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Abstract—Environmental sound classification has received
more attention in recent years. Analysis of environmental sounds
is difficult because of its unstructured nature. However, the pres-
ence of strong spectro-temporal patterns makes the classification
possible. Since LSTM neural networks are efficient at learning
temporal dependencies we propose and examine a LSTM model
for urban sound classification. The model is trained on magnitude
mel-spectrograms extracted from UrbanSound8K dataset audio.
The proposed network is evaluated using 5-fold cross-validation
and compared with the baseline CNN. It is shown that the LSTM
model outperforms a set of existing solutions and is more accurate
and confident than the CNN.

Index Terms—environmental sound classification, long short-
term memory, convolutional neural networks, UrbanSound8K
dataset

I. INTRODUCTION

A
UDIO recognition algorithms are traditionally used for

the tasks of speech and music signal processing. Mean-

while, the problems of environmental sound recognition and

classification have received much attention in recent years.

There are multiple applications already proposed in a big

variety of industries, including surveillance [1], [2], audio

scene recognition for robot navigation [3], acoustic monitor-

ing of natural and artificial environment [4]–[6]. In digitally

transformed society [7], soundscape models create a research

perspective in smart city domain. City noise managing signif-

icantly contributes to a healthy and safe living environment in

the big cities [8]. In travel centric systems, city sounds may

enter the emerging solutions to develop and share journey

experience [9], [10]. Assisting technologies for people with

disabilities and, in particular, navigation systems for blind or

visually impaired people effectively incorporate urban sound

models [11].

Environmental sound analysis is more complex than speech

and music processing because of unstructured nature of

sounds. There are no meaningful sequences of elementary

blocks like phonemes or strong stationary patterns such as

melody or rhythm. However, environmental sounds may in-

clude strong spectro-temporal signatures. Thus, it is important

to consider non-stationary aspects of signal and capture its

variation in both time and frequency domains.

The classification of environmental sounds is often split

into auditory scene classification and sound classification by

its source. But, both problems share the similar approaches.

The methods used involve k-Nearest Neighbors (k-NN) al-

gorithm, Support Vector Machine (SVM), Gaussian Mix-

ture Model (GMM) and Hidden Markov Model (HMM) in

combination with features engineered by signal processing

techniques, e.g. Mel-Frequency Cepstral Coefficients (MFCC),

Discrete Wavelet Transform (DWT) coefficients and Matching

Pursuit (MP) features [12]–[14]. In contrast with described

approaches, deep neural networks (DNN) allow to facilitate

feature engineering keeping classification accuracy and even

outperform the conventional solutions [15]. In particular, being

able to capture spectro-temporal patterns from spectogram-

like input convolutional neural networks (CNN) have high

performance [16]–[19]. Long short-term memory (LSTM)

networks is the other type of neural network architectures

that is exploited for sound classification [20], as well as the

combinations of LSTM and CNN [21], [22].

LSTM networks are recurrent neural networks (RNN) that

use the contextual information over long time intervals to

map the input sequence to the output. LSTM network is

a general solution, efficient at learning temporal dependen-

cies. Its application is beneficial in a variety of tasks, such

as phoneme classification [23], speech recognition [24] and

speech synthesis [25]. LSTM network combined with CNN

was also successfully used for video classification [26].

The applicability of LSTM for sound classification hasn’t

been fully investigated so far. In this paper we examine

a LSTM model to improve understanding of its applicabil-

ity specifically for urban sounds classification using Urban-

Sound8K dataset [27]. Table A1 in Appendix summarizes

some of the existing solutions where models are evaluated

on UrbanSound8K. The baseline accuracy of 70% was ob-

tained with SVM processing mel-bands and MFCC statisti-

cally summarized across the time [27]. The unsupervised fea-

ture learning using Spherical K-Means (SKM) performed on

PCA-whitened log-scaled mel-spectrograms allows to achieve

73.6% accuracy [28]. CNNs of different architectures trained

on log-scaled mel-spectrogram frames provide 73% of accu-

racy and 79% with data augmentation [16], [17]. The LSTM

based CRNN for urban sound classification demonstrates

79.06% accuracy using raw waveforms [22]. The accuracy

of 93% was shown by GoogLeNet trained on combination
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of mel-spectrogram, MFCC and Cross Recurrence Plot (CRP)

images [18].

The paper is structured as follows: Section II describes the

LSTM model studied and the experimental setup. In Section

III we present and discuss our results, and, finally, in Section

IV we conclude about the LSTM applicability for urban sound

classification and provide directions for future work.

II. METHOD

A. Long-short term memory neural network model

LSTM neural network is a special kind of RNN, that doesn’t

suffer from vanishing gradient problem and is able to learn

long-term dependencies. LSTM consists of a set of subnets,

known as memory blocks. Each block includes the memory

cell and three units: input, output and forget gates.

LSTM layer maps the input sequence X = (x1, x2, . . . xT )
to the output sequence Y = (y1, y2, . . . yT ) in according to

the equations:

it = sig(Wxixt +Wyiyt−1 + bi), (1)

ft = sig(Wxfxt +Wyfyt−1 + bf ), (2)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt +Wycyt−1 + bc), (3)

ot = sig(Wxoxt +Wyoyt−1 + bo), (4)

yt = ot ⊙ tanh(ct), (5)

where ct is the state of the memory cell and it, ft, ot are gate

outputs at time t. The network weights W and biases b are

tuned during learning to minimize the loss function. In case of

a multi-layer structure the input of the next layer is the output

of the previous one.

Our model for sound classification is composed of two

LSTM layers followed by dense layer with softmax activation

function. Though LSTM produces a sequence, only the last

value is propagated to the output layer. The first two layers

contain 128 and 64 units, the last layer has 10 units, one per

sound class. To reduce overfitting dropout with a rate of 0.25

is applied to the output of the LSTM layers. For training

categorical cross-entropy loss function is minimized using

Adam optimizer. Because of long training time a full search

of hyperparameters is infeasible, thus, the most promising

combination was found using single fold evaluation.

The input of our model is magnitude mel-spectrogram with

128 bands, that covers a frequency range from 0 Hz to 22050

Hz. Spectrogram is evaluated at sample rate 44100 Hz using

1024 sample window and a hop size of the same width. The

length of input sequence is variable and depends upon audio

clip duration.

Among the examined variants the proposed model shows

the best performance on input data normalized as follows:
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where X is the input sequence; x
(n)
t is the value of n-th feature

at time t; N is a number of features and T is a number of

time steps. Normalization in both dimensions allows to keep

spectro-temporal energy distribution pattern and eliminate the

difference between the audio clips across the dataset in terms

of linear distortion.

B. Experimental setup

To evaluate the performance of proposed model we use

UrbanSound8K dataset [27], that contains 8732 sound clips

of up to 4 s in duration divided into 10 sound classes:air

conditioner (AI), car horn (CA), children playing (CH), dog

bark (DO), drilling (DR), engine idling (EN), gun shot (GU),

jackhammer (JA), siren (SI), street music (ST).

Along with our model we run a baseline CNN [17].

CNN is composed of three convolutional layers followed by

two dense layers. Both networks were trained on magni-

tude mel-spectrogram and CNN model indicated even better

performance than was reported in [17] for log-scaled mel-

spectrogram. We use a simplified validation algorithm for

CNN: in contrast with [17], frame is being extracted from

test sample at random, yet the CNN model holds the reported

level of accuracy.

We randomly divide the dataset into 5 folds of the same

size and carry out cross-validation to evaluate the networks

performance. Models were trained on four folds and tested on

the last one. The training duration is limited by 64 epochs.

The train loss, train accuracy, test loss and test accuracy are

saved for each epoch. The final accuracy is taken as the best

validation accuracy achieved in the course of training.

Both models were implemented1 with Keras, a high-level

neural network API, written in Python. To resample the audio

clips and extract the mel-spectrum we use the Librosa Python

library.

III. RESULTS AND DISCUSSION

Both models show the similar performance, their cross-

validation results are presented in Fig. 1. While CNN pro-

vides 81.67% average accuracy, the proposed LSTM network

0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85

Accuracy

LSTM

CNN

Fig. 1: Classification accuracy. Average accuracy is 80.48%

and 84.25% for CNN and LSTM, respectively.

1Source code in Python available as Jupyter notebooks at
https://github.com/lezhenin/lstm-sound-classification-2019
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TABLE I: Per-class and averaged Precision, Recall and F1 score for CNN and LSTM.

AI CA CH DO DR EN GU JA SI ST Macro-average

LSTM

Precision 0.80 0.82 0.78 0.86 0.87 0.88 0.93 0.89 0.90 0.75 0.85

Recall 0.88 0.85 0.73 0.83 0.87 0.85 0.94 0.91 0.91 0.73 0.85

F1 0.84 0.83 0.75 0.84 0.87 0.86 0.94 0.90 0.90 0.74 0.85

CNN

Precision 0.74 0.94 0.63 0.85 0.86 0.80 0.93 0.87 0.95 0.70 0.83

Recall 0.83 0.79 0.71 0.80 0.81 0.84 0.89 0.84 0.83 0.73 0.81

F1 0.78 0.86 0.67 0.83 0.83 0.82 0.91 0.85 0.88 0.71 0.82

AI CA CH DO DR EN GU JA SI ST

Predicted

AI

CA

CH

DO

DR

EN

GU

JA

SI

ST

A
ct
u
a
l

832 0 37 1 12 65 1 12 2 38

8 341 5 12 14 4 1 9 1 34

31 0 710 62 23 23 7 7 15 122

12 7 109 798 18 17 4 9 6 20

50 2 25 17 810 23 6 39 3 25

76 3 27 5 6 845 0 20 2 16

1 0 5 7 12 4 334 10 0 1

54 0 13 2 28 46 3 836 1 17

27 1 46 13 4 18 3 7 768 42

34 7 157 17 17 13 0 11 14 730

AI CA CH DO DR EN GU JA SI ST

Predicted

AI

CA

CH

DO

DR

EN

GU

JA

SI

ST

A
ct
u
a
l

883 10 21 4 18 18 4 15 3 24

16 364 7 4 8 10 6 5 2 7

30 4 726 51 12 23 4 6 24 120

19 10 50 829 12 14 2 8 20 36

24 12 7 11 871 8 3 38 6 20

49 13 14 19 8 848 6 22 6 15

1 2 1 4 7 1 353 4 0 1

31 6 1 0 37 12 0 908 1 4

6 2 15 8 6 20 0 7 844 21

40 20 93 34 20 15 0 11 36 731

Fig. 2: Confusion matrices for CNN (left) and LSTM (right).

achieves 84.25%. The two models outperform the baseline

methods. But LSTM demonstrates less accuracy distribution

range and, thus, is more robust.

Confusion matrices obtained on test data during cross-

validation is shown in Fig. 2. The same two pairs of classes

demonstrate high confusion: street music vs. children playing

and children playing vs. dog bark. These sounds may have

complex time-frequency structure which impedes their accu-

rate classification.

Precision, recall and F1 calculated for each class using

confusion matrices are presented in Table I. LSTM shows

slightly higher F1 score for each class, except car horn, and

outperforms CNN in average. Also CNN may decrease recall

to increase the overall accuracy, especially for unbalanced

classes (e.g car horn and siren). Thus, LSTM performs better

keeping not only accuracy but recall and precision as well.

We compare training as accuracy and loss across epochs

in Fig. 3. Both networks achieve the ultimate performance on

test data approximately at 20-th epoch. Having almost equal

accuracy the two models differ in their loss values. LSTM

network shows a significantly smaller loss. It means LSTM

is more confident in its predictions and has wider margins

between classes. Thus, it is more robust.

The CNN holds accuracy and loss over train and test data.

In contrast, LSTM model shows the better performance on

train data. It doesn’t fully generalize from train to unseen test

data and memorizes the details that don’t affect the overall

performance. It may indicates that the model is redundant.

Because of its recurrent structure the LSTM is more com-

putationally intensive and prone to overfitting, although has

less trainable parameters than CNN: 181K vs. 241K. So, it is

highly probable that the model may be simplified without a

significant performance degradation. Additional regularization

techniques may also be beneficial.

IV. CONCLUSION

LSTM network that take magnitude mel-spectrograms was

shown to be a reliable classifier in application for urban

sounds. It provides the 84.25% of average accuracy and thus

exceeds the majority of existing solutions. In comparison with

baseline CNN trained on the same data LSTM has a little

performance increase and is more confident.

0 10 20 30 40 50 60

Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

CNN accuracy

LSTM accuracy

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

L
o
ss

CNN loss

LSTM loss

0 10 20 30 40 50 60

Epochs

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc
u
ra
cy

CNN accuracy

LSTM accuracy

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

L
o
ss

CNN loss

LSTM loss

Fig. 3: Accuracy and loss evaluated on train data (left) and test data (right) during training.
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The further study may develop towards the model simplifi-

cation and regularization or involve new data not limited by

urban setting.

APPENDIX

TABLE A1: Classification accuracy on UrbanSound8K dataset

Reference Classifier Features Accuracy

[27] SVM mel-bands and MFCC 70%

[28] SKM PCA whitened mel-bands 73%

[16] CNN log mel-spectrogram 73%

[17]
CNN

log mel-spectrogram
73%

CNN + aug 79%

[22] CRNN raw waveforms 79%

this paper LSTM mel-spectrogram 83%

[18]
CNN mel-spectrogram,

93%
(GoogLeNet) MFCC, CRP images
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