
Integration of Polynomials over n-Dimensional

Simplices

Abdenebi ROUIGUEB∗, Mohamed MAIZA†, Abderahmane TKOURT† and Imed CHERCHOUR ∗

∗Ecole Militaire Polytechnique

Data Fusion and Analysis Laboratory, Algiers, Algeria

Email: rouigueb.abdenebi@gmail.com
†Ecole Militaire Polytechnique

Modeling and Optimization Techniques Laboratory, Algiers, Algeria,

Email: m_maiza@esi.dz

Abstract—Integrating an arbitrary polynomial function f of
degree D over a general simplex in dimension n is well-known
in the state of the art to be NP-hard when D and n are allowed
to vary, but it is time-polynomial when D or n are fixed. This
paper presents an efficient algorithm to compute the exact value
of this integral. The proposed algorithm has a time-polynomial
complexity when D or n are fixed, and it requires a reasonable
time when the values of D and n are less than 10 using widely
available standard calculators such as desktops.

I. INTRODUCTION

T
HE integral evaluation of polynomial functions over n-

dimensional polytopes is essential in many applications.

Particularly, it can be used to calculate the probability of a

given interval of variables expressed as a polytope and when

a polynomial function is used to fit the multivariate probability

density function.

In dimension n, efficient integrating formulas may be set up

for some types of polytopes having specific or regular shapes

such as hyper-cubes and hyper-parallelepipeds. On the other

hand, integrating an arbitrary polynomial function f of degree

D over an arbitrary general convex polytope is a hard task.

For the simple case f = 1 (when D = 0), it turns into

volume computing. Even volume computing of polytopes of

varying dimension was proven to be NP-hard [2]. Hence,

one can conclude that integrating of polynomials over convex

polytopes is NP-hard as well, see [1] for more details.

Usually, integration over a general convex polytope is

achieved by partitioning it into a finite set of simplices.

Then the whole integral value can be obtained by summing

the integration results of f over the resulting simplices. The

computational complexity of this approach depends on the: i)

triangulation algorithm complexity; ii) number of simplices;

iii) integration algorithm complexity of f over a general

simplex.

It has been proven that finding the smallest triangulation

is NP-hard [3]. Furthermore, the number of simplices seems

to increase exponentially with the dimension for all the

known triangulation algorithms. Considering these challenges,

it would be suitable to use a fast triangulation algorithm, and

to focus on the improvement of the integration algorithm over

general simplices.

The bad news is that even integrating f over a general

simplex ∆ is shown to be NP-hard [1], but the good news is

that integration can be carried out within an acceptable time

for some applications when n and D values are not too high

(≤ 10), and time-polynomial for some specific types of f and

∆. For instance, this problem is polynomial time when n or D
are fixed [1]. Moreover, useful efficient formulas are also given

when f is quadratic and cubic and ∆ is affinely symmetric

[6], when ∆ is the standard (unit) simplex and f is expressed

as a product of linear forms, etc.

In [5], interesting integration formulas of arbitrary odd

degree function for the n-simplex are derived using combi-

natorial methods. The key idea consists in employing the

known integration formula over the standard simplex [8]

by performing an appropriate mapping to a n + 1 variable

space. This method involves C(n +D + 1, D) iterations (C:

combinations number). In [7], a quite similar idea by finding a

suitable transformation to the standard simplex is investigated.

Based on these two last studies, in this work, we want to

propose a new practical algorithm for integrating a high degree

(odd and even) polynomial over a general simplex, where the

aim is to further accelerate the original problem transforming

to another equivalent integration problem over the standard

simplex.

The rest of this paper is organized as follows. The next

section presents the problem statement. Then, our main con-

tributions are described in section III. Before conclusion,

complexity analysis and some experimental results are given

in section IV.

II. PROBLEM STATEMENT

Let ∆ ∈ ℜn be a general n-simplex and f ∈ Q[x1, ..., xn]
be a multivariate polynomial function of degree D with real

coefficients. Commonly, f is represented as a sum of M

monomial terms, f = ΣM
i=1wi x

α
(i)
1

1 ...x
α(i)

n

n , where wi and

α
(i)
j ∈ N (α

(i)
1 +...+α

(i)
n ≤ D) correspond respectively to the

coefficient and variables powers for each monomial i = 1..M .

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 157–163

DOI: 10.15439/2019F16

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 157

In this study, we consider the problem of the evaluation of

the multiple definite integral of f over ∆, which we denote

by If∆, and it is given by the formula:

If∆ =

∫

∆

f dx1....dxn. (1)

We aim at providing new practical methods that compute

efficiently the exact value of If∆ when the coefficients of f
and the vertices of ∆ are rational numbers as discussed in [1],

or compute the numerical value when floating-point numbers

are used instead. In this second case, no approximations are

made and the total error in the evaluation is due only to the

floating-point numbers representation precision.

III. INTEGRATION OVER POLYTOPES

A. Integration over the standard simplex

The standard simplex, denoted by ∆s, is the polytope

defined by the n + 1 following vertices: v0 = (0, 0, ..., 0)′,
v1 = (1, 0..., 0)′, v2 = (0, 1, ..., 0)′,..., vn = (0, 0, ..., 1)′. The

integral of f over ∆s is expressed as follows:

If∆s
=

∫ 1

x1=0

∫ 1−x1

x2=0

. . .

∫ 1−x1...−xn−1

xn=0

fdx1 . . . dxn. (2)

The integral of one monomial x〈α〉 = xα1
1 xα2

2 ...xαn

n can be

computed efficiently using the Stroud formula [8]:

Ix〈α〉∆s
=

α1!...αn!

(n+ α1 + ...+ αn)!
. (3)

Then, If∆s can be computed by summing the integral of all

f monomial terms, If∆s
= ΣM

i=1wiIx〈α〉
i

∆s

.

Note that dynamic programming can accelerate consider-

ably the computation. e.g. factorial terms can be computed

and stored just once and used many times.

B. Integration over a general simplex

The majority of simplices obtained by triangulation are not

standard. Integrating f over a general simplex ∆ is an NP-

hard problem of varying dimension and degree [1], but it can

be solved within an acceptable time for moderate dimension

and degree (n ≤ 10, D ≤ 10) by the computing means which

are nowadays available. To evaluate If∆, a good option would

be to find an affine change of variables from the original space

[x1, ..., xn] to a new space [y1, ..., yn] such that

I∆ =

∫

∆

f dx1....dxn =

∫

∆s

h dy1....dyn, (4)

where h is a polynomial function with the same degree as f ,

∆s is the standard simplex. After that, one can utilize formula

3. It is particularly noteworthy that for an non-empty volume

simplex ∆, this change of variables is always possible. We

will show how to determine h terms in the rest of this section.

Let the vertices of ∆ be v0 = (v01 , ..., v
0
n)

′, v1 =
(v11 , ..., v

1
n)

′, ..., vn = (vn1 , ..., v
n
n)

′. We propose to find an

affine transformation T : ∆s → ∆ that maps the standard

simplex ∆s in the y space to the general simplex ∆ in the x
space, as shown in Fig 1 example. Thus, T maps each vertex

of ∆s to a distinct vertex of ∆, the order of vertices is not

important. Formally, T maps a given point y to the point x

given by x = Ay + B where A is an invertible n× n matrix

that defines the combination effect of rotation, scaling and

shearing, and B is a translation vector.

The correspondence between vertices of ∆s and vertices of

∆ yields the following linear system V = A×Vs+B , which

is given by







v01 v
1
1 . . . v

n
1

...
...

. . .
...

v0n v
1
n · · · v

n
n






=







A1,1 . . . A1,n

...
. . .

...

An,1 · · · An,n






×







01 · · · 0
...

...
. . .

...

00 · · · 1






+







B1

...

Bn







(5)

, where columns of matrices V and Vs represent the vertices

coordinates of ∆ and ∆s, respectively. The unique solution of

the equations system (5) is:

B =
(

v01 , . . . , v
0
n

)′
and Ai,j = vji −Bi (∀ i, j ∈ 1...n), (6)

which can be computed in linear time. Affine transformations

are known to preserve betweenness, x = T (y) lies inside ∆
if and only if y is inside ∆s. To compute If∆, we propose to

perform the change of variables x = A× y+B where the ith

component of x is

xi = Ai,1 × y1 + . . .+Ai,n × yn +Bi

= Σn
j=1Ai,j × yj +Bi.

(7)

Hence, we have:

If∆ =

∫

∆

f(x1, ..., xn)dx1...dxn

=

∫

∆s

f(Σn
j=1A1,j × yj +B1, ...,Σ

n
j=1An,j × yj +Bn)

|det(JacT (y1,...,yn))| dy1...dyn,
(8)

where |det(JacT (y1,...,yn)))| = |det(A)| is the absolute value

of the determinant of the Jacobian of T .

For the simple case of a single monomial term, f = x〈α〉 =
xα1
1 ...xαn

n we have:

Ix〈α〉∆ =

∫

∆u

(Σn
j=1A1,jyj +B1)

α1 ...(Σn
j=1An,jyj +Bn)

αn

|det(A)| dy1...dyn.
(9)

Let Pxi
= Σn

j=1Ai,jyj + Bi be the dense polyno-

mial of degree one in the n-dimensional space of y vari-

ables. The desired polynomial function h is then equal to

|det(A)|f(Pxi
, ..., Pxn

).
Therefore, determining h coefficients can be carried out

according to the expression of f by performing a series of

additions and multiplications of dense intermediate polynomi-

als of degree d ≤ D (D=degree of f).

For example, as illustrated in Fig. 1, to integrate f = x1x
3
2 +

x2
1x2 + x2

2 + 2x1x2 + x1 + 2 over the simplex ∆ defined by

158 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

5y
1

1 2 3 41 0

y
2

T: y x=Ay+B

x
2

x
1

s

1

0
0

Standard simplex
General simplex

v
2

v
1

v
0

Fig. 1. 2-Dimensional affine transformation example.

the vertices V = {v0 = (3, 1)′, v1 = (5, 2)′, v2 = (4, 3)′}, by

using equations (6,7), we obtain:

A =

[

2 1
1 2

]

, B =

[

3
1

]

,
px1

= 2y1 + y2 + 3
px2 = y1 + 2y2 + 1

Determining h depends indeed on the regular expression

used to denote f ; in other words, it depends on the position of

brackets and operators '*', '+' in f expression. For this example,

h can be built efficiently according to the scheme shown in

Fig. 2:(a) when f is expressed as a sum of monomials, or

according the scheme of Fig. 2:(b) when f is factorized as

follows f = (x1x2+1)∗(x2
2+x1+2). As you can see in Fig.

2:(a), terms x1x2 and x2
2 are computed just once, and used to

compute the four first terms of f : x1x
3
2, x

2
1x2, x

2
2, 2x1x2

For this approach, integration efficiency depends conjointly

on : i) the factorization tree of f and ii) the complexity

of addition and multiplication of intermediate polynomials.

Finding the optimal factorization tree for an arbitrary dense

polynomial is a difficult combinational problem because the

search space of all possible factorization schemes is large; e.g.

using straight-line-programs [1] may be useful. In this study,

our main contribution is focused on the second point; on the

proposition of new methods to accelerate furthermore addition

and particularly multiplication of intermediate polynomials

involved during the construction of h.

C. Discussion

In the proposed method, computing If∆ is achieved by per-

forming a suitable change of variables from x to y space such

that equation (4) holds. And then, integrating the monomial

terms of h over the standard simplex ∆s using formula (3) in

a polynomial time. h terms are determined by accomplishing

a long sequence of addition and multiplication of dense inter-

mediate polynomials of degree up to D. Almost all obtained

polynomials are dense because the matrix transformation A is

often not sparse for general simplices resulting from the trian-

gulation process. The big part of the computational complexity

is due to multiplication rather than addition of intermediate

polynomials. Indeed, the multiplication P = P1 × P2 of two

polynomials represented as a sum of monomial terms can

be carried out in two steps: i) distribution and monomial

multiplication (a Cartesian product) and ii) simplification of

Px
2

Px
1

Px
2

Px
2

*
+

+
*

h

Px
1

*

+

b) f = (x
1
x

2
 + 1) (x

2

2
 + x

1
 +2)

1 2

Px
2

Px
2

2Px
1

* *
**

+ *2

+
+ +

+
h

a) f = x
1
x

2

3
 + x

1

2
x

2
 + x

2

2
 + 2x

1
x

2
 + x

1
 + 2

Fig. 2. Example of variables change according to 2 different factorizations.

result terms having the same degree. It should be emphasized

that the simplification (step ii) requires more of computational

complexity than the distribution and multiplication (step i). Let

k1,k2 be sizes of P1, P2, respectively. Consequently, we need

k1× k2 elementary operations of multiplication in step i), but

we need k1 × k2 × C operations where C is the cost of the

simplification of a given monomial term m. C is equal to the

cost of search plus the cost of insertion of term m within the

structure of P .

Therefore, it is interesting to improve monomial simplifica-

tion by the proposition of suitable polynomial representation

and efficient algorithms for multiplication.

D. Proposition 1: accelerating variables change

The physical memory can in fact be seen as a continuous

sequence of cells and all intermediate polynomials terms are

stored of course in that space. During the variables change

process, we need to find efficiently many times the location

of a monomial given their variable powers, hence the order of

monomials in memory is important.

As all the polynomials obtained are dense, we propose to

represent a given polynomial P as a triplet (n,d,W) where

n is the dimension, d is its degree (d ≤ D), and W is

a vector of floats containing the monomial coefficients of

P . The size of W is then equal to (n + d)!/(n!d!). It is

a good idea to save only the monomial coefficients into a

compact structure according to a particular order and to not

save variables powers (α vectors). The desired order must

allow a fast mapping in both directions between variables

powers vector and the monomial position in the structure of

P . Consequently, space complexity will be reduced because

variables powers (α vectors) are not saved.

The memory position (index) of the coefficient of a given

monomial x〈α〉 = xα1
1 ...xαn

n must be calculated efficiently

based on the values of n, d,α and the chosen order. To this

end, we consider that wxα1
1 ...xαn

n is ordered before (on the

ABDENEBI ROUIGUEBET AL.: INTEGRATION OF POLYNOMIALS OVER N-DIMENSIONAL SIMPLICES 159

0
0

1

2

41

3
1

4

32

3

2

2

3 1
4 0

e.g. coefficient

of x
1

2
 x

2

0
 x

3

1

Fig. 3. VOIS structure example (D=3, n=3).

Procedure 1 Mapping powers to index(Pow2Ind)

Input: α monomial powers vector

degree d and dimension n of the polynomial

Output: Ind (the corresponding index memory of x〈α〉)

Ind← 0;

2: j ← n− 1; i← d; start cell in Pascal square

k ← 0; variable index in vector α
4: while α 6= (0, ..., 0) do

6: if α[k] > 0 then

Ind← Ind+ Pascal[j, i]; increment Ind
i← i− 1; shift left in Pascal

α[k]← α[k]− 1;

8: else

j ← j − 1; shift up in Pascal

k ← k + 1; shift right in α
10: end if

end while

left) of w′x
α′

1
1 ...x

α′
n

n if [α1...αn] < [α′
1...α

′
n], which can be

evaluated recursively as follows:

[αi...αn] < [α′
i...α

′
n]if

{

αi < α′
i or (αi = α′

i and

[αi+1...αn] < [α′
i+1, ..., α

′
n])

We propose to represent the coefficients W of a dense

polynomial of degree d and n variables as a Virtual Ordering

Integer Simplex which we refer to as VOIS structure in this

paper. The coefficient of the monomial xα1
1 ...xαn

n is stored in

the cell (α1, ..., αn) of the VOIS structure. Fig 3 illustrates an

example for d=3 and n=3. The coefficients of P are stored in

the physical memory as a flat vector according to the VOIS

order as follows: [w0, w1, ...wk] where k = (n + d)!/n! ∗ d!)
is the size of P , as illustrated in Fig 4.

For polynomial multiplication, we need both to handle

monomials powers (α1, ..., αn), and to access directly to their

memory location. The principal aim of the VOIS structure is

to speed up conversion between monomial powers vectors and

theirs corresponding memory indices.

The proposed functions that map powers vector to the cor-

responding memory index (pow2ind) and the inverse mapping

(ind2pow) are displayed in Algorithms 1 and 2, respectively.

w
9w

7w
4w

0
0

w
15

w
8w

5

w
13

w
1

0 3

w
10

1

w
6

2

w
2

1

w
18

w
14w

11

1

w
16

2

2 0

w
3

3

w
12

w
19

3

w
17

2

3

1

Fig. 4. Memory indices of monomials coefficients (example: D=3, n=3).

Procedure 2 Mapping index to powers (Ind2Pow)

Input: Ind monomial powers vector

degree d and dimension n of the polynomial

Output: α monomial powers vector

α← [0, ..., 0];
2: j ← n− 1; i← d;

k ← 0;

4: while Ind 6= 0 do

6: if Ind ≥ Pascal[j, i] then

α[k]← α[k] + 1;

Ind← Ind− Pascal[j, i]; decrement Ind
i← i− 1; shift left in Pascal

8: else

j ← j − 1; shift up in Pascal

k ← k + 1; shift right in α
10: end if

end while

160 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

0 1 2 3 4 5

0

1

2

3

4

a) The Pascal square

Polynomial degree (i)

D
im
en
si
o
n
,
v
ar
ia
b
le
in
d
ex
(
j
)

Ind j i k α Iteration

18 2 3 1 [0,0,0] Initial.

08 2 2 1 [1,0,0] (1)

02 2 1 1 [2,0,0] (2)

02 1 1 2 [2,0,0] (3)

00 1 0 2 [2,1,0] (4)

b) IndToPow() trace example

Ind j i k α Iteration

00 2 3 0 [0,2,1] Initial.

00 1 3 1 [0,2,1] (1)

04 1 2 1 [0,1,1] (2)

07 1 1 1 [0,0,1] (3)

07 0 1 1 [0,0,1] (4)

08 0 0 1 [0,0,0] (5)

c) PowToInd() trace example

Fig. 5. Conversin examples between powers and memory indices.

Fig. 5 shows an example of conversion between powers and

memory indices. The first row and column are set to one in the

Pascal square, and the remaining cells are filled recursively as

follows Pascal(j, i) = Pascal(j − 1, i) + Pascal(j, i − 1).
For both algorithms of conversion, we start from the cell

Pascal(n−1, d). The run trace of Ind2Pow (resp. Pow2Ind)

function from Ind = 18 (resp. α = [0, 2, 1]) to α = [2, 1, 0]
(resp. 8) is depicted on the sub-figure 5-b) (resp. sub-figure 5-

c). The time complexity of conversion is linear, at most (n+d)

iterations are required for conversion. These two conversion

algorithms are conceived in order to speed up polynomial

addition and especially multiplication as shown in Algorithm 3

(note that addition is more efficient since only two not nested

for-loops are required to add terms of P1 to P and then terms

of P2 to P).

E. Proposition 2: optimization of time at the expense of

memory complexity

When f is represented as a sum of terms, performing the

change of variables of all monomials separately, one by one,

is certainly a non-efficient way since several monomials differ

slightly from each other. On the other hand, finding the optimal

factorization tree is still an open research area.

As a compromise, in this study, we apply a factorization

scheme using the Dynamic Programming principle. In this

sense, monomials with low degrees are transformed first. To

compute T (x〈α〉), we need just to multiply a monomial of

degree α−1 which is supposed already computed by the one-

degree polynomial of a given variable Pxi
. For example, the

twenty monomials terms of a polynomial with n = 3 and

d = 3 are computed according to the order shown in Figure 6.

Implicitly, the construction of h is achieved using a straight-

line-program [1]. Indeed, for this example, the computation

Procedure 3 Polynomial multiplication (PolMul)

Input: P1, P2 two polynomials with degrees d1, d2, respec-

tively, and the same dimension n
Output: P //the product P = P1 × P2

sz1 ← (n+ d1)!/(n!d1!); //size of P1

2: sz2 ← (n+ d2)!/(n!d2!); //size of P2

d ← d1 + d2; sz ← sz ← (n + d)!/(n!d!) // degree and

size of P
4: P ← ZerosPolynomial; // a vector of sz zeros.

for i1 = 0 to sz1 do

6: α1 ← Ind2Pow(i1, d1, n)
for i2 = 0 to sz2 do

8: α2 ← Ind2Pow(i2, d2, n)
α ← α1 + α2 // add the powers vector α1 and α2

i← Pow2Ind(α, d, n)
P [i]← P [i] + P1[i1]× P2[i2];

end for

10: end for

1

Px
1
Px

2
Px

3Px
1
Px

3

2 Px
1
Px

2

2

Px
1Px

3

Px
1

2
Px

2

Px
1

3
Px

1

2

Px
1

2
Px

3

Px
1
Px

2
Px

1
Px

3

Px
2

3

Px
2

Px
2
Px

3

Px
3

2

Px
2
Px

3

2

Px
3

3

Px
2

2
Px

3 Px
2

2

Fig. 6. Factorization tree for the change of variables.

order is as follows: w0+x3(w1+x3(w2+x3(w3)))+x2(w4+
x3(w5 +x3(w6))+x2(w7 +x2(w8)))+x1(...), where wi are

real coefficients.

During the whole variable transforming process for the

adopted factorization, we have to multiply several times mono-

mials with degree d < D with a polynomial of degree one.

Instead of calling the functions, Ind2Pow and Pow2Ind, we

propose to save the monomial indices of the multiplication

output polynomial P in a vector.

See algorithm 4, if we try to multiply a polynomial P1

with degree d1 with a polynomial P2 with d2 = 1 for the first

time then we save the sequence of i values (line Ixd1 [m]← i;
m← m+1; in the if-clause), else we reuse the indices already

saved when polynomials with the same degrees are multiplied

(line i← Ixd1
[m]; m← m+ 1; in the else-clause).

IV. EXPERIMENTATION, DISCUSSION AND PERSPECTIVES

The key contribution of this work consists in the propo-

sition of the VOIS structure and in the development of the

corresponding mapping functions Ind2Pow and Pow2Ind.

This solution has sped up mostly polynomial multiplication

and consequently the whole integration process.

At each iteration in the second for-loop of algorithm 3,

the coefficient product P1[i1]P2[i2] is computed and added to

the monomial term of degree α = α1 + α2 in P structure.

Table I presents a comparison of our method with other

possible alternatives in terms of time and space complexity

needed to find, insert or update the monomial x〈α〉 in the

ABDENEBI ROUIGUEBET AL.: INTEGRATION OF POLYNOMIALS OVER N-DIMENSIONAL SIMPLICES 161

TABLE I
DEFINING CHARACTERISTICS OF FIVE EARLY DIGITAL COMPUTERS

Method Search time Insertion time Space complexity

1 Sorted linked list O(X) //check all elements O(1) X *(n+1) //Coefficient and powers (α)

2 Sorted dynamic array O(Log(X)) //dichotomic search O(X) //shift elements right X *(n+1) //Coefficient and powers (α)

3 Static pre-allocated array O(Log(X)) //dichotomic search O(1) X *(n+1) //Coefficient and powers (α)

4 VOIS without indices saving O(n+d) //Pow2Ind O(1) X //only coefficients

5 VOIS with indices saving O(1) //direct access O(1) X + [((n+1)d)/(d+n)]*X //coefficients + indices trace

where X = (n+ d)!/(n!d!) is equal to the number of all polynomial terms of P (n, d).

Procedure 4 Polynomial multiplication with indices

saving(PolMul)

Input: P1, P2 two polynomials with degrees d1, d2 = 1, in

dim. n
Output: P = P1 × P2

P ← ZerosPolynomial; m← 0;

2: if Ixd1
is empty then

4: for i1 = 1 to Size of P1 do

α1 ← Ind2Pow(i1, d1, n)
6: for i2 = 1 to Size of P2 do

α2 ← Ind2Pow(i2, d2, n); α← α1 + α2;

i← Pow2Ind(α, d, n)
P [i]← P [i] + P1[i1]× P2[i2];
Ixd1

[m]← i; m← m+ 1; // save i sequence

8: end for

end for

10: else

12: for i1 = 1 to Size of P1 do

14: for i2 = 1 to Size of P2 do

i← Ixd1 [m]; m← m+ 1; //direct access

P [i]← P [i] + P1[i1]× P2[i2];
16: end for

end for

18: end if

output polynomial P of multiplication. One can see that our

proposition (methods 4 and 5) overcomes incontestably the

three first classical methods in terms of the trade-off between

time and space complexity.

Another finding was that the global complexity of our algo-

rithm for the integration over a general simplex is polynomial

in time when the degree D or the dimension n are fixed. The

proof of this result is as follows. In our proposition, all poly-

nomial multiplications are carried out between a polynomial

p1 (d1 ≤ D) with a one degree polynomial P2 (d2 = 1).

For a fixed degree D, the complexity of multiplication P1×
P2 is: CompMul= size of P1 * size of P2 * O(n+d), where

O(n + d) is the search-insertion time complexity of a one

monomial term (see row 4 in Table I). Hence, we have:

CompMul = (d1 + n)!/(d1!n!) ∗ (n+ 1) ∗O(n+ d)

≤ (D + n)!/(D!n!) ∗ (n+ 1) ∗O(n+D)
≤ (D + n)D/(D!) ∗ (n+ 1) ∗O(n+D)
≤ O(nD) ∗O(n) ∗O(n+D)
≤ O(nD+2)
, which is polynomial with a varying n. The complexity

of polynomial addition is also polynomial in time; it is

lesser than the multiplication complexity. According to the

used polynomial factorization, we need at most to compute

(D+n)!/(D!n!) multiplications and (D+n)!/(D!n!) additions

which is polynomial for a fixed D. The total complexity of

integrating is then polynomial because the composition of two

polynomial functions is also polynomial.

The permutation between D and n in the given proof allows

us to conclude that the complexity is polynomial for a fixed

number of variables. This result agrees with results given

recently in [1].

Table II shows the measured integration time using the

proposed VOIS method for some examples of polynomials

and simplices generated randomly when varying D and n.

Experiment are carried out on a standard computer.The best

integration results for less than a second are highlighted in bold

and the worst results exceeding 10 hours are not displayed.

One can notice that time-complexity increases very fast as

an exponential when augmenting together D and n, but it

increases with a lower rate when either D or n are low. We

also notice that saving indices allows reducing time by a factor

nearby 5.

V. CONCLUSION

In this paper, we have proposed an integration method of

high dimensional polynomial functions with high degree over

a general simplex by performing an affine change of variables

to the standard simplex where efficient formulas are already

known.

The suggested variables change turns into making addition

and multiplication operations over intermediate polynomials

many times. To this end, we have proposed a compact data

structure for polynomial representation, that we have called

VOIS, in order to optimize the different operations involved

during the polynomial transforming from the general simplex

integration problem to an equivalent standard simplex integra-

tion problem.

For a fixed degree (and a varying dimension) or for a fixed

dimension (and a varying degree) the integration computa-

tional complexity of our algorithm over a general simplex

162 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

TABLE II
TIME OF INTEGRATION OF A DENSE POLYNOMIAL OVER A GENERAL SIMPLEX

Degree Method1: VOIS with indices saving (sec) Method2: VOIS without indices saving (sec)

n = 2 n = 4 n = 6 n = 7 n = 8 n = 9 n = 12 n = 15 n = 2 n = 4 n = 6 n = 7 n = 8 n = 9 n = 12 n = 15

D = 2 0 0 0.001 0.004 0.027 0.227 287.81 - 0 0 0.001 0.004 0.026 0.225 291.71 -

D = 4 0 0.001 0.005 0.015 0.054 0.258 297.77 - 0 0.015 0.027 0.045 0.126 0.447 293.87 -

D = 6 0 0.005 0.095 0.348 1.061 3.245 333.65 - 0 0.013 0.348 1.339 4.509 13.64 520.79 -

D = 7 0 0.011 0.340 1.334 4.446 16.25 666.91 - 0 0.033 1.278 5.648 21.69 74.25 2133.6 -

D = 8 0 0.023 0.966 4.607 19.19 74.17 2889.1 - 0 0.080 4.199 4.199 93.76 363.2 - -

D = 9 0 0.050 2.67 14.66 71.50 324.45 - - 0.001 0.178 12.23 72.281 361.4 1584.1 - -

D = 12 0.001 0.318 39.12 322.59 10534 - - - 0.002 1.248 185.2 1534.5 10835 - - -

D = 15 0.002 1.441 365.66 18928 - - - - 0.004 6.135 1727.3 19647 - - - -

D = 20 0.005 11.25 34579 - - - - - 0.012 50.09 34415 - - - - -

In experiments, only one core of the Processor Intel i7 3.7 GHz is used.

is polynomial. However, when varying both dimension and

degree, the complexity in experiments that we have carried

out seems to increase exponentially. In this last case, we recall

that integration of a general polynomial function over a general

simplex is shown to be NP hard [1].

A second aspect not fully examined in this work relates

to the representation of the input polynomial; more precisely

to the regular expression used to represent the polynomial

that we want to integrate. For instance, we have found in

some experiments that representing the polynomial function

as a product of lower-degree polynomials, if it is possible, is

more efficient than using a dense form expressed as a sum

of monomial terms. We recommend orienting future works on

the problem of determining the optimal factorization tree of

polynomial functions in relation to integration performances.

REFERENCES

[1] V. Baldoni and N. Berline and J. A. De Loera and M. Köppe and M.
Vergne, “How to Integrate a Polynomial over a Simplex,” Math. Comput.

J., vol. 80, 2011, pp. 297–325.
[2] M. E. Dyer and A. M. Frieze, “Frieze, On the complexity of computing

the volume of a polyhedron,” SIAM J. Comput. vol. 17, no. 5, 1961,
pp. 967-974.

[3] J. A. De Loera, J. Rambau, and F. Santos, Triangulations: Structures

and algorithms, Book manuscript, 2008.
[4] A. H. Stroud, Approximate Calculation of Multiple Integrals. Prentice-

Hall, Englewood Cliffs, NJ, 1971.
[5] A. Grundmann and H. M. Moller, “Invariant Integration Formulas for the

n-Simplex by Combinatorial Methods,” SIAM J. Numer. Anal. vol. 17,
no. 5, 1961, pp. 282-290.

[6] P. C. Hammer and A. H. Stroud, “Numerical integration over simplexes,”
Math Tables other Aids Comput. vol. 10, 1956, pp. 137-139.

[7] F. Bernardini, “Integration of polynomials over n-dimensional polyhe-
dra,” Computer-Aided Design vol. 23, no. 11, 1991, pp. 51-58.

[8] A. H. Stroud, Approximate Calculation of Multiple Integrals, Prentice-
Hall, Englewood Cliffs, NJ, 1971.
a product of linear forms

ABDENEBI ROUIGUEBET AL.: INTEGRATION OF POLYNOMIALS OVER N-DIMENSIONAL SIMPLICES 163

