
 

 

 

 

Abstract—The p-median problem is classified as a NP-

hard problem, which demands a long time for solution. To 

increase the use of the method in public management, 

commercial, military and industrial applications, several 

heuristic methods has been proposed in literature. In this work, 

we propose a customized Genetic Algorithm for solving the p-

median problem, and we present its evaluation using benchmark 

problems of OR-library. The customized method combines 

parameters used in previous studies and introduces the evolution 

of solutions in stationary mode for solving PMP problems. The 

proposed Genetic Algorithm found the optimum solution in 37 

of 40 instances of p-median problem. The mean deviation from 

the optimal solution was 0.002% and the mean processing time 

using CPU core i7 was 17.7s.      

I. INTRODUCTION 

Facility location problems (FLP) are usually employed for 

solving public, commercial, industrial and military problems. 

In these problems, service demand points must be attended by 

a limited number of facilities. The p-median problem (PMP) 

is a type of FLP problem that aims searching a given location 

that minimizes the sum of the distances between N demand 

points and the nearest facility [1]. 

The computational complexity theory classifies the PMP as 

a non-polynomial hard problem (NP-hard problem). Meta-

heuristic methods are usually used for solving NP-hard 

problems whose optimal solution method does not exist or is 

not known: Greedy Interchange (GI) [2],  Neighborhood (N) 

and Exchange [2], Semi-Lagrangean relaxation [3], 

Simulated Annealing (SA) [4], Tabu Search (TS) [5], Genetic 

Algorithm (GA) [6-7]. 

To enable comparative studies of these methods, 

benchmarking data bases are used. The Operational Research 

(OR) library [8] and the Traveling Salesman Problem (TSP) 

[9] are the most used ones [6,7,10,11,12,13]. 

In the comparisons made in [6] and [11], the GA heuristic 

stands out as the best one in terms of time and precision of 

solution. Nevertheless, concerning the precision of the 

solutions, the GAs presented in these works have a worse 

result than the customized GAs, presented in [7], as well as 

when compared to GA combinations with other heuristics, 

presented in [11].  

                                                           
 This work was supported by Samsung Eletronica da Amazonia, under 

the terms of the Brazilian Federal Law number 8.387/91. 

In [6], the authors used the OR-library [14] and two others 

more simple databases to evaluate several methods used in 

PMP solution: ADE (Alp, Drezner and Erkut) GA, Gamma 

Heuristic (GH), SA, Myopic, Exchange and N. The algorithm 

known as ADE GA performs a greedy search using the 

genetic material of two individuals randomly selected, 

evaluating all the possible combinations of generated 

offspring. The algorithm found solutions with an average 

distance from the optimal solution (OPT solution) of 0.41%, 

in 85% of the OR-library problems, and an average time of 18 

seconds.  

In [11] the authors performed a comparative study of a GA, 

an N algorithm and a hybrid GA and N algorithm, using the 

TSP-library. The GA proposed by the authors is similar to 

ADE GA, differing only in the use of an algebraic method to 

select a pair of parents. The GA converged to a solution in 

less time than the other heuristics. The CPU average time was 

126.8min. The GA presented solutions with an average 

distance from the OPT solution of 0.000016%, and an average 

time of 391.5min.  

In [7], a simple GA was compared to ADE GA, using a 

subset of OR-library. This GA investigates the use of p 

centroids to find the initial solutions of the algorithm. The GA 

found OPT solutions in 14 of the 15 subset problems. The 

average CPU time was 60.1s and 0.2s, for the simple GA and 

ADE GA, respectively. The average deviation was 0.007% 

and 0.02% for simple GA and ADE GA, respectively.  

Table I shows a summary of the main characteristics of the 

GA used for solving the p-median problem in [6, 7, 11].  

This work aims investigating the customization of GA for 

solving PMP problems. Three steps of the GA are 

investigated: selection operator, crossover operator and 

population updating. This investigation has the objective of 

generating a best performance of GA in finding OPT solutions 

for PMP problems.  

 The random selection operator employed in [6] and [11] 

does not take into account the individual’s fitness when they 
are selected for crossover. The ranking selection operator 

employed in [7] assigns a selection probability to individuals 

directly proportional to their position in a ranking of the 

fitness function. In this work we investigate the use of the 

roulette wheel selection operator. The difference between the 
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ranking operator and the roulette wheel selection operator is 

that, the last one assign individuals a selection probability 

directly proportional to their fitness value.   

We also propose using the single-point crossover operator. 

Differently from the merging operators [6,11] and partial 

match operators [7], the single-point crossover operator 

generate offspring without evaluating the parents. This 

implies in less processing time demand.  

At last, we propose use a steady-state population updating 

[15]. In this updating mode, the fitness of children is 

compared to their parent’s fitness. When the fitness value of 

the offspring is lower than their father’s fitness, they are 

discarded. Offspring with better fitness values than their 

fathers are preserved with a probability of 75%. 

The results obtained in this study are compared with the 

results obtained with the ADE GA [6] and simple GA [7]. For 

this comparison, we employed PMPs of OR-library and did a 

benchmark of the machines used for simulations in these 

previous works.  

II. METHODS 

A. Proposed Genetic Algorithm 

Genetic Algorithm is a stochastic optimization algorithm, 

inspired by the theory of evolution of Charles Darwin [16]. 

Since its proposition, it has been effectively applied in the 

solution of complex problems, like TSP [9] and PMP [6,7,11].  

 In GA, initially, a population of chromosomes is randomly 

generated. In the sequence, the individuals of this population 

are modified by applying evolution operators, iteratively. A 

chromosome represents a solution to the problem. The fitness 

value of each chromosome is evaluated through an objective 

function of the problem. 

The implementation of GA usually consists of three steps: 

the definition of the genetic codification model, the definition 

of the objective function and the parameterization of the 

evolution operators.  

 In this work, the genetic codification model uses the 

facility indexes and the objective function is given by the 

PMP. The structure of the proposed GA is presented in the 

steps of Algorithm 1.  

 

 

Algorithm 1 Proposed Genetic Algorithm  

Begin 

Randomly generate the initial population 

Compute fitness of population 

  Repeat for x generations  

Roulette wheel selection of 2 parents 

One-point crossover, at a 95% probability 

One-gene random mutation, at a 5% probability 

Compute fitness 

Replace the parents with lower fitness than the  

    children, at a 75% probability 

Introduce a random chromosome to the population 

 Until population has converged 

 End 

 

Genetic codification 

As stated before, the genetic codification uses the facility 

indexes. The same approach was also used in [6, 7, 11]. Figure 

1 shows an encoded chromosome representing a solution in a 

PMP problem with 8 facilities to be allocated among 100 

possible locations.     

 
1 20 31 4 76 91 62 100 

Fig. 1 Example of an encoded chromosome used in a PMP 

problem with 8 facilities 

Compute fitness 

According to equation 1, the goal of the PMP is minimize 

f: the sum of the distances between the demand points and the 

nearest facility.  

                         (1) 

 

 

 

 

 

TABLE I.  

GENETIC ALGORITHM CHARACTERISTICS USED FOR SOLVING THE P-MEDIAN PROBLEM IN [6, 7, 11]. 

Paper Data base 

GA characteristics Results 

Selection  Crossover Heuristics studied GA Deviation from OPT Faster Heuristic 

[6] 

OR - Library, 

Alberta, Galvão 
e Koerkel 

Random Merging 
ADE, GH, SA,  

Myopic, Exchange, BV 

Up to 0.41% from OPT at 85% of OR 

problems.  0% at Alberta problems. 
ADE 

[11] TSP – Library Random Merging 
GA [11], BV, Hybrid between 

GA [11] and N 

Up to 0.008% from OPT at 100%  

of TSP problems. 
 GA [11] 

[7] 
OR – Library 
(15 problems) 

Ranking-
based 

Partial 
Match 

ADE, GA [7] GA [7] ADE GA 
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Roulette Wheel Selection 

The selection operator used is the roulette wheel operator 

[17,18]. In this study, the selection operator assigns a 

probability value to each individual that is inversely 

proportional to its fitness value. The inversely dependence is 

due to the fact that, in the p-median problem, best individuals 

are those with lower f values, given in equation (1). Therefore, 

fitter individuals are the most likely to have children. This 

behavior favors the generation of more fit individuals. Table 

II illustrates the probability values used by different selection 

operators for four individuals. 

TABLE II. 

SELECTION OPERATORS CHARACTERISTICS  

Chromosome 
Fitness 

Value 

Probability of selection operator (%) 

Roulette 

Wheel        
Random Ranking 

1 200 28.8 25 30 

2 900 6.3 25 20 

3 100 57.6 25 40 

4 800 7.2 25 10 

One-point Crossover 

The one-point crossover operator is used in this study [18]. 

This operator randomly generates a reference point to 

permutate genes between fathers. The crossover probability 

used is 95%. Figure 2 illustrates the genetic permutation 

performed by the one-point crossover operator. To avoid 

repeated indexes in the offspring, we do a scan in the genes 

of each child, and replace the repeated index with another 

value randomly selected.  

 
                 

1 2 3 4 7 8 9 0  1 2 3 4 5 9 4 8 

  

 
              

5 9 4 8 6 3 2 1  7 8 9 0 6 3 2 1 

                 

Parents  Offspring 

Fig. 2 Illustration of one-point crossover operation  

One-gene random mutation  

The mutation operator used randomly selects one gene [7], 

with probability of 5%, and performs a mutation. Figure 3 

illustrates the mutation operator. One gene with index value 

of 5 is selected and replaced with the index value of 7. The 

replacing value is random selected.   

 
        

1 2 3 4 5 9 6 8 

        

1 2 3 4 7 9 6 8 

        

Offspring 

Fig. 3 Illustration of one-gene mutation operation  

 

B. Metrics 

In this study, the metrics used for performance evaluation 

of GA algorithms are the number of optimal solutions found, 

the percentual deviation of a non-optimal solution from the 

OPT solution, and the algorithm convergence time.     

C. PMP data base for benchmarking  

Aiming to compare the results obtained in this study with 

the results obtained in other two works [6,7], we use the PMP 

section of OR-library. For each problem, are given: the 

number of points, N; the number of facilities, p; the OPT 

solution and a matrix with the distances between each pair of 

points.     

D. CPU benchmarking 

The algorithm convergence time depends on the CPU 

model and the clock of the machine used for its 

implementation. Therefore, to compare the results of the GA 

used in this study with the GAs used in [6,7], we performed 

the benchmark between CPUs using the Dhrystone (D) 

method [19].  

Using a default algorithm with integer numbers, the D 

method assigns a numeric value to each CPU. This value 

represents the number of millions of Dhrystone instructions 

processed per second (DMIPS) per MHz of clock. The 

DMIPS value of the machine used in this study (Core I7 

7500U) is made equal to 1. The DMIPS values of the 

machines used in [6,7] are then divided by it and ratio values 

are obtained. The last column of Table III shows these ratio 

values. As shown, the machines used in [6] and [7] process 

15.1% and 104.1%, respectively, of the DMIPS processed by 

the machine used in this study.    

 

TABLE III.  

BENCHMARK COMPARISON OF THREE DIGITAL COMPUTERS 

CPU Clock (MHz) DMIPS/ MHz Product  Ratio 

Pentium 
III  [6] 

733  3.4 2492.2 0.151 

Core I7 

4770K [7] 
2000  8.57 17140 1.041 

Core I7 

7500U 

This study 

1800 9.1 16380 1 

Product = (Clock*DMIPS/MHz)   Ratio= (Product/16380) 

III. RESULTS 

Table IV shows, for the GA proposed in this study, and for 

the GAs proposed in [6] and [7], the following results: the 

number of OPT solutions; the percentual deviations from non-

optimal solutions to OPT solutions and the GA algorithm 

processing time. The processing time of the GAs proposed in 

[6] and [7] are multiplied by the ratio value shown in Table 

III. Similarly to [6], the results of this study were produced by 

a C++ code, implementing 10 runs for each one of the 40 OR-

library PMP problems.  The best results are in bold. 
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TABLE IV.  

EXPERIMENTAL RESULTS  

 Problem N  p 
 Optimal 

Solution 

Number of 

solutions 
p/N (%) 

ADE GA [6] GA [7] 
GA proposed 

(GAP) 

Best deviation from 

optimal solution 

Fitness 

value 

Time 

(s) 

Fitness 

value 

Time 

(s) 

Fitness  

value 

Time   

(s) 

ADE 

GA 
GA GAP 

Pmed1 100 5 5819 75287520 5.00 OPT* 0.015 OPT 0.104 OPT 0.001 0 0 0 

Pmed2 100 10 4093 1.73E+13 10.00 OPT 0.015 OPT 0.94 OPT 0.008 0 0 0 

Pmed3 100 10 4250 1.73E+13 10.00 OPT 0.03 OPT 0.209 OPT 0.003 0 0 0 

Pmed4 100 20 3034 5.36E+20 20.00 OPT 0.03 OPT 1.3 OPT 0.026 0 0 0 

Pmed5 100 33 1355 2.95E+26 33.00 OPT 0.045 OPT 3.3 OPT 0.046 0 0 0 

Pmed6 200 5 7824 2.54E+09 2.50 OPT 0.06 OPT 2.7 OPT 0.005 0 0 0 

Pmed7 200 10 5631 2.25E+16 5.00 OPT 0.075 OPT 4.1 OPT 0.026 0 0 0 

Pmed8 200 20 4445 1.61E+27 10.00 OPT 0.105 OPT 14.8 OPT 0.129 0 0 0 

Pmed9 200 40 2734 2.05E+42 20.00 OPT 0.181 OPT 32.3 OPT 0.519 0 0 0 

 Pmed10 200 67 1255 1.45E+54 33.50 1256 0.301 OPT 41.4 OPT 1.2 0.080 0 0 

 Pmed11 300 5 7696 1.96E+10 1.67 OPT 0.256 OPT 28.8 OPT 0.002 0 0 0 

 Pmed12 300 10 6634 1.4E+18 3.33 OPT 0.181 OPT 47.8 OPT 0.066 0 0 0 

 Pmed13 300 30 4374 1.73E+41 10.00 OPT 0.316 OPT 78.4 OPT 0.64 0 0 0 

 Pmed14 300 60 2968 9.04E+63 20.00 OPT 0.663 OPT 301.8 OPT 2.9 0 0 0 

 Pmed15 300 100 1729 4.16E+81 33.33 1733 0.949 1731 343.6 OPT 14.8 0.231 0.116 0 

 Pmed16 400 5 8162 8.32E+10 1.25 OPT 0.346 - - OPT 0.009 0 - 0 

 Pmed17 400 10 6999 2.58E+19 2.50 OPT 0.361 - - OPT 0.096 0 - 0 

 Pmed18 400 40 4809 1.97E+55 10.00 OPT 0.843 - - OPT 0.999 0 - 0 

 Pmed19 400 80 2845 4.23E+85 20.00 2846 2 - - OPT 42.2 0.035 - 0 

 Pmed20 400 133 1789 1.3E+109 33.25 1792 0.949 - - OPT 15.95 0.168 - 0 

 Pmed21 500 5 9138 2.55E+11 1.00 OPT 0.572 - - OPT 0.016 0 - 0 

 Pmed22 500 10 8579 2.46E+20 2.00 OPT 0.678 - - OPT 0.107 0 - 0 

 Pmed23 500 50 4619 2.31E+69 10.00 OPT 2.4 - - OPT 2.31 0 - 0 

 Pmed24 500 100 2961 2E+107 20.00 2962 3.2 - - OPT 15.7 0.034 - 0 

 Pmed25 500 167 1828 7.9E+136 33.40 1832 4.8 - - OPT 105.9 0.219 - 0 

 Pmed26 600 5 9917 6.37E+11 0.83 OPT 1 - - OPT 0.013 0 - 0 

 Pmed27 600 10 8307 1.55E+21 1.67 OPT 1.2 - - OPT 0.16 0 - 0 

 Pmed28 600 60 4498 2.77E+83 10.00 4499 3.7 - - OPT 23.96 0.022 - 0 

 Pmed29 600 120 3033 1E+129 20.00 3035 6.6 - - OPT 93.422 0.066 - 0 

 Pmed30 600 200 1989 2.5E+164 33.33 1997 11.9 - - OPT 251.54 0.402 - 0 

 Pmed31 700 5 10086 1.38E+12 0.71 OPT 2.2 - - OPT 0.035 0 - 0 

 Pmed32 700 10 9297 7.3E+21 1.43 OPT 2 - - OPT 0.224 0 - 0 

 Pmed33 700 70 4700 3.37E+97 10.00 OPT 6.8 - - OPT 11.73 0 - 0 

 Pmed34 700 140 3013 5E+150 20.00 3015 9.8 - - 3014 39.94 0.066 - 0.033 

 Pmed35 800 5 10400 2.7E+12 0.63 OPT 2.3 - - OPT 0.048 0 - 0 

 Pmed36 800 10 9934 2.8E+22 1.25 OPT 2.8 - - OPT 0.232 0 - 0 

 Pmed37 800 80 5057 4.1E+111 10.00 5058 11.4 - - 5058 33.43 0.02 - 0.02 

 Pmed38 900 5 11060 4,87E+12 0.56 OPT 4.3 - - OPT 0.104 0 - 0 

 Pmed39 900 10 9423 9.14E+22 1.11 OPT 4 - - OPT 0.256 0 - 0 

 Pmed40 900 90 5128 5.1E+125 10.00 5133 19.9 - - 5130 112.53 0.098 - 0.039 

Average results Pmed1-15 0.2s 60.1s 1.35s 0.0154 0.007 0 

Average results Pmed1-40 2.7s - 17.7s 0.0360 - 0.002 

Number of problems solved optimally 28 14 37    
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IV. DISCUSSION 

A. Proposed GA vs ADE GA [6] 

The GA proposed in this study achieved OPT solutions in 

37 of the 40 PMPs shown in Table IV.  The non-OPT 

solutions present a mean deviation of 0.002% from OPT 

solution, corresponding to a mean time of 17.7s. ADE GA [6] 

presents OPT solutions in 28 of the 40 PMPs. The non-OPT 

solutions present a mean deviation of 0.036% from OPT 

solutions, corresponding to a mean time of 2.7s in a CPU Core 

I7 7500U at 1.8GHz.   

Considering the 28 PMPs that both methods achieved OPT 

solutions, the proposed GA and the ADE GA [6] achieved 

best results in 21 and 7 of them, respectively. In the 7 PMPs 

that ADE GA [6] achieved best results, 6 of them occurred 

between Pmed1 and Pmed20. This range corresponds to less 

complex problems. To evaluate the performance difference 

between the two methods, we applied a Qui-Square test in the 

following 2x2 contingency table: [21 7; 7 21], and found 𝜒2 = 14. For 1 degreed freedom, and a significance level of 

99%, the critical level is 𝑡𝑐 = 6.63. As 𝜒2 > 𝑡𝑐, the difference 

between the proposed GA algorithm and ADE GA [6] is 

statistically significant.  

From Table IV we also observe that when the ratio 𝑝/𝑁 

increases, ADE GA [6] presents results significantly lower 

than the results obtained in this study. In the range Pmed21 to 

Pmed40, ADE GA [6] achieved OPT solutions in 10 of the 20 

PMPs, with mean deviation of 0.046% from the OPT 

solutions, while the GA proposed in this study achieved OPT 

solutions in 17 of the PMPs, with mean deviation of 0.004% 

from the OPT solutions. For the instances Pmed5, Pmed10, 

Pmed15, Pmed20, Pmed25 and Pmed30, in which the ratio 𝑝/𝑁 is around 33%, the GA proposed in this study found all 

the OPT solutions, while ADE GA [6] found solutions with 

mean deviation of 0.18% from the OPT solutions. We believe 

that, for more complex PMP problems (N>900), the GA 

algorithm proposed in this study would obtain better values 

than ADE GA [6].    

B. Proposed GA vs GA proposed in [7] 

The GA proposed in [7] obtained solutions only for 

problems in the range Pmed1 to Pmed15. In this range, it 

obtained OPT solution in 14 PMPs, with a deviation of 0.07% 

from the OPT solution. The GA proposed in this study 

obtained OPT solutions in all this range.  

Table IV shows that the GA proposed in this study 

converged in a shorter time than GA proposed in [7]. The last 

one is 44 times slower. This result suggests that the centroid 

technique used for population initialization in [7] as well as 

the continuous population updating have a negative impact in 

convergency time of the GA algorithm, making it slower.     

V. CONCLUSION 

A customization of GA operators for solving the p-median 

problem is proposed in this study. When applied to solve the 

PMPs of OR-library, the proposed algorithm found OPT 

solutions in 37 of 40 PMPs, with a mean deviation of 0.002% 

and with a mean time of 17.7s. 
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