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Abstract—Cyber-physical systems consist of many hardware
and software components. Over the life-cycle of these systems,
components are replaced or updated. To avoid integration prob-
lems, good interface descriptions are crucial for component-based
development of these systems. For new components, a Domain
Specific Language (DSL) called Component Modeling & Analysis
(ComMA) can be used to formally define the interface of such a
component in terms of its signature, state and timing behavior.
Having interfaces described in a model-based approach enables
the generation of artifacts, for instance, to generate a monitor that
can check interface conformance of components based on a trace
of observed interface interactions during execution. The benefit of
having formal interface descriptions also holds for legacy system
components. Interfaces of legacy components can be reverse
engineered manually. In order to reduce the manual effort, we
present an automated learner. The learner can reverse engineer
state and timing behavior of a legacy interface by examining
event traces of the component in operation. The learner will
then generate a ComMA model.

I. INTRODUCTION

THE high-tech industry creates complex cyber-physical

systems. The architectures for these systems consist of

many hardware and software components. These components

can be self-created or made by a third party supplier. Com-

ponents interact with each other using software interfaces.

Good interface descriptions are crucial for component-based

development of cyber physical systems. Typically, however,

software interfaces are only described in terms of their sig-

nature, i.e., the set of operations. Sometimes also the allowed

sequence of operations is specified, for instance in terms of a

state machine or a few example scenarios. The timing behavior

of an interface is almost never described. For instance, the

expected frequency of notifications and the allowed time be-

tween the call of an operation and the corresponding response.

Violations of assumptions about timing behavior, however, are

an important source of errors over the complete life cycle of

these systems.

To overcome the drawbacks of current interface definitions,

we have developed a Domain Specific Language (DSL),

called ComMA as an abbreviation for Component Modeling

and Analysis. ComMA [1] is currently used at the business

unit Image Guided Therapy (IGT) of Philips for the formal

definition of signature, state and timing behavior of software

interfaces. ComMA specifies the signature of a server, i.e., the

operations it offers to clients and the notifications it can send to

clients. In addition, a ComMA interface definition includes a

state machine which specifies the allowed interactions between

client and server, timing constraints on sequences of opera-

tions, and data constraints on the parameters of operations.

Based on a ComMA specification, a large number of arti-

facts are generated automatically, for example:

• A visualization of state machine, timing and data con-

straints by means of plantUML1.

• A Microsoft Word document according to the prescribed

Philips template with the interface specification; this also

uses comments in the ComMA specification including

Doxygen-style comments2.

• A simulator of the interface based on the state machine.

• Proxy source code in C++ and C# for the middleware

technology SSCF of Philips IGT for transparent deploy-

ment of software components. SSCF is an abbreviation

of Simple Service Communication Framework.

• A monitor which can be used to check whether an imple-

mentation of the interface conforms to the specification.

This is done based on an execution trace that is recorded

or sniffed during the usage of the implemented interface.

The monitor checks conformance to the specified state

machine and the timing and data constraints.

The monitor is very useful to check interface compliance after

software updates or hardware upgrades. The monitor stores

the timing information from the trace that is used to check the

timing constraints. This information can be visualized to obtain

insight in the timing characteristics. This is, for instance,

useful when an updated hardware component is obtained

from a supplier. Then the impact on the Philips part of the

interface can be determined based on the differences between

the characteristics of the old and the updated component.

Given the benefits of the ComMA approach, all new major

system interfaces of Philips IGT are modeled and checked

using ComMA. There are, however, hundreds of existing

interfaces and it would be beneficial to apply the power of

1www.plantuml.com
2www.doxygen.org
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the ComMA framework also to these interfaces. A manual

transformation would require a large reverse engineering ef-

fort. Hence, the goal of the work described here is to support

this transformation automatically such that the manual effort

is reduced significantly.

Our approach is based on model learning techniques to

obtain a first version of an interface state machine in ComMA.

The main contribution is that we also learn the timing con-

straints. Since the learned interface may not be complete and

states will not have meaningful names, manual changes will be

needed. These changes are validated by the monitor generated

by ComMA.

Concerning the model learning techniques, we have ex-

perimented earlier with active learning which stimulates the

system under learning actively and infers an hypothesis based

on the responses of the system [2]. Active learning requires

the implementation of an adapter to connect the System Under

Learning (SUL) with the learner. This adapter has to deal with

behavior of the SUL that does not match the assumptions of

the learning techniques, such as a SUL which is not input

enabled or a SUL which sends no output or multiple outputs

after a stimulus. This technique also requires frequent resets

of the SUL which may be time consuming. Furthermore, non-

determinism of the SUL is a problem for active learning.

To avoid these issues, the approach described here is based

on passive learning [3] where traces of SUL behavior are used

to derive an hypothesis about the state behavior. Our algorithm

is based on regular inference [4]. In particular, we use the

algorithms described in [5], [6].

A disadvantage of passive learning is that only the behavior

that is represented in the used traces will be in the result-

ing state machine. Hence, compared to the active learning

approach, the model might be less complete. In our case,

however, this is acceptable since the learned model is intended

as a starting point for subsequent manual editing.

Related work

There are several model-based techniques to formally de-

scribe interfaces. Related to our approach is the Analytical

Software Design (ASD) method [7] which includes formal

interface specifications represented as state machines. An ASD

interface model plays a similar role as a protocol state machine

of UML [8]. An ASD interface not only describes the services

offered by the server; it also specifies the operations allowed

by the client. So it can be seen as a contract between client

and server, similar to the Design by Contract approach [9].

Franca3 is a related domain-specific language for the definition

and transformation of interfaces.

All these approaches lack the ability to describe the timing

aspects of the interface behavior and to check if an existing

implementation conforms to an interface specification which

includes timing constraints. Testing of real-time behavior by

means of UPPAAL-TRON is described in [10]. In an industrial

case, a timed automata model is obtained by first manually

3franca.github.io/franca/

modeling the behavior of the system and next manually

tightening the timing tolerances in an iterative ways using

model-based testing.

An approach to obtain timing information of a component

from execution traces is described in [11]. Models include

worst case execution times of method calls. Downside of this

approach is that the source code needs to be instrumented

to acquire the execution traces and by doing so the timing

behavior is influenced. In addition, only the time of a method

call is captured, not the timing between events. In our approach

the code does not need to be instrumented and timing between

all event types is captured.

Structure of this paper

The paper is organized as follows. Section II provides a

brief overview of the definition of interfaces in ComMA.

Next we describe in Section III how an interface model

can be obtained for an existing interface by manual editing.

Automated support for reverse engineering of state behavior is

presented in Section IV. Next, Sections V & VI, addresses the

reverse engineering of state and timing behavior respectively.

Results of experiments with our approach are presented in

Section VII. Section VIII concludes the paper.

II. MODEL-BASED DEFINITION OF INTERFACES

In this section, we introduce ComMA as far as needed

to understand the remainder of this paper. The ComMA

framework consists of the following four main languages:

• A language to describe the signature of an interface, see

Section II-A.

• A language to capture observed interface interactions in

the form of timed traces, see Section II-B.

• A language to describe the behavior of an interface, see

Section II-C.

• A language to specify the generators to be used, see

Section II-D.

The languages are illustrated by a test interface, called ITest, of

a power control unit, see Figure 1. For the sake of explanation

we made few modifications to the language instances. A

predecessor of this unit has been introduced in [12].

Fig. 1: Interface ITest of a power control unit
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A. ComMA Signature

In a ComMA interface three types of operations are distin-

guished:

• Commands are synchronous operations from client to

server. The client receives a reply from the server.

• Signals are asynchronous operations from client to server.

Signals do not have a reply.

• Notifications are asynchronous operations from server to

client. Notifications do not have a reply.

Listing 1 shows the signature of the ITest. First it defines two

enumeration types, Stimulus and State. Next two commands

are defined: 1) operation InjectStimulus with one parameter of

type Stimulus; it replies a boolean value 2) operation GetState

which replies a value of type State. Finally, the notification

StateUpdate with one parameter State is defined. Observe that

this example does not include any signal.

signature ITest {

types

enum Stimulus { VideoOnButton SystemOffButton ..}

enum State { VideoOn VideoOnTransitioning SystemOff ..}

commands

bool InjectStimulus(Stimulus s)

State GetState

notifications

StateUpdate(State state)

}

Listing 1: Example of a signature

B. ComMA Trace

The trace language is used to represent observed interface

interactions. They can be, for instance, the captured network

traffic or events written to a log file. An event is the occurrence

of an operation. The language is independent of the technology

used to record interactions; converters transform a technology-

specific sequence of observed events to an instance of the

ComMA trace language. An example of a ComMA trace is

given in Listing 2. This example is based on an interface with

the signature described in Listing 1. The listing shows two

events, a command and its reply. Note that the time delta

(in microseconds) between this event and its predecessor is

denoted by “Timestamp” and the keyword “OK” indicates that

this is a reply of the preceding command.

C. ComMA Interface

The behavior of an interface in terms of the allowed

sequences of operations can be expressed in ComMA by the

combination of a state machine and a number of constraints.

The state machine describes the allowed order of the events

between server and client. As an example, Listing 3 presents

interface “ITest” which imports the signature of Listing 1.

Listing 3 shows the following:

• A variable “systemStateNotificationPending” is defined

and initialized.

• The initial state is “SystemOff”.

Timing: 1464181458.066471

Timestamp: 0.000000

src address: 192.168.32.1

dest address: 192.168.32.2

Interface: ITest

Command: InjectStimulus

Parameter: ITest::Stimulus : ITest::Stimulus::VideoOnButton

Timing: 1464181458.072651

Timestamp: 0.006180

src address: 192.168.32.2

dest address: 192.168.32.1

Interface: ITest

Command: InjectStimulus OK

Parameter: bool : true

Listing 2: Fragment of a ComMA trace

interface ITest{

variables

bool systemStateNotificationPending

init

systemStateNotificationPending := false

initial state SystemOff {

transition trigger: ITest::GetState do:

reply(ITest::State::SystemOff)

next state: SystemOff

transition trigger: InjectStimulus(ITest::Stimulus s)

guard: (s == ITest::Stimulus::VideoOnButton) do:

systemStateNotificationPending := true

reply(true)

next state: VideoOnTransitioning

..

}

state VideoOnTransitioning {

transition trigger: ITest::GetState do:

reply(ITest::State::VideoOnTransitioning)

next state: VideoOnTransitioning

OR

do: reply(ITest::State::VideoOn)

next state: VideoOn

transition guard: systemStateNotificationPending do:

systemStateNotificationPending := false

StateUpdate(ITest::State::VideoOnTransitioning)

next state: VideoOnTransitioning

..

}

state VideoOn { .. }

}

Listing 3: Example of a ComMA state machine

• The first transition is triggered by the “GetState” oper-

ation. The replied state value is “SystemOff”. This is a

self-transition.

• The second transition is triggered by “InjectStimulus”

with parameter “VideoOnButton”. After replying value

“true”, the state machine transitions to state “VideoOn-

Transitioning”.

• The second state is “VideoOnTransitioning”.

• The first transition of this state is triggered by the

“GetState” operation. The replied state value can be

either “VideoOnTransitioning” or “VideoOn”. This non-

determinism is indicated with the “OR” keyword.
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• In the second transition there is “StateUpdate” notifi-

cation with parameter “VideoOnTransitioning”. Observe

that this notification happens only once in the “VideoOn-

Transitioning” state which is coded by the “system-

StateNotificationPending” variable.

Note that implicitly any behavior that is not defined in the

state machine is not allowed.

In addition, a ComMA interface definition allows the spec-

ification of the timing behavior as a set of timing constraints.

Listing 4 shows two examples of timing constraints:

• TimingRule0 describes the allowed time between an

occurrence of command “GetState” and its reply. The

Lower Specification Limit (LSL) is 2.4 ms and the Upper

Specification Limit (USL) is 3.8 ms.

• TimingRule1 shows how constraints on more than two

events can be grouped. It describes the allowed time

between an “InjectStimulus” event and its reply, and the

allowed timing between the reply and an occurrence of

the “StateUpdate” notification.

timing constraints

TimingRule0

command ITest::GetState

and reply(ITest::State::SystemOff)

-> [ 2.4 ms .. 3.8 ms ] between events

group TimingRule1

command ITest::InjectStimulus(

ITest::Stimulus::VideoOnButton)

and reply(true)

-> [ 5.9 ms .. 7.3 ms ] between events

- [ 76.7 ms .. 165.3 ms ] -> notification

ITest::StateUpdate(ITest::State::VideoOnButton)

end group

Listing 4: Example of a few timing constraints

Note that the ComMA trace of Listing 2 satisfies constraint

TimingRule1, since the observed time delta between command

and reply in this trace is approximately 6.2 ms which is

between 5.9 ms and 7.3 ms.

D. ComMA Generator Specification

ComMA contains a separate language to specify which

artifacts should be generated and it also allows the definition

of parameters for these generators. An example is given in

Listing 5 for a project called “Test” which imports the ITest

interface. The project includes multiple generators:

• A “Monitor” to check if a ComMA trace conforms to the

ComMA interface; in this case it takes file “Test.traces”

as input.

• “SscfHeader”, is a generator that is explained in

Section IV of this paper. The generator takes a

“ITest.sscfheader” file as input.

• “Minedmodel”, is a generator that is explained in Sec-

tions V & VI. The generator takes a “Test.traces” file

as input, excludes some parameters and filters out some

unsolicited events as explained later.

Project Test {

Compound Interface ITest {

version

‘‘1.0"

description

‘‘Demo project with Test component."

}

Generate Monitor {

trace files

‘‘Test.traces"

}

Generate SscfHeader {

header files

‘‘ITest.sscfheader"

}

Generate Minedmodel {

trace files

‘‘Test.traces"

exclude parameters int string

unsolicited events

"dummyCMD2M"

"dummyM2CMD"

}

}

Listing 5: Example of a generator specification

III. MANUAL REVERSE ENGINEERING

Existing interfaces can be modeled manually in ComMA.

This manual approach is depicted in Figure 2 and consists of

the following steps:

Fig. 2: Manual approach

1) The signature of the interface is defined manually.

2) A first version of the behavior of the interface is defined

manually.
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3) a) An interaction sequence of the existing interface is

captured during execution or testing, for instance

by sniffed network traffic or logging of events.

From this recorded sequence, a ComMA trace has

to be created. Typically this is done by a dedicated

DSL.

b) From the ComMA trace and the manually defined

ComMA interface, a monitor is generated using the

existing ComMA generator. With this monitor we

check if the captured trace conforms to the defined

ComMA model.

In Figure 2, “Verdict” is the outcome of the interface

conformance check.

4) The verdict of monitoring leads to three possibilities,

assuming the used trace is correct:

• Fail and the ComMA generator lists the issues; fix

the issues in the model.

• Pass; there are two options:

– Done, the model captures all required behavior;

the engineer has to decide this based on domain

knowledge or, for instance, design documents.

– Not done, extend the model with new behavior.

IV. AUTOMATED REVERSE ENGINEERING SUPPORT

In this section, we describe our reverse engineering ap-

proach. It can be seen as an extension of the manual approach

presented in Section III, where we automate steps 1 and 2 of

Figure 2. The automated approach is depicted in Figure 3.

The automated approach consists of the following steps:

1) We assume the signature of an existing interface is

available in some representation. This can, for instance,

be an IDL file in case of a COM interface or a header file

using macros in C++ for another technology. The aim is

to generate a ComMA signature from this representation.

This requires a parser that accepts instances of an

interface representation. Next a generator to generate a

ComMA signature file has to be constructed.

At Philips IGT, most signatures are available in the

SSCF format. Hence, we created a DSL for the trans-

lation of a C++ header file with SSCF macros to a

ComMA signature file. Listing 6 depicts an example

of the SSCF interface description. From this example,

the generator will automatically generate Listing 1.

We do not discuss this DSL in more detail since the

transformation is trivial for the Philips specific SSCF

technology. The generator is called “SccfHeader” and

requires an SSCF header file as input. Listing 5 show

how this generator can be used.

2) Similar to step 3 of the manual approach, the behavior

of a legacy interface is manifested by some sequence of

events which are translated into a ComMA trace. In this

case, the so-called ComMA Learner is used to construct

a state machine and timing constraints based on one or

more ComMA traces. Hence, we assume that the traces

used in the learning are correct.

Fig. 3: Interface mining approach

SSCFTS1_BEGIN_INTERFACE(ITest)

SSCFTS1_BEGIN_METHODS(ITest)

SSCFTS1_INTERFACE_METHOD_1(bool, ITest,

InjectStimulus, in(Stimulus))

SSCFTS1_INTERFACE_METHOD_0(State, ITest, GetState)

SSCFTS1_END_METHODS

SSCFTS1_BEGIN_EVENTS(ITest)

SSCFTS1_INTERFACE_EVENT_1(ITest, StateUpdate, State)

SSCFTS1_END_EVENTS

SSCFTS1_END_INTERFACE

Listing 6: Fragment of an sscfHeader file

a) The generation of a state machine by the ComMA

Learner is described in Section V.

b) The generation of timing constraints by the

ComMA Learner is described in Section VI.

Listing 5 shows how the ComMA Learner is called; the

exclusion of parameters is explained in Section V.

3) Next, the existing generator of ComMA is used to

generate a monitor and to check if the trace which is the

starting point of step 2 indeed conforms to the learned

interface. If the learner works correctly, the result should

be a pass, so this is mainly a consistency check before

continuing with the next steps.

The next two steps should be executed incrementally such

that the changes on the model are small and can be easily

reverted when they make the monitoring fail.

4) To create a more readable, complete and maintainable
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version of the learned ComMA model, it is edited

manually. For instance to add meaningful state names,

reorder states, or to merge states and transitions.

5) As before, we use the generated monitor to check if

the trace of step 2 still conforms to the edited ComMA

interface. If not, the error has to be corrected, otherwise

more changes can be made.

V. LEARNING STATE BEHAVIOR

In this section, we describe the learning of state machines.

Figure 4 depicts the internal components of the Leaner.

The “Serialize” component is used to format ComMA traces

into a format which can serve as input for the “Algorithm”

component. The “Deserialize” component converts the output

of the “Algorithm” component into a ComMA interface.

Fig. 4: Components of the learner

The general assumption is that the ComMA traces are

correct, i.e., they represent valid behavior of the component.

A. Serialize

The “Serialize” component takes ComMA traces as input.

It converts these traces into event strings. An event string

starts with an interface name, followed by an event name, all

parameter values, and finally the event type (command, reply,

signal, or notification). Note that the conversion ignores all

timing and address information in a trace.

B. Algorithm

The “Algorithm” component constructs a state machine

based on the work described in [5], [6]. It uses a set of

triggers, in our case Commands and Signals, and a set of listed

actions, in our case Replies and Notifications. Triggers lead

to transitions and action lists to states, following the pattern

of a Moore machine where the output depends on the state

only [13]. Based on one or more sequences of event strings,

as a result of the previous component, the algorithm will

construct a minimal (non-deterministic) finite state machine

consistent with all input sequences. States with the same list

of actions are merged, uniting the sets of their incoming

and outgoing transitions. Note that this is different from

(evidence-based) state merging [14] because the algorithm we

use is linear and the resulting state machines might be non-

deterministic.

C. Deserialize

The “Deserialize” component represents the output as a

ComMA interface state machine. This means that the resulting

Moore machine of the algorithm has to be transformed into

a Mealy state machine where output depends on the state

and the input trigger [15]. Moreover, a few restrictions on

ComMA state machines have to be taken into account, such

as limitations on the number of notifications on a transition.

These restrictions are needed to enable the generation of

monitors.

Listing 7 contains an example of a learned state machine for

the “ITest” interface. Since the traces do not contain state in-

formation, the learned states are numbered. Notifications take

place on transitions from a separate state with an underscore

“ ” in the state name. These states are added by the “Deseri-

alize” component to meet the ComMA constraints mentioned

in the previous paragraph. Observe the “OR” keyword which

indicates that a reverse engineered state machine can be non-

deterministic.

interface ITest{

initial

state s0 {

transition trigger: ITest::InjectStimulus(

ITest::Stimulus arg0)

guard: (arg0 == ITest::Stimulus::VideoOnButton) do:

reply(true)

next state: s0_0_0

}

state s0_0_0 {

transition do:

ITest::StateUpdate(ITest::State::VideoOnTransitioning)

next state: s1

}

state s1 {

transition trigger: ITest::GetState do:

reply(ITest::State::VideoOnTransitioning)

next state: s1_0_0

OR do:

reply(ITest::State::VideoOnTransitioning)

next state: s12

}

state s12 {

transition trigger: ITest::GetState do:

reply(ITest::State::VideoOn)

next state: s13

}

}

Listing 7: Example of a learned ComMA state machine

D. Tuning the Learner

The ComMA Learner can be tuned to ignore certain pa-

rameter values of events. For instance, an int parameter that

acts like a cookie and is increased every transition might be

excluded from the learning process. If we would not ignore

the cookie, then the resulting state machine would become

very large and restrictive. Hence, a new trace with different

cookie values would not be accepted by the monitor. In such

cases parameter values can to be ignored. Listing 5, shows how

the parameters values for int and string are excluded from the

learning algorithm. This means that the “Serialize” component

does not include the int and string parameter values in the

generated string.

VI. LEARNING TIMING CONSTRAINTS

In this section, we describe how we learn the timing

constraints introduced in Section II. The timing constraints are
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created during step 2b of our automated reverse engineering

approach.

Our algorithm assumes that the client initiates the observed

interface communication. Hence, observed events from the

server are assumed to be triggered as a consequence of a

command or a signal sent by the client. Clearly this holds for

a reply event since it is caused by a command from the client.

Our assumption means that a notification event is triggered by

a command or signal from the client.

This pattern is used to avoid race-conditions by design. The

latter is consistent with the solicit communication scheme in

other approaches like ASD [16]. To avoid that notification

events are triggered by unsolicited events, e.g. periodic alive

events, unsolicited events can be filtered out of a trace by

instrumenting the ComMA Learner as has been done for the

“dummyCMD2M” and “dummyM2CM” events in Listing 5.

As shown in step 2 of Figure 3, the algorithm is fed with

a trace of event observations. To learn timing characteristics,

it is useful if the trace is long and contains many instances of

events occurring in timing constraints. The algorithm performs

the following steps on this trace:

1) Step 1 of the algorithm groups events according to the

occurrence of trigger events of the client. Hence every

event group starts with either a command or a signal.

When in the trace the next event is a command or a

signal, a new event group is created. Otherwise, the

event is either a reply or a notification and it is added to

the current event group. Replies and notifications have

two attributes that represent minimum and maximum

time differences with the previous event. These attributes

are called LSL (Lower Specification Limit) and USL

(Upper Specification Limit). In step 1 they are equal

and initialized to the value of “Timestamp” of the event

(note that this represents the delta time with the previous

event). Figure 5 illustrates the event grouping. The

output of this step is a list of event groups.

Fig. 5: Example trace timing

2) The list of the previous step will typically contain many

groups that have the same events. For instance, many

groups consisting of signal S and notification N. Only

the time difference between S and N might be different.

In step 2 the first occurrence of such groups is placed in

a new list. Every event group in the new list will become

a timing constraint.

3) Next the algorithm iterates over the event groups list

of step 1 and matches every event group in it to a

unique event group in the list of step 2. When a match

is found, the LSL value of an event of the unique group

is compared with the matched group. If the LSL value

of an event of the matched group is smaller than the

LSL of the unique group, then the unique group LSL

value is updated with the value of the matched group.

Likewise, the USL value of an event of the unique group

is compared with the matched group. If the USL value

of an event of the matched group is larger than the USL

of the unique group, then the unique group USL value

is updated with the value of the matched group.

4) Finally, the LSL and USL values of the unique event

groups are used to create the timing constraints. The

resulting constraints can be reviewed and the LSL and

USL values can be relaxed manually in step 4 of our

automated reverse engineering approach of Figure 3.

A more detailed formulation of this algorithm is given

by the following methods. Method CreateEventGroups imple-

ments step 1 of the algorithm. It creates the event groups.

CreateEventGroups(events) ::=

group← ∅
groups← ∅
FORALL evt ∈ events DO

IF evt.type is Command THEN

IF group 6= ∅ THEN

groups← add(groups, group)
group← ∅

FI

group.trigger ← Command(evt)

previousEvt← group.trigger

FI

IF evt.type is Signal THEN

IF group 6= ∅ THEN

groups← add(groups, group)
group← ∅

FI

group.trigger ← Signal(evt)

FI

IF group 6= ∅ THEN

IF evt.type is Reply THEN

action.string ← Reply(evt, previousEvt)

action.LSL← evt.timestamp

action.USL← evt.timestamp

group.actions← add(group.actions, action)
FI

IF evt.type is Notification THEN

action.string ← Notification(evt, previousEvt)

action.LSL← evt.timestamp
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action.USL← evt.timestamp

group.actions← add(group.actions, action)
FI

ELSE

Trace does not start with Signal or Command.

FI

OD

RETURN groups

As an example, consider the trace of Listing 2. Observe

that the time difference between the command and its reply

is described in the value after the Timestamp keyword of

the reply. This time stamp is stored into the LSL and USL

attributes of the reply event.

Next we present a helper method that is used in subsequent

methods. Method AreTheSameGroup determines if two event

groups are the same, that is, they have the same trigger and

actions.

AreTheSameGroup(group0, group1) ::=

areTheSameGroup← true

IF group0.trigger = group1.trigger AND

group0.actions.size = group1.actions.size THEN

FORALL i← 0; i < group0.actions.size; i := i+ 1 DO

IF group0.actions[i].name 6=
group1.actions[i].name THEN

areTheSameGroup← false

FI

OD

ELSE

areTheSameGroup← false

FI

RETURN areTheSameGroup

The method FindUniqueEventGroups implements step 2 of

the algorithm and returns a new list of unique event groups.

FindUniqueEventGroups(groups) ::=

uniqueGroups← ∅
FORALL group ∈ groups DO

isUnique← true

FORALL group′ ∈ uniqueGroups DO

IF AreTheSameGroup(group, group′) THEN

isUnique← false

FI

OD

IF isUnique THEN

uniqueGroups← uniqueGroups ∪ group

FI

OD

RETURN uniqueGroups

The method DetermineTiming implements step 3 of the

algorithm. It takes the output of steps 1 and 2 as input and

returns an updated unique groups list.

DetermineTiming(uniqueGroups, groups) ::=

FORALL group ∈ uniqueGroups DO

FORALL group′ ∈ groups DO

IF AreTheSameGroup(group, group′) THEN

action.LSL← min(action.LSL, action′.LSL)
action.USL← max(action.USL, action′.USL)

FI

OD

OD

RETURN uniqueGroups

Using these methods, we create an algorithm to acquire

timing constraints in the following way:

groups =CreateEventGroups(events)

groupsuniq = FindUniqueEventGroups(groups)

timingRules = DetermineTiming(groupsuniq, groups)

As a last step, the timing rules are added to the interface

file after the state behavior.

VII. RESULTS

In this section, we present the results of our experiments

and an analysis of the results.

A. Experiments

To validate the ComMA Learner we used two cases for

which we already constructed an interface manually earlier:

the power control unit and a third-party operating table [17].

For the power control case we use a trace called “Trace 1”.

For the operation table, two traces were used, called “Trace

2” and “Trace 3”. The latter two traces are recordings of two

different scenarios. Table I shows the characteristics of these

traces by listing the number of commands, replies, signals and

notifications, together with the types of the parameters.

We experimented with the ComMA Learner on the three

traces and the exclusion of certain parameter types. The

experimentation results are shown in Table II. In the last

column, “Verified” refers to step 3 of the approach described

in Figure 3, i.e., the monitoring; “yes” means that we could

create a monitor and the verdict was that the trace is accepted

by our generated monitor while “no” denotes that we could not

generate a monitor because of the size of the state machine.

As explained in Section V-B, the algorithm can take more

than one trace as input. Observe that learning based on Trace 2

and Trace 3 separately leads to 33 and 32 unique event groups,

respectively, when excluding string and int. Using both traces

leads to 55 groups, hence 10 groups are part of both traces.

In the “Verified” column, “yes & yes” means that the monitor

accepts both traces.

interface ITest {

in all states {

transition trigger: ITest::dummyCMD2M

transition do: ITest::dummyM2CMD

}

initial

state s0 { .. }

}

Listing 8: Example of a generated ComMA state machine with

unsolicited operations
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TABLE I: Characteristics of traces

Command Reply Signal Notification

Trace Nr. Arg.
Types

Nr. Arg.
Types

Nr. Arg.
Types

Nr. Arg. Types Events
Total

Transitions
Total

1 39 enum 39 enum bool 0 - 11 enum 89 39

2 0 - 0 - 2964 enum bool
string int

2125 enum bool
string int

5089 2963

3 0 - 0 - 915 enum bool
string int

600 enum bool
string int

1515 914

TABLE II: Results of learning experiments

Experiment Learner Output

Trace Excl. Unique Groups
Nr.

Timing
Rules Nr.

States Transitions Time (in
ms)

Verified

1 - 14 10 21 30 17 yes

1 bool 14 10 21 30 6 yes

1 enum 4 0 9 14 3 yes

1 all 4 0 9 14 2 yes

2 - 689 19 2636 3324 342 no

2 string int 33 1 92 124 140 yes

3 - 202 30 615 816 2 yes

3 string int 32 2 88 119 3 yes

3 all 29 0 82 110 3 yes

2 & 3 string int 55 0 163 217 11 yes & yes

2 & 3 all 49 0 146 194 17 yes & yes

TABLE III: Results of second learning experiment with filtering of periodic events

Experiment Learner Output

Trace Excl. Unique Groups
Nr.

Timing
Rules Nr.

States Transitions Time (in
ms)

Verified

2 - 676 19 1971 2637 7 no

2 string int 25 1 74 93 1 yes

3 - 191 30 468 649 1 yes

3 string int 26 2 76 96 2 yes

3 all 25 0 75 96 2 yes

The model of the third party operating table is very large

and unreadable. The main reason is the number of operations

and the fact that the system components periodically exchange

keep-alive events. These periodic events become part of the

action lists which increases the number of possible states

significantly. Because of this we have improved the instru-

mentation of the ComMA Learner by filtering out periodic

events from a trace.

As an example, Listing 5 specifies that the unsolicited

events “dummyCMD2M” and “dummyM2CMD” have to be

removed from the input trace. Then the generated state ma-

chine contains a part that allows the corresponding operations

in all states. Listing 8 provides an example where “dummy-

CMD2M” is a Signal and “dummyM2CMD” a Notification.

Table III is an update of Table II where these two events

are filtered from Traces 2 and 3. Observe that filtering reduces

the number of states and transitions of the resulting model.

B. Analysis

When inspecting the learned models, we observed that the

state machine for the power control case is quite readable. For

this case, Listing 3 presents a fragment of the manually crafted

model and Listing 7 presents a fragment of the generated

model. Next we compare both state machines:

• States “s0” and “SystemOff” map because the VideoOn-

Button can be injected in this state. The “GetState” was

not present in the observed trace and therefore not in the

learned state machine

• The “VideoOnTransitioning” state in the manually crafted

model is presented by the “s0 0 0” and “s1” states of

the learned model. The learned state machine does not

use state variables, but encodes this behavior in separate

state. Observe that the learned model is more restrictive

because “StateUpdate” needs to come before “GetState”

while this is not required for the manual crafted model.

• States “s12” and “VideoOn” map because the GetState

operation replies “VideoOn”.

VIII. CONCLUDING REMARKS

We presented a manual and automated approach to reverse

engineer existing legacy software interfaces. The benefit of

the automated approach compared to the manual approach is

that less manual labor is required for the creation of a ComMA

model. Based on sequences of observed operations, a ComMA

model is automatically generated that describes the external

visible behavior of a software component in terms of its state

and timing behavior.

We applied our approach on two cases for which we had
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manually crafted ComMA models and traces available. In our

experiments, the ComMA monitor generated from a learned

model accepts all traces that were used to learn the model.

We observed that the learned state machines can become

very large and restrictive. For example, when an operation has

an integer as a parameter and the trace has many occurrences

of this operation with many different values for the integer,

then the Learner will create a transition for every different

value. However, this parameter value might be irrelevant for

the state behavior of the learned component. In such situations,

it is desirable to exclude integer values from the state machine

learner and we instrumented the learner to allow this.

A general strategy could be to first learn a state machine

without excluding any parameters and then incrementally

exclude parameter types until the resulting state machine is

manageable. The final step then would be a manual editing of

the state machine.

With our approach the quality of the traces is very impor-

tant. All behavior that is not in the input traces will not be in

the resulting model.

In the future, we will apply our approach on legacy inter-

faces for which we do not have a manually crafted model.
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