where each input node has a copy

of the original input token, and t7 is an auxiliary transition,

responsible for placing the new token to the buffer place. This

role is essential in the case of models which use the same input

multiple times. Other types of inputs are the blocking reader

(”br”),non-blocking reader (”nbr”), enable if non-φ (”enp”),

enable if phi (”eip”), enable if zero (”eiz”), enable if not-

zero (”enz”). The type of the input is essential in case of the

second example, where the zeroth input has ” enable if zero”

type. If the evolutive framework mutates it into ”enable if

not-zero” (”enz”), the behavior of the model is inverted. If

changed to something else, the execution of the model would

be dramatically different. Note that these input types help the

framework to deal in a completely different way with event-

like and continuous inputs . The ones with ”enable” in their

names block the token in the main flow without modifying its

value. The ”reader” ones copy the value of the input token

into the main flow.

Similarly to input leaves, outputs also need auxiliary con-

structions. In the second example, P9 acts as a buffer place

connecting T6 to the real output transitions oT9, which is the

result of the leaf o:c:0. Outputs currently can be only copy

type, however, defining new types is as easy as to define a

new MT table. (This applies to the input types as well.)

Other operands are the delay nodes (d:nr), which insert

transitions into the flow with a certain delay, the constant

(c:nr) leafs that provides a mathematical constant, blocking

leaf (b), whose role is to insert a transition which is never

executable, negation leaf (n) which negates the sign of the

tokens, inversion leaf (v), and memory leaf (m:nr) which

delays the value of the token, but it does not block the

execution of the model. Some of these (memory, inversion,

constant ) are implemented with complex structures, others are

single transitions with unique MT tables and/or mathematical

operators.

During the decoding, the created transitions are categorised

as follows: input, output, split-starter, split-merger, auxiliary,

others. These categories (one or more) can be selected for

optimisation by the second phase. The early experiments

showed that in the majority of the cases optimising the input,

the output and the split-merger transitions yielded the same

results as adding any other category to this group. What is

more, widening the set of optimised transitions means larger

search space for the second phase.

B. Second phase: GA for the fuzzy rules

Similarly to the previous section, the GA itself and the

genetic operators are not presented here, they are used in the

well-known way ([14]). Simple binary encoding is used. The

user of the algorithm decides which type of transitions have

to be optimised.

In order not to change the behaviour drastically, only the

non-φ rules were marked to be re-trained by the presented

GA, and they can trun to other non-phi rules. Three bits can

represent the five possible rules. A three-bit unit was chosen

as the gene, their sequence composes the chromosome for GA.

Since three bits can represent eight values, three of them is not

used. The crossover, the mutation and the creation of initial

population were modified in order not to produce the unused

combinations.

V. EXPERIMENTS

A. Control of a first order system

A simple task was choosen to exemplify the working of the

framework: control of a first order system. Firstly, a known

structure is optimized. Secondly, the complete framework

solves the problem.

The fitness functions used for these problems take into

account the absolute error (ea) and the steady state error(es)

of the controlled system. All of the experiments use the same

fitness function:

f(i) = 1/(1 + α ∗ ea + β ∗ es)

where α and β are constants set to 0.8 and 0.2.

Firstly, a proportional integral (PI) controller was manually

defined in UETPN Lisp. The rules of the input, output and

the split-merger transitions were optimised. After 50 runs,

the average fitness was 19.46. One of the average results is

presented on the upper part of the Figure 5.

Secondly, GP solves the same problem with the same fitness

function. The after 50 runs, the average fitness of the results

was 25.39. An average result is displayed in the middle part of

in Figure 5. Not only that the second result has hogher fitness,

but the difference is also conspicuous, the overshoot is better,

and the overall error is smaller.

Thirdly, GA is applied to optimise the rules of the previous

result. The average fitness in this case is 27.88, which means

smaller increment, however, the differences (the lower part of

the Figure 5 ) still can be noticed.

Additonally the result of the second step was re-trained with

GA to control another modified first order discrete system.

The solutions have superior performance than the orginal

controller, however, they do not overperform a re-traned PI

controller.

B. Artificial Ant Problem

The Artificial Ant is a classic GP problem used by Koza

at [13] to illustrate GP. The previously presented UETPN

Lisp has the disadvantage of being more general, in con-

trast to Koza’s solution (and many other papers), which use

specialised operators and operands. As it is anticipated, the
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Fig. 5: Comparison of different results for the original system

(PI optimized, GA only and GA+GP)

performance of the general framework does not match the

specialised one.

An artificial ant is capable to turn left or right and to move

forward. The single input is activated if food is ahead. The

controller has three event-like outputs and one even-like input.

The fitness function is the number of food units eaten. The ant

is placed in the well-known Santa Fe trait.

The overall problem is known to be difficult to solve and

it was used by several researchers to demonstrate features of

their algorithm. A comprehenesive review of the problem can

be found at [15]. The advantages of flexible genome show up

in the case of this problem, because fixed length genome can

represent only restricted number of program states.

Since this problem requires higher population number and

iteration than the previous one, bloat presents a more serious

complication. Bloat is the phenomenon when tree-sizes grow

exponentially fast, wasting the computational time and filling

up the overall genetic material of a population with useless

fragments. The proposed framework implements traditional

methods such as various form of Parsimony Pressure, which

essentially means that the size of the individual is part of the

fitness.

The problem with these methods are that it is hard to

assess the size compared to the original fitness value. The

demonstrated framework can also apply static and dynamic

simplification over UETPN-Lisp. These methods replace the

sub-expressions, which can be expressed simpler and delete

the unused ones. Although they are effective on compacting

the potential solutions, they cannot entirely solve the bloating

phenomenon.

A robust method in the case of UEPN-Lips applied to the

artificial ant problems is to use NSGA-II with two fitness

functions. The first of them is the number of food eaten (ff ),

the second one is the number of eaten multiplied by the size

factor (fs). This way the second objective favours candidates

which are small and fit. This idea gives better results than the

one presented [5] where the second objective evaluates only

the size. The size factor (fs) is calculated by:

fs = (si − sprf )/(smax − sprf )

where si is the size of the individual, smax is the maximum

allowed size, while sprf is the preferred size. In these exper-

iments smax = 500 and sprf = 20, outside these limits fs is

defined as 1 (if si < sprf ) or 0 (if si > smax).

The original solution presented by Koza needs to evaluate

450∗103 individuals for an acceptable average solution ([15]),

similar results can be obtained with 500 ∗ 103. The best

algorithm proposed by [15] is equipped with problem-specific

base language but also specialised crossover and mutation,

and it has a far better success rate with 51 ∗ 103 evaluated

individuals.

C. Room temperature control

This experiment is a hybrid application with two inputs:

the reference temperature and the actual reading from the heat

sensor in the room. There are two event-like outputs: one of

them starts the heating, the other one stops it.

A discrete time system simulates the room temperature. It

is based on the temperature differences:

• δht[k] = thw[k] − tr[k] is the difference between the

temperature of the heating water (thw) and the room

temperature (tr).

• δo[k] = tr[k]−to[k] is the difference between the outside

temperature (to) and the room temperature.

The room temperature is simulated in the following way:

tr[k + 1] = tr[k] + cht ∗ δht − cwl ∗ δo − cwi ∗ δo

, where cht is the heating constant set to zero if the heating

is turned off. cwl is the wall constant, and cwi is the window

constant set to 0.0 zero of the window is closed. The opening

and closing is the disturbance of the overall system. In this

case, the temperature of the heating water is considered

constant. Another important point is that the sensor reading

is delayed compared to the simulated room temperature.

A elementary fitness function can be defined with the help

of the sum of the error. However, this would lead to controllers

which do not react to the input values but rather turn on/off

the heating periodically. The problem can be solved by adding

a lot of test scenarios with hectic temperature changes. This

would lead to slower evaluation of a solution candidate, hence

longer overall runtime. The approach used here evades the

elongated run-time: the number of the minutes when the

temperature is outside the interval of tref ± δ is mesured,

where δ was chosen to be 0.5. The behaviour of a solution

found in the first phase (with GP) is presented in Figure 6.

The controller turns the heater on only when it is necessary,

and the heater stays on until a certain limit is reached. The

desired behaviour is achieved, however the GA was not able

to improve it.

In the second part of the experiment, the parameters of the

room model were changed. The disturbance effect was higher
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Fig. 6: The evolution of room temperature in case of GP

than in the previous experiment (presumably because the win-

dow is larger or the volume of the room is smaller compared to

the window), while power of the heater was increased. In this

case, the original controller performed poorer. The behaviour

of a solution which has the same structure as the original one

but it was re-trained with GA taking into consideration the new

room model. The new behaviour of is shown in Figure 7. The

presented solution was able to respond to the new challenge.

D. Room and Water Heater Temperature control

In this section, the desired controller has to control the

temperature of the heating water, in contrast with the previous

part where it was considered constant. This way the controllers

have three outputs, first two of them have same functionality

as in the previous section.The third has continuous behavior,

aimed to control the water temperature in the heater tank.

There are four inputs: the actual temperature of the room,

the reference temperature of the room, the actual temperature

of the water and the reference temperature of the water.

With the objective to simulate the temperature of the heating

tank, the following intermediate variables are defined:

• δw[k] = thw[k] − tpw[k] is the temperature difference

between the heating water (thw) and the water from the

pipe (tpw).

• δcmd[k] = tmax − thw[k] is the difference between

the maximum water temperature (tmax) and the current

heating water.

• δt[k] = thw[k] − tt[k] is the temperature difference

between the heating water and the room.

The temperature of the heating water is given by the

following discrete time equation:

thw[k + 1] = thw[k]− ch ∗ δw + ccmd ∗ u[k] ∗ δcmd − ct ∗ δt

where ch, ccmd, ct are constant, ch is set to 0 if the heating is

off. u[k] is the output of the controller. The rest of the system

is identical to the one mentioned before.

This system can be viewed as the combination of the first

order system, and the setup presented in the previous section.

Although it is self-explanatory that the framework can express

the desired controller, it is hard to come up with the adequate

fitness objective(s). The only known solution needs multi-

objective optimization and far more evaluated individuals than

any of the examples presented here.

The first objective is similar to the one in the previous

section it counts the number of the minutes when the room

Fig. 7: The evolution of room temperature in case of the

modified system

temperature and the temperature of the water is off limit.

The second fitness objective sums up the error and of the

room temperature and the temperature of the water relative

to the references. (The reference for the water temperature

is constant 60). The third one is identical to the first one,

except that it takes into account the size factor presented in the

section related to the artificial ant. SPEA2 is known to handle

better more than two objectives than NSGAII [5], hence it was

chosen as the base algorithm for the experiment.

As it has turned out, the boiler is too weak compared to

the room model. In practice, this means that when the heating

is turned on in the room, the temperature of the water drops

fast and constant temperature cannot be maintained for more

than two or three minutes. In the real world, this would be a

severe design problem, but the proposed framework overcame

this flaw.

Figure 8 presents the behaviour of one solution found after

GA is applied as well. This controller starts to heat up the

water in the heating tank before the temperature of the room

drops to a critical temperature. This way when the controller

turns on the heating in the room, the water is already heated

above the reference temperature, and the heating can remain

on for a longer time. It is not the expected solution, but it is

unarguably a creative one.

Figure 9 displays the operations of an another solution. This

solution turns on the heating for a minute or two only in order

to maintain the constant water temperature. This approach

performs weaker in the first hour of the presented scenario

than the previous one. However, in the rest of the time it has

an adequate performance.

The first solution performs better from the perspective of

the first fitness objective, while the second fitness objective

favours the second solution. In this experiment, multiple fitness

scenarios were needed in order to reduce the number of

solutions which perform a cyclic behaviour, which fits the

average cases, without reacting to the current situation.

The presented framework is capable of finding an acceptable

solution in 10% of the cases. The population size was 3200

combined with 200 iteration. This took in average five hours,

more than 50 experiments were performed.
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Fig. 9: The behavior of the second solution for Room and

Water Heater Temperature control

Fig. 8: The behavior of the first solution for Room and Water

Heater Temperature control

VI. CONCLUSION

The current work focuses mostly on the capabilities of the

framework and the effects of the two phases of the devel-

opment. All of the presented experiments are reproducible

with the code released 1 under an open-source license. Based

on these experiments, it can be concluded that the given

framework has the potential to generate controllers for hybrid

systems. The presented experiments also highlight the fact that

a complete base-language is not enough to tackle complex

problems, the primary evolutive framework is at least that

important.

The importance of multi-objective methods based on Pareto-

fronts cannot be overstated. They have a strong focus on

exploiting the known Pareto-front and on trying to improve

in one way or another. This behavior is essential in case of

controlling the bloat when shorter individuals are preferred,

however, individuals with high fitness should not be deleted

based on their size only. Yet, these algorithms have the

disadvantage of being more disposed to early convergence to

sub-optimal solutions. The explicit diversity control may be

needed in the future.

Future development directions could focus on the compil-

ing of the UETPN-model to machine code or Java Virtual

Machine byte-code with the objective to make the evolution

of a proposed solution faster. Another important direction is

to conceive a method to deploy UEPN-models directly into

micro-controllers with the aim to apply the presented result in

real-life.
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