
 
 

 

 

  
Abstract—The Internet-of-Things (IoT) technologies and 

cyber-physical systems has facilitated production monitoring 

and control. However, researches and applications still lack a 

standardized framework and an integrated technological 

solution that can maximize the leverage of real-time monitoring. 

This can be achieved through enabling data transfer and 

exchange between all entities/organizations in supply chains 

and accordingly utilizing the monitored data. This paper 

introduces a framework for production monitoring that utilizes 

and integrates ontological model, which implements and 

integrates Semantic Sensor Network (SSN) ontology with 

production monitoring services. In addition, Complex Event 

Processing is integrated in the proposed model to enable event 

patterns identification and undertake the appropriate (pro-

active) action accordingly. The framework is constructed based 

on ISA-95 and SCOR standards. The utility, applicability and 

efficacy of the proposed framework is validated by its 

application on a real-life large-scale case study in the domain of 

laser cutting machines. 

I. INTRODUCTION 

N manufacturing, it is crucial to ensure that production 
processes are ongoing without any problems. 

Accordingly, the manufacturing machines and used resources 
need regular monitoring to eliminate production losses in 
case of machines’ unexpected breakdown or in case of 
producing final products with unacceptable quality. To avoid 
these problems traditional methods use human inspections 
[1] and planned regular machines maintenance [2]. However, 
Visual inspection is not sufficient; due to the limited 
detection range of observations [3]. In addition, relying on 
regular machine maintenance schedules might increase costs 
if machines are maintained prior to their need. On the 
contrary, it might not be detected that a machine needs 
earlier maintenance scheduling and would lead to machine 
break-down and significant losses. 

The IoT technologies covers the previously mentioned 
gaps, through being able to monitor machines' conditions in 
a reliable and regular way [4]. As reported by Bera [5], one 
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of the big industries that uses IoT devices is the 
‘manufacturing’ industry; as it contributes by 40.2% from the 
different industries share in the IoT devices usage, in which 
the IoT devices are mainly used for robotic machinery 
control and fault diagnostics. In a survey carried out by 
Capgemini Digital Transformation Institute [6], it was found 
out that 57% out of 300+ companies had problems with not 
having IoT standards for data sharing and interoperability to 
follow. In order to overcome this challenge, semantic 
technologies must be used according to [7] ,[8] and [9].  

Enabling real-time production monitoring and allowing 
direct communication with service providers or entities in 
the supply chain, would result in efficient production plans. 
Therefore, the aim of this paper is to introduce an integrated 
framework that is founded on formal ontological domain 
models and integrates IoT technologies (mainly sensors) 
with production monitoring services. Furthermore, the 
proposed model integrates complex event processing [10] to 
utilize data collected and identify abnormal event patterns 
arising during the production process. A real-life large-scale 
case study that is conducted in the context of the H2020 
ICP4Life1 project, is used to validate the usage, applicability 
and efficacy of the proposed framework and its implemented 
solutions.  

The paper is divided as follows: In section (II), the 
background of IoT and ontologies is illustrated. In section 
(III), related work efforts are summarized. In section (IV), 
the used case study is demonstrated, while in section (V) the 
proposed framework is elaborated. Section (VI) includes 
implementation and evaluation details. Finally, section (VII) 
includes the conclusion and future work. 

II. BACKGROUND 

In order to efficiently integrate the IoT technologies, it is 
crucial to take advantage of the semantic technologies 
capabilities, specifically ontologies. In this section, we will 
illustrate shortly the capabilities, components and structure 
of (A) IoT (B) Ontologies. 

                                                           
1 ICP4Life: http://www.icp4life.eu/ 
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A. Internet-of-Things 

Internet-of-things (IoT) connects things/objects through the 
internet, through uniquely identifying each of the objects in 
the network and giving it the capability of communication 
with other objects/things. IoT architecture is composed of 
four main layers [4]: (i) sensor layer:  which is concerned 
with all the physical devices involved to know the state of 
the object/thing, store its data or change its state. It includes 
sensors for collecting information about the object, as well as 
actuators for actuating on a specific object. It includes the 
RFID, that is responsible for storing data about the object. 
Additionally, this layer might include other devices used in 
data exchange and collection such as: smart phones, 
cameras, microphones, etc. (ii) network layer:  which 
represents the means of data exchange throughout the 
network. (iii) service layer: This layer represents the means 
of services exchange (iv) interface layer: this layer represents 
the presentation/ displaying of the collected data to the end-
users through different applications. 

B. Ontologies and Semantic Sensor Network Ontology  

As defined by Liu and Özsu [10], ontologies are used for 
the representation of knowledge in different domains by 
means of introducing the commonly used set of data or 
classes as well as their attributes. Moreover, they enable 
expressing the relationships between the different classes and 
their properties [10]. Ontologies are based on abstract 
representation of the data model, giving flexibility to 
separate the data models and the structures used or generally 
separating it from the implementation. Accordingly, the 
independence given to the data model in case of being used 
by an ontological model facilitates interoperability and 
standardization. 

The Semantic Sensor Network (SSN) [11] is a standard 
ontology developed by W3C for representing sensors, their 
observations and their applied context. Moreover, it 
describes actuators, actuations and their applied context. It 
will play a crucial role in the proposed model as it represents 
a standard representation for the IoT used components in 
sensing and actuating and the main classes and properties 
needed. 

III. LITERATURE REVIEW 

A. Integration of Production Monitoring Systems and IoT 

There are several models proposed by different researches 
and SW companies that utilize IoT in production monitoring. 
Each of the models has a specific perspective and facilitates 
certain system's functionalities as illustrated below and 
summarized in Table I: 

Ding, Jiang and Su [12]proposed social manufacturing 
system that facilitates real-time production and 
transportation monitoring and analysis.  The system was 
based on the use of RFID and was evaluated by a printing 
machinery company. The system framework is divided into 
three layers: (i) Physical layer: which mainly contains RFID 

tags, readers and antennas. (ii) Application layer: which 
connects the manufacturing company with the customers and 
suppliers by the aid of service-oriented architecture 
concepts. In the conceptual model they defined two types of 
databases that should be implemented: Private databases and 
Public database. Each of the supply chain entities should 
have a private database to store their related real-time 
information, while the public database is meant to store the 
common information between the different entities. (iii) 
Social layer:  this layer integrates the system with different 
social media apps, such as Facebook and twitter, as the 
medium of communication. 

Mi and Kara [13] introduced a methodology to formulate a 
real-time manufacturing monitor application based on two 
steps. First, they defined how to design the architecture of 
the system. Second, they defined how to choose the 
components. They tested their methodology on a small-scale 
case study, in which they monitored the environment 
temperature of an office. Their focus of assessment was 
mainly considered with the possibility and ability to use 
Wireless Sensor Networks (WSN) with IoT.  

Ding and Jiang [14] started their paper with describing 
how an IoT-enabled job-shop is configured and how the 
production can be integrated with the IoT. Then they 
proposed a data model for event-driven data collection and 
analysis. Finally, they evaluated their work through a 
simulated case study.  

Lee, Noh, Kim and Kang [15] proposed an architecture 
framework for Cyber-Physical Production Systems which 
aims for predicting quality and control of production 
processes. The framework integrates IoT, production 
processes and AI and they tested it on actual plants. The 
framework is mainly composed of three sub-systems: (i) Big 
Data Analytics system: which is responsible for storing the 
produced data from the IoT tools and the data manipulated 
by the manufacturing system. Also, it uses different machine 
learning tools to produce business insights (ii) Detection and 
Coordination System: this system is used for handling 
different events (iii) KPI Simulation system: Based on the 
collected real-time information and the production plan, a 
simulation model was carried out and produced reference 
KPIs for the expected quality and productivity issues. 

Ahmed et al. [16] proposed a conceptual model that uses 
fact-driven statistical methodology to analyze machines’ 
failure factors and causes and further facilitate critical 
failures prediction. Their conceptual model is divided to 
three layers: (i) Sensory Devices layer (ii) Data Storing and 
Sharing layer (iii) User Interface layer. 

B. Ontological Models for Production/Manufacturing 

From another perspective, there are several trials for 
proposing ontologies for production monitoring, which will 
be illustrated below. 

Cao, Zanni-Merk and Reich [17] proposed an ontology for 
condition-monitoring based on ISO standards, claiming that  
it is more generalized than the current available condition-
monitoring ontologies. They followed the iterative ontology 
development method, mentioned in [18], for developing the  

94 COMMUNICATION PAPERS. LEIPZIG, 2019



 
 

 

 

ontology. Its core classes include: System, State, Process, 
Parameter, Sensor, Fault, Failure and Behavior.  

In an earlier work related to ICP4Life project, Maleki et al. 
[19] presented a framework that enables products’ 
customizing services by the aid of sensor ontology and this 
was  validated by using an industrial use case.  

Cao et al. [20] proposed an intelligent conditional 
monitoring ontology. It includes the main classes of 
production processes and faults handling, but it ignores 
classes related to the IoT technology. 

As a consequence of checking the available related work 
and the proposed models, it was found that none of them 
provide an interoperable standardized solution that can allow 
knowledge sharing through different organizations. 
Moreover, those models do not allow subsequent utilization 
of the gathered and exchanged data through using analytics 
or event patterns identification. 

IV. CASE STUDY 

The case study is carried out for turbine engine 
manufacturer, which is in our context the entity that needs 
production monitoring for laser cutting machines used in 
production. In related work [21] of the H2020 ICP4Life 
project, the objectives were concerned with co-designing and 
specifying the machine components and design according to 

the user's (turbine engine manufacturer) requirements. 
However, in the scope of the paper context, the objective is 
to utilize sensors added to the machine and to ensure data 
unification, to facilitate and enable data exchange with the 
service provider. 

The user uses a web application to customize the product's 
sensors related to the required after-sales services. 
Furthermore, the user monitors the information collected by 
the sensor using dynamic charts and is altered through the 
system in case of exceeding a primary determined threshold 
for the sensor readings, as shown in figure 2. For instance, 
the user can choose the temperature sensor for the 
monitoring and control service by dragging a 2-D image that 
represents the sensor and service in addition to the main 
components used in the laser cutting machine composition as 
shown in figure1. When the machine is working, the 
temperature changes recorded by the sensor will be reflected 
on the screen as shown in figure2. 

The manufacturing blueprint concept introduced by [22] is 
used to ensure having a smart manufacturing network 
through cross-functional integration and communication.  

TABLE I. 

RELATED WORK MODELS AND TECHNOLOGIES USED 

Paper Area of Interest IoT 

Technology 

Means of Integration 

and Communication 

Evaluation Limitations 

[12] Real-time production 
& transportation 
monitoring 

RFID Social Media Printing 
Machinery 
Company 

Each of the involved entities should have private 
database with the defined data interface of the 
model 

Service-Oriented 
Architecture 

[13] methodology to 
formulate a real-time 
manufacturing 
monitor application 

Sensors and 
RFID 
integrated with 
WSN 

Cloud Platform Office 
temperature 
environment 
monitoring 

The case study focused on the limitations and 
abilities of usage of WSN and RFID in the 
manufacturing company and did not proposed a 
standardized interoperable model that would allow 
data exchange with other entities/organizations 
such a suppliers and customers 

[14] IoT-enabled smart 
job-shop production 

RFID antennas 
readers, and 
active tags 

None Job-shop 
production lab 
simulation 

The gathered data is utilized inside the production 
company only 

[15] Cyber-Physical 
production systems 
monitoring and 
control 

General tools 
used not 
mentioned 
specifically 

None Piston engine 
factory 

The gathered data is utilized inside the production 
company only 

[16] Production critical 
failure analysis 

Sensory 
Devices 

Cloud Platform Beverage 
production 
company 

Lack of standardized approach for the exchanged 
data manipulation by the different organizations. 

[17] Condition monitoring 
ontology 

Sensors Ontology  ISO standards The classes used in the ontology has limited scope 
and do not fully integrated the IoT, Production 
processes and collected data utilization 

[19] Smart product service 
ontology 

Sensors Cloud infrastructure 
& Ontology 

Laser cutting 
machine 
manufacturer 

The classes used in the ontology has limited scope 
regarding the data collected utilization and the IoT 
classes 

[20] Intelligent conditional 
monitoring ontology 

- Ontology Rotating 
machinery 

The classes used in the ontology has limited scope 
and do not fully integrated collected data utilization 
and IoT  
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Fig.  1 Product Service Systems Customized after Sensors customization 

addition to the solution proposed in [23] 
 

 

Fig.  2 Temperature Monitoring and Notification 

V. PROPOSED FRAMEWORK 

Reviewing the main modules involved in product-service 
systems (PSS) stated by [23], which are: (i) PSS 
requirements elicitation. (ii) PSS configuration and 
customization (ii) Production planning (iii) Production 
execution. (iv) Production Monitoring, we will capitalize our 
proposed work in this paper on the production monitoring 
requirements.  

The main objective is to propose a reliable framework that 
enables real-time production monitoring and allows direct 
communication with the supply chain entities. Accordingly, 
the proposed framework is composed of four layers to meet 
the required objective as shown in figure 3. 

A. Data Collection Layer 

The first layer in the framework, is the ‘Data Collection 
Layer’ and it includes all the tools used to collect the data 
related to the machines' conditions and to the attributes that 
affect the product quality. It mainly contains all the IoT 
hardware such as sensors, readers, cameras, microphones. 
The needed hardware is determined according to the 
monitoring criteria. They are mainly installed in the machine 
context and their data is shared between the manufacturer 
and service provider. For example, in the case study 
temperature sensors where added to the cutting laser 
machine to measure the environmental conditions. 

B. Data Storage & Management Layer 

The data storage layer ensures two aspects: The 
interoperability and the data sharing. Storing the data in a 
data center that is accessible by all interested parties would 
facilitate communication. However, exchanging data that is 
meaningful and understandable needs a standardized 
approach. Accordingly, to unify data, the data storage & 
management layer are  based on ontology or the blueprints 
concept [22]. 

There are three main levels of ontology that form a 
hierarchy: (i) The Top-level ontology: which It defines the 
general terms, entities and their relationships. The main 
feature of top-ontology is that it can be implemented in 
several domains e.g. Semantic Sensor Network (SSN) 
ontology, as it includes the main classes related to the sensor 
network without defining the context or domain that they 
will be integrated in. (ii) The domain-level ontology: It 
defines entities, attributes and relationships related to a 
specific domain, which in our case will be the cutting-laser 
machines domain. The most common sensors involved in the 
observation of cutting laser machines will be added as sub-
classes of the sensor class. (iii) The application-level 
ontology: It contains the actual instances instantiated from 
the domain ontology in the running application. In the 
context of the case study, the actual sensor used for 
monitoring temperature is added as instance from the 
temperature sensor class. 
Top-Ontology/Blueprints: 

[22] introduced five main blueprints related to the 
manufacturing scope: 

• Partner/Stakeholder Blueprint: It is mainly concerned 
with the knowledge related to the partner's 
company, its details and capabilities. 

• Product Blueprint: It contains knowledge related to 
the product, its materials, needed resources, 
components and properties. 

• Product-Service: It focuses on the after-sale services 
needed for the product such as machine 
maintenance and upgrades. 

• Production-Plan Blueprint: It describes the process 
flow, involved activities and resources for actual 
production. 

• Quality Assurance Blueprint: KPIs metrics and the 
knowledge needed to ensure that the product’s and 
machine’s quality are reflected in this blueprint. 

In the context of our framework objectives, four main 
ontologies are integrated to the SSN ontology to reach the 
objective of the proposed framework. 

• Service Blueprint: The product service blueprint 
proposed by [22] is extended to integrate the 
appropriate classes from the SSN, which facilitates 
providing related services such as production 
monitoring and control. Primarily, the customer 
determines the needed services for their resources 
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Fig.  3 Proposed Framework 

 
 (products) and then accordingly, the sensors are 
determined. Finally, the observation process takes 
place. Some examples of the classes included in the 
blueprint are: (i) Service: It describes the service. 
(ii) Service provider: It represents the entity that 
provide the service. (iii) Customer: It represents the 
customer who requests the customized service. (iv) 
Sensor: It is one of the main classes integrated from 
the SSN as the sensor determination will be 
determined based on the service. 

• Event Blueprint:  It represents the entities used in 
detecting and monitoring events. Event tracking is 
facilitated after the integration of sensors, as they 
enable collecting real-time data and identifying 
abnormal patterns. An example of the classes 
included in the blueprint: (i) Event class:  It 
represents the event. (ii) Listener class: It represents 
the class that listens to the result and act 
accordingly by comparing the readings to the 
thresholds. (iii) Event handler class: It acts upon 
managing how the event and its readings are 
managed with subscribers or listeners 

• Production Blueprint: It describes the production 
processes and their segments. It also describes the 
needed resources and production processes 
monitoring rules. Examples of included classes: (i) 
Process Segment: Which includes the main steps 
carried out to perform specific process. (ii) 
Production rules: Which states the constrains and 
rules related to the production process. (iii) Product 
segment: It is the overlap definition between the 
production rules and the bill of resources (required 
resources) which are defined in the segment 
requirements. (iv) Resources: Which are the 
resources involved in the production process. 

• Analytics Blueprint:  It represents the classes needed 
for analyzing the collected data and results. In the 
current scope, it only includes the possible actions 
that could be taken after a specific event pattern 
detection. There are three main types of action: (i) 
Descriptive action: Which is just descriptive for the 
situation in the form of alert or message notification 
with the result. (ii) Predictive action: Which applies 
predictive model on the collected data to reach 
specific insight. (iii) Actuator action: Which 
represents the action that should be carried out by 
an actuator. 

• Production Monitoring Blueprint: It represents the 
means of integration and relationships 
representation between the main classes used from 
each of the previous blueprints. The blueprint is 
shown in figure 4 and is demonstrated shortly in the 
upcoming paragraph. 
Using the product production rules, the monitoring 

rules are determined, which describes the needed 
observable property and defines the needed 
listeners based on the threshold. The listeners listen 
to the event results of the observations made by the 
sensors. If the listener detects a specified abnormal 
pattern of events, an appropriate action is triggered. 
The action can either be informative, in which it 
describes what has happened in terms of sending 
warning or notification, or the action can be 
actuatable action, which is an action that triggers a 
specific actuator to act on specific actuatable 
property, or the action can be predictive action. 
An example of the instantiated individuals from 

the blueprint in the case study is as follows: 
The monitoring rule specify that the temperature 

cannot exceed 40 degree Celsius and there should 
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Fig.  4 Production Monitoring Blueprint

not be increase in temperature in 3 consequent 
readings by more than 0.1%. Accordingly, it is 
determined that machine temperature is set as 
observable property and temperature sensor is 
needed. The observations' results will be listened to 
by the listener to detect any matching pattern with 
the threshold and restrictions. In case of pattern 
detection, an informative action is taken through 
sending warning on the application screen. 

Domain Specific Ontology:  
The classes are customized depending on the domain 

context. For example: In case of the context of cutting laser 
machine, the cutting laser machine class will extend class 
equipment.  
Application Representation Ontology:  

Introducing a domain-ontology for a specific context like 
the laser cutting machines allows interoperability and 
knowledge sharing between different entities. However, if 
we need to map the process that sends data to the front-end 
dynamically, each organization should develop its own 
customization terms, to link the back-end data to the front-
end display.  To facilitate this process, we propose the 
'Application Representation Ontology'. The Application 
Representation Ontology is responsible for defining how the 
instances created shall be displayed. For example, to display 
the temperature sensor, it can include the displaying picture, 
location and dimensions of picture on the screen, the color of 
the surrounding frame and so on. This would allow the 
instances and their display properties to be read directly from 
the blueprints and displayed to the end-user.  
Data Exchange between different entities using blueprints: 

After the data is collected (at the manufacturer side) with 
the IoT tools the data is mapped to the domain ontology and 
the instances are created based on the data, the relative 
instances are sent to (the Service Provider). At the Service 
Provider the instances are compared against the domain 
Specific ontology and save its instances accordingly. 

A. Complex Event Processing 

As illustrated by [10], complex event processing is about 
detecting event patterns in real-time through monitoring the 
input data and listening to it. Then, in case of matching a 
pattern sequence an appropriate action is taken. It is used in 
the model as a main component for detecting event patters 
and acting correspondingly. 

B. Analytical Layer 

The analytical layer utilizes the collected data through 
demonstrating and justifying what has happenedpredicting 
what will happen and can also recommend the possible 
proactive action. This is reached by implementing 
descriptive, diagnostic, predictive and prescriptive analytics. 

C. Presentation Layer 

The presentation layer is the gateway for presenting the 
collected data and gained knowledge to the end users 
(stakeholders). It may include dashboards, managerial 
reports and user-friendly GUIs for data representation and 
production system control. 

VI. IMPLEMENTATION AND EVALUATION 

To ensure the reliability of our model: (i) Related 
standards were considered, which are ISA-95 and SCOR (ii) 
A standard ontology to represent the IOT classes integration 
was used, which is the SSN proposed by W3C. (iii) 
Limitations detected in other ontologies proposed by 
researches were overcame. (iv) The guidelines of how to 
create ontologies and the carried-out steps stated by [18] 
were followed. (v) The case study illustrated in section IV 
was carried in manufacturing cutting laser machines domain.  

In the case study, the following procedures were carried 
out during implementation: 
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A. Creating Instances 

Instances of the ontology/blueprint were created and 
stored using 'Protégé' ontology editor [24]. Example of 
created instances are shown in Table II and Figure 5: 

B. Ability of Reading and Writing Instances (Manipulating 

Blueprints) 

As the target of the blueprints is to have a common 
knowledge model that enables data unification and exchange, 
creating instances from blueprints as well as manipulating 
them is essential. Reading and writing from the blueprints is 
carried out by the aid of Jena, a java library, which enables 
reading/writing from/in ontology files. 

However, in order to make the process self-dependent of 
accessing blueprints until displaying content of the system. 
We recommend having a fourth ontological layer, above the 
third layer of instances to contain the main ontological 
classes needed in the display of the instances. For example, 
the GUI data properties that are specified for the temperature 
sensor includes the filling shape, the location at the screen, 
the color of the displayed picture, etc. 

C. Used Scenario and Instances for Simulation 

Using the Monitoring rules, it is determined that the 
temperature event of the surrounding environment of the 
machine needs to be monitored. Accordingly, the observable 
property is determined to be the temperature. Moreover, the 
temperature sensor is used for the observation. The listener 
listens to the results and according to the production rules, it 
compares the results pattern to the identified threshold. 
When the listener identifies abnormal patterns, an 
appropriate action is taken. In our system we have simulated 
the 'informative_descriptive_action' and a warning 
notification is sent. The prototype was implemented using a 
web app developed on Eclipse Jee Mars, version (4.5.2). 
Tomcat Server V8.0 was used. To handle back-end and 
front-end synchronization, AJAX was used aside from Jsp, 
java, HTML and JavaScript.  

 
Fig. 5 classes in Protégé  

 

D. Discussion  

The proposed model and system were able to provide an 
ontological model for production monitoring and mainly 
cutting laser machines domain. The data was saved and 
retrieved with reference to the model. The system enabled 
utilizing the data collected through complex event 
processing, which identifies abnormal patterns. Accordingly, 
the system was able to cover the gaps found in the other 
related works as seen in Table III.  

VII. CONCLUSION AND FUTURE WORK 

 
This paper aims to provide efficient framework for 

production monitoring based on domain ontologies and IoT 
utilization. Accordingly, the proposed contribution of the 
paper is threefold: (i) It defines the main layers needed for an 
integrated framework that enables real-time monitoring 
through using IoT technologies. In addition, it ensures data 
unification through an ontological model for data exchange. 
Moreover, it utilizes the collected data through integrating 

TABLE III. 

COMPARISON BETWEEN THE PREVIOUS MODELS AND THE PROPOSED 

MODEL 

Paper Monitoring 

using IoT 

technologies 

Means of 

Communi-

cation & 

Data 

Exchange 

Interop-

erability 

Utilizing 

collected 

data / 

Analysis 

[12] Yes Yes No Yes 

[13] Yes Yes No No 

[14] Yes No No Yes 

[15] Yes No  No  Yes 

[16] Yes Yes No Yes 

[17] Yes Yes Yes No 

[19] Yes Yes Yes No 

[10] No  Yes Yes  Yes 

Proposed 
Model 

Yes Yes Yes Yes 

TABLE II. 

CREATED INSTANCES EXAMPLE 

Meta-Ontology 

Level Class 

Domain Level Class Instantiated 

Individual 

Product Cutting Laser 
Machine 

Cutting Laser 
Machine Type A 

Product Component Lens Lens X 

Event Temperature Event Temperature Event 
A 

Product Segment Cutting Laser 
Machine Product 
Segment 

Co2 Cutting Laser 
Machine Product 
Segment 

Sensor Temperature Sensor Temperature 
Sensor A 
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complex event-processing for abnormal events detection and 
supports the monitoring process via a presentable GUI. (ii) It 
proposes an ontological model for production monitoring 
based on the blueprints’ concepts introduced in [22] and the 
ISA-95 standards [25]. (iii) It introduces 'Application 
Representation Ontology' as a fourth level of ontologies 
mapping to define the means of displaying ontology's 
individuals in applications and systems. A case study was 
applied in the cutting laser machines domain for framework 
applicability evaluation.  

Current and future work efforts are in diverse directions 
related to Manufacturing and Blueprints Concepts. However, 
a main focus for the consequent work related to the proposed 
work in this paper, is the utilization of real-time data using 
analytics by the aid of ontology reasoning. Business 
Analytics will not only facilitate predicting crucial 
production concepts, but also will enable reaching a 
proactive approach that will make the production leaner. In 
another direction, the blueprints are to-be enhanced and 
extended in an iterative manner, to make use of industry 4.0 
capabilities and technologies. 
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