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Abstract—This paper is a continuation of the discussion un-
dertaken in paper [31]. We present in the current paper the cor-
rected, and also given in a slightly changed form, Vandermonde
formulae for the roots of some quintic polynomials considered in
J.P. Tignol’s monograph [26]. The proofs of selected trigonomet-
ric identities from [31] are given and some new identities have
been generated by the occasion, which also can be used for testing
our Langrange algorithm for the case of cubic polynomials.
Moreover, we present here the decomposition of polynomials
belonging to some two-parameter family of polynomials related
to the Chebyshev polynomials of the first kind.
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I. INTRODUCTION

In paper [31] we have presented an algorithm (the so called

Lagrange algorithm) for determining the complex roots of

real polynomials which appeared to be more effective than

the symbolic calculations proposed in Mathematica software.

Many cubic polynomial, considering the polynomials used

for testing our Lagrange algorithm, led us to some attractive

trigonometric relations (see the appendix which is an important

supplement of paper [31]). In the current paper we propose

to repeat our previous considerations for the case of quintic

polynomials and for the polynomials of higher degrees as well.

Let us also recall that the complex roots of quintic polyno-

mials and the polynomials of higher degree, described with

the aid of elliptic functions and hypergeometric functions,

are well known (see [2], [12]). Certainly, the computational

usefulness of such solutions is not good, it still remains in

the sphere of future discoveries. At present, we have to limit

the calculations, especially the symbolic calculations, just for

the selected families of polynomials, for which the formulae

describing roots are well known and are in the ”numerically

accepted” form.

II. VANDERMONDE FORMULAE

Next of the investigated quintic polynomials

x5 − x4 − 4x3 + 3x2 + 3x− 1 =

5
∏

k=1

(

x+ 2 cos
2kπ

11

)

delivered to us many unexpected emotions. So in mono-

graph [26] the following identity, based on the Lagrange resol-

vent method of solving the algebraic equations, is suggested

x =
1

5

(

1 + ∆′ +∆′′ +∆′′′ +∆IV
)

, (1)

where x is one of the roots of this polynomial. However

the description of expressions ∆′, ∆′′, ∆′′′ and ∆IV , given

in [26], ”seems to be” incorrect. It should be, and this is

already our correction of these relations: ∆′ = 5
√
d1, ∆′′ = ∆′,

∆′′′ = 5
√
d3, ∆IV = ∆′′′, more precisely, ∆′ and ∆′′′ are any

values of the respective complex roots of degree five taken

from numbers (respectively):

d1 =
11

4

(

89 + 25
√
5− 5i

√

5 + 2
√
5 + 45i

√

5− 2
√
5

)

,

d3 =
11

4

(

89− 25
√
5− 45i

√

5 + 2
√
5− 5i

√

5− 2
√
5

)

.

Identity (1) takes then the following trigonometric form1 (the

calculations were executed by hand with the intensive support

1We used in calculations the following identity

d

√

a + b
√
a+

√

a − b
√
a =

√

(d2 + 1)a + (b(d2 − 1) + 2cd)
√
a,

where a = b2 + c2, b, c ∈ C (the complex cases need some additional
verification).
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of Mathematica software):

−2 cos
2kπ

11
=

1

5

(

1 + 2
√
11 cos

(

1

5

(

ti + si arctan
ℑd1
ℜd1

))

+
√
11 cos

(

1

5

(

tj − rj arctan
ℑd3
ℜd3

)))

and hence, after simple algebraic transformations, we get

−5 cos
2kπ

11
− 1

2
=

√
11

(

cos

(

1

5

(

ti + si arctan
p

q

))

+cos

(

1

5

(

tj + rj arctan
pq

109

)

))

, (2)

where p = 5 4
√
5, q =

√

877
√
5 + 1958, si, ri are the signs

and tn := 2(n− 1)π for every n = 1, 2, . . . , 5. By using the

Mathematica software we have found the following sequences

of the values of indices k, i, j and the signs si, rj for which

both the above identities hold true:

k i j si rj k i j si rj
1 3 3 −1 −1 3 1 4 +1 −1
1 3 4 −1 +1 3 1 4 −1 −1
1 4 3 +1 −1 4 2 2 +1 −1
1 4 4 +1 +1 4 2 5 +1 +1
2 3 2 +1 +1 4 5 2 −1 −1
2 3 5 +1 −1 4 5 5 −1 +1
2 4 2 −1 +1 5 2 1 −1 −1
2 4 5 −1 −1 5 2 1 −1 +1
3 1 3 +1 +1 5 5 1 +1 −1
3 1 3 −1 +1 5 5 1 +1 +1

III. QUINTIC POLYNOMIALS

In this section we discuss the monic irreducible quintic

polynomials f ∈ Q[x]. If the equation f(x) = 0 is solvable

by radicals, the quintic polynomial f(x) is said to be solvable.

First let us consider the quintic polynomial in the reduced form

x5 + a2x
2 + a1x+ a0 = 0,

called the principal quintic form, and

x5 + b1x+ b0 = 0,

called the Bring-Jerrard quintic form (see [1]).

It is known that if f(x) = x5 + axi + b ∈ Q∗[x], i = 1, 2,

where Q∗ := Q \ {0}, and disc f(x) > 02, then f(x) has

exactly one real root [24].

B.K. Spearman and K.S. Williams proved in [23] the

following result.

Theorem 1. Let a, b ∈ Q∗ be such that the quintic trinomial

f(x) = x5+ax+b is irreducible. Then f(x) is solvable if and

only if there exist the rational numbers ε ∈ {−1, 1}, c ≥ 0
and α 6= 0 such that

a =
5α4(3− 4εc)

c2 + 1
, b =

−4α5(11ε+ 2c)

c2 + 1
.

Moreover, if we set

D = c2 + 1,

2The discriminant of f .

{

v1 =
√
D +

√

D − ε
√
D, v2 = −

√
D −

√

D + ε
√
D,

v3 = −
√
D +

√

D + ε
√
D, v4 =

√
D −

√

D − ε
√
D,

u1 =
5

√

v21v3
D2

, u2 =
5

√

v23v4
D2

, u3 =
5

√

v22v1
D2

, u4 =
5

√

v24v2
D2

,

and w = exp(2πi/5), then the roots of x5 + ax+ b are equal

to x0, x1, x2, x3, x4, where

xi

α
=

4
∑

k=1

wkiuk

= wiu1 +
w2iu2

1

√
D 5
√
ε

v1
+

w3iu3
1D

v1v3
− w4iu4

1

√
D3

v21v3
5

√

ε

D
,

for every i = 0, 1, 2, 3, 4.

For illustrating the application of the formulae from the

above theorem let us find the complex roots of polynomial

x5 + 11x+ 44,

which we get for parameters ε = 1, α = −1, c = 2/11. By

using the above formulae, supported by Mathematica software,

we derive the following formulae

x0 = λ(ξ1 − ξ2 − ξ3 − ξ4) ≈ −1.87775,

x1 = −λ
(

e
3πi

5 ξ1 + e
2πi

5 ξ2 + e
4πi

5 ξ3 − e
πi

5 ξ4

)

≈ 1.80012− 1.44746i,

x2 = −λ
(

e
πi

5 ξ1 + e
4πi

5 ξ2 − e
3πi

5 ξ3 + e
2πi

5 ξ4

)

≈ −0.861241− 1.9105i,

x3 = x̄2, x4 = x̄1,

where λ = − 5

√

11/54 and

ξk :=

(

(−1)k+1(50
√
5− 75) +

√

18125− 6169
√
5

)1/5

,

ξl :=

(

50
√
5 + 75 + (−1)l

√

18125 + 6169
√
5

)1/5

,

for k = 1, 2 and l = 3, 4.

J.A. Johnstone and B.K. Spearman in paper [11] proved the

following result.

Theorem 2. Let f(x) = x5 + x− a, where a ∈ Z. Then f(x)
is not solvable by radicals unless a = r5 + r for some integer

r, or a = ±1,±6. The last case was discussed and proved

earlier by S. Rabinowitz [21].

B.K. Spearman and K.S. Williams in paper [24] proved also

the completely unexpected result, given below.

Theorem 3. There exist only five essentially different, irre-

ducible, solvable, quintic trinomials x5 + ax2 + b, a, b ∈ Q∗,

namely: x5 + 5x2 + 3, x5 + 5x2 − 15, x5 + 25x2 + 300,

x5 + 100x2 + 1000 and x5 + 250x2 + 625.
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IV. APPENDIX

In paper [31] we have presented the following formulae
(

z − 2 sin
4π

13

)(

z − 2 sin
10π

13

)(

z − 2 sin
12π

13

)

= z3 −

√

13 + 3
√
13

2
z2 +

√
13z −

√

13− 3
√
13

2

(3)

(

z − 2 sin
2π

13

)(

z − 2 sin
6π

13

)(

z + 2 sin
8π

13

)

= z3 −

√

13− 3
√
13

2
z2 −

√
13z +

√

13 + 3
√
13

2

(4)

with the suggestion that they can be derived on the basis of

formulae given below

z3 +
1−

√
13

2
z2 − z +

√
13 + 3

2

=

(

z−2 cos
2π

13

)(

z−2 cos
6π

13

)(

z−2 cos
8π

13

)

,

(5)

z3 +
1 +

√
13

2
z2 − z −

√
13 + 3

2
(6)

=

(

z−2 cos
4π

13

)(

z−2 cos
10π

13

)(

z−2 cos
12π

13

)

.

To explain it better we decided to ”reveal” here the details

of the proof. Thus, by proving decomposition (3) and (4) we

used the following relations

8 sin
4π

13
sin

10π

13
sin

12π

13
= i
(

ei
4π

13 − e−i 4π
13

)

×
(

ei
10π

13 − e−i 10π
13

)(

ei
12π

13 − e−i 12π
13

)

= 2 sin
2π

13
+ 2 sin

6π

13
− 2 sin

8π

13
,

(

2 sin
4π

13
+ 2 sin

10π

13
+ 2 sin

12π

13

)2

= 6 + 2

(

cos
2π

13
+ cos

6π

13
+ cos

8π

13

)

− 4

(

cos
4π

13
+ cos

10π

13
+ cos

12π

13

)

(5)
=
(6)

13 + 3
√
13

2
,

4

(

sin
4π

13
sin

10π

13
+ sin

4π

13
sin

12π

13
+ sin

10π

13
sin

12π

13

)

=

= 2

(

cos
2π

13
+ cos

6π

13
+ cos

8π

13

)

− 2

(

cos
4π

13
+ cos

10π

13
+ cos

12π

13

)

(5)
=
(6)

√
13,

8 sin
2π

13
sin

6π

13
sin

8π

13

= i
(

ei
2π

13 − e−i 2π
13

)(

ei
6π

13 − e−i 6π
13

)(

ei
8π

13 − e−i 8π
13

)

= 2 sin
4π

13
+ 2 sin

10π

13
+ 2 sin

12π

13
,

(

2 sin
2π

13
+ 2 sin

6π

13
− 2 sin

8π

13

)2

= 6 + 2

(

cos
4π

13
+ cos

10π

13
+ cos

12π

13

)

− 4

(

cos
2π

13
+ cos

6π

13
− cos

8π

13

)

(5)
=
(6)

13− 3
√
13

2
,

4

(

sin
2π

13
sin

6π

13
− sin

2π

13
sin

8π

13
− sin

6π

13
sin

8π

13

)

= 2

(

cos
4π

13
+ cos

10π

13
+ cos

12π

13

)

− 2

(

cos
2π

13
+ cos

6π

13
+ cos

8π

13

)

(5)
=
(6)

−
√
13.

In order to complete the collection of formulae (3)–(6) we

give additionally the decompositions connected with the values

of tangent and cotangent functions of the respective ternary

sets of arguments
{

2π
13 ,

6π
13 ,

8π
13

}

and
{

4π
13 ,

10π
13 , 12π

13

}

. They are

of the following form
(

x− tan
4π

13

)(

x− tan
10π

13

)(

x− tan
12π

13

)

= x3 −
√

65− 18
√
13x2 + (13− 4

√
13)x−

√

65− 18
√
13,

since from formulae (3)–(6) we easily obtain the equalities

tan
4π

13
tan

10π

13
tan

12π

13
=

2 sin 4π
13 2 sin

10π
13 2 sin 12π

13

2 cos 4π
13 2 cos

10π
13 2 cos 12π

13

=

√

13−3
√
13

2
√
13+3
2

=

√
13− 3

4

√

26− 6
√
13 =

√

65− 18
√
13,

tan
4π

13
+ tan

10π

13
+ tan

12π

13
= tan

4π

13
tan

10π

13
tan

12π

13
, 3

3The following identity holds

tanx+ tan y + tan(kπ − x− y) = tan x tan y tan(kπ − x− y)

for the respective values of x, y ∈ R and k ∈ Z, which in turn implies the
identity

cot x cot y + cotx cot(kπ − x− y) + cot y cot(kπ − x− y) = 1.

Moreover, if x1 + x2 + x3 = 2π, x1, x2, x3 ∈ R \ πZ, then the following
identities hold

−2 (cot x1 + cot x2 + cotx3) sinx1 sinx2 sinx3

= sin2 x1 + sin2 x2 + sin2 x3 = (sinx1 + sinx2 + sinx3)
2

− 2 sinx1 sinx2 − 2 sinx1 sinx3 − 2 sinx2 sinx3.

Proof. We have

cot x1 + cot x2 = − sin2 x3

sinx1 sinx2 sinx3

,

cot x1 + cot x3 = − sin2 x2

sinx1 sinx2 sinx3

,

cot x2 + cot x3 = − sin2 x1

sinx1 sinx2 sinx3

,

from which, by summing respectively by sides, we obtain the expected
equality.
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the last formula implies the following one

cot
4π

13
+ cot

10π

13
+ cot

12π

13
=

1
4
13+3

√
13

2 −
√
13
2

− 1
4

√

13−3
√
13

2

= −
√
2

4

√

13 + 3
√
13(

√
13− 1) = −

√
2

2

√

26 + 4
√
13,

tan
4π

13
tan

10π

13
+ tan

4π

13
tan

12π

13
+ tan

10π

13
tan

12π

13

= tan
4π

13
tan

10π

13
tan

12π

13

(

cot
4π

13
+ cot

10π

13
+ cot

12π

13

)

=

√

65− 18
√
13

(

−
√
2

2

√

26 + 4
√
13

)

= −
√

(

65− 18
√
13
)(

13 + 2
√
13
)

= 13− 4
√
13.

The next formulae, derived by us on the way of algebraic tests

of the Lagrange algorithm, are as follows (we present them

without the proofs with respect to the length of this paper):

(

x− cot
4π

13

)(

x− cot
10π

13

)(

x cot
12π

13

)

= x3 +

√
2

2

√

26 + 4
√
13x2 + x−

√

1

13
(65 + 18

√
13),

(

x− tan
2π

13

)(

x− tan
6π

13

)(

x+ tan
8π

13

)

= x3−
√

65− 18
√
13x2 + (13 + 4

√
13)x−

√

65− 18
√
13,

(

x− cot
2π

13

)(

x− cot
6π

13

)(

x+ cot
8π

13

)

= x3 −
√

13− 2
√
13x2 + x−

√

1

13
(65− 18

√
13),

(

x− 2 cos
2π

21

)(

x− 2 cos
8π

21

)(

x− 2 cos
32π

21

)

=

(

x− 2 cos
2π

21

)(

x− 2 cos
8π

21

)(

x+ 2 cos
11π

21

)

= x3 − 1 +
√
21

2
x2 − 1−

√
21

2
x− 5−

√
21

2
,

(

x− 2 cos
4π

21

)(

x− 2 cos
16π

21

)(

x− 2 cos
64π

21

)

=

(

x− 2 cos
4π

21

)(

x+ 2 cos
5π

21

)

(

x+ 2 cos
π

21

)

= x3 − 1−
√
21

2
x2 − 1 +

√
21

2
x− 5 +

√
21

2
,

since cos 16π
21 = − cos 5π

21 , cos 32π
21 = cos 10π

21 = − cos 11π
21 and

cos 64π
21 = − cos π

21 = cos 20π
21 . Finally the last formula is of

the form

6
∏

k=1

(

x− 2 cos
2kπ

21

)

=

=

(

x3 − 1 +
√
21

2
x2 − 1−

√
21

2
x− 5−

√
21

2

)

×
(

x3 − 1−
√
21

2
x2 − 1 +

√
21

2
x− 5 +

√
21

2

)

= x6 − x5 − 6x4 + 6x3 + 8x2 − 8x+ 1.

Furthermore we have (see [29]):
(

x− 2 sin
2π

21

)(

x− 2 sin
8π

21

)(

x− 2 sin
32π

21

)

=

(

x− 2 sin
2π

21

)(

x− 2 sin
8π

21

)(

x+ 2 sin
10π

21

)

= x3 +

√
3−

√
7

2
x2 − 3 +

√
21

2
x+

√
3 +

√
7

2
,

(

x− 2 sin
4π

21

)(

x− 2 sin
16π

21

)(

x− 2 sin
64π

21

)

=

(

x− 2 sin
4π

21

)(

x− 2 sin
5π

21

)

(

x+ 2 sin
π

21

)

= x3 −
√
3 +

√
7

2
x2 +

√
21− 3

2
x+

√
7−

√
3

2
,

since sin 16π
21 = sin 5π

21 , sin 32π
21 = − sin 10π

21 = − sin 11π
21 and

sin 64π
21 = − sin π

21 = − sin 20π
21 , which implies

6
∏

k=1

(

x− 2 sin
2kπ

21

)

= x6 −
√
7x5 − 2x4 + 4

√
7x3 − 8x2 + 1.

V. SPECIAL FAMILIES OF POLYNOMIALS

There exist many special families of polynomials with the

well known sets of roots. However there is no any common

platform connecting these families and this is, to be honest,

a great challenge of our undertaking. Considering the special

families of polynomials, discovered by us, we want to empha-

size these ones, the origins of which can be found in Cardano’s

formulae (see for example [28]). So if Ωn(x) denote the so

called n-th Chebyshev polynomial defined by the relation

Ωn(x) := 2Tn

(x

2

)

,

where Tn(cos θ) = cosnθ is the n-th Chebyshev polynomial

of the first kind, then the following decompositions hold

(
√
p)nΩn

(

x√
p

)

− q =

n−1
∏

k=0

(

x− aζ2k − bζ−2k
)

,

(−√−p)nΩn

(

ix√
p

)

+ q =

n−1
∏

k=0

(

x− aζ2k+1 + bζ−2k−1
)

,
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where ζ = exp(iπ/n), a and b are any values from among

the n complex values of the following roots (respectively):

n

√

1

2

(

q +
√

q2 − 4pn
)

,
n

√

1

2

(

q −
√

q2 − 4pn
)

.

These formulae lead to many special cases, they generate many

trigonometric identities. However the disadvantage of these

identities is their dependence only on two complex parameters

p and q, no matter what is the value of the discussed poly-

nomial degree. We also observe some calculating difficulties

– however just on the same kind as in case of the classical

Cardano’s formulae.

VI. CONCLUSIONS

Our attempt of making the algorithms, serving for symbolic

determination of the complex roots of some real polynomials,

more effective brought us many practical advantages. We

have obtained the algorithms behaving better, at least in the

cases emphasized by us, in comparison with, for example, the

procedures used in Mathematica software. By the way we have

generated many original identities and we have discovered

new relations. We have also learned to avoid verious traps

appearing in the course of using the algebra of complex

numbers. Considering the future plans we intend still to seek

the families of polynomials with the known description of

roots. Also the form of realizing our mega-algorithm, which

should end our future investigations, still remains questionable.
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