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Abstract—A rooted labeled caterpillar (caterpillars, for short) is
a rooted labeled tree transformed to a rooted path after removing
all the leaves in it. In this paper, we design the algorithm to
compute the alignment distance between caterpillars in O(h2λ3)
time under the general cost function and in O(h2λ) time under
the unit cost function, where h is the maximum height and λ is
the maximum number of leaves in caterpillars.

I. INTRODUCTION

C
OMPARING tree-structured data such as HTML and

XML data for web mining or RNA and glycan data for

bioinformatics is one of the important tasks for data mining.

The most famous distance measure [2] between rooted labeled

unordered trees (trees, for short) is the edit distance [10].

The edit distance is formulated as the minimum cost of edit

operations, consisting of a substitution, a deletion and an

insertion, applied to transform a tree to another tree. It is

known that the edit distance is always a metric and coincides

with the minimum cost of Tai mappings [10].

Unfortunately, the problem of computing the edit distance

between trees is MAX SNP-hard [15]. This statement also

holds even if trees are binary or the maximum height of trees

is at most 3 [1], [4].

A caterpillar (cf. [3]) is a tree transformed to a rooted path

after removing all the leaves in it. Whereas the caterpillars are

very restricted and simple, there are some cases containing

many caterpillars in real dataset, see Table I in Appendix.

Recently, Muraka et al. [8] have proposed the algorithm to

compute the edit distance between caterpillars in O(h2λ3)
time under the general cost function and in O(h2λ) time under

the unit cost function, where h is the maximum height and λ is

the maximum number of leaves in caterpillars1. They have also

introduced the efficient comparable distances to approximate

the edit distance between caterpillars [9].

An alignment distance is an alternative distance measure

between trees, introduced by Jiang et al. [5]. The alignment

distance between two trees is formulated as the minimum cost

of possible alignments (as trees) obtained by first inserting

nodes labeled with spaces into two trees so that the resulting

trees have the same structure and then overlaying them. In

∗The author would like to express thanks for support by Grant-in-Aid for
Scientific Research 17H00762, 16H02870 and 16H01743 from the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

1This time complexity is different from the result in [8], because it contains
some errors. See Appendix.

operational, the alignment distance is regarded as an edit

distance such that every insertion precedes to deletions. Hence,

the alignment distance between trees is not always equal to the

edit distance and regarded as a variation of the edit distance.

Furthermore, Kuboyama [6] has shown that the alignment

distance coincides with the minimum cost of less-constrained

mappings [7], which is the restriction of the Tai mapping.

As same as the edit distance, the problem of computing the

alignment distance between trees is also MAX SNP-hard [5].

On the other hand, it is tractable if the degrees are bounded by

some constant [5]. Since a caterpillar is not a bounded-degree

tree, it is still open whether or not the problem of computing

the alignment distance is tractable,

In this paper, first we point out that there exists a pair of

caterpillars whose minimum cost less-constrained mapping is

not an isolated-subtree mapping and whose minimum cost

Tai mapping is not a less-constrained mapping. Then, we

can apply the algorithm of computing neither the isolated-

subtree distance or its variations [12], [13], [14], [16] nor the

edit distance [8] to compute the alignment distance between

caterpillars.

Next, we design the algorithm to compute the alignment

distance between caterpillars in O(h2λ3) time under the

general cost function and in O(h2λ) time under the unit cost

function. Here, it is necessary to adopt the edit distance for

multisets (cf., [9]) to compute the alignment distance between

sets of leaves. Furthermore, as same as the edit distance [8],

we point out the structural restriction of caterpillars provides

the limitation of tractable computing of the alignment distance

for unordered trees.

II. PRELIMINARIES

In this section, we prepare the notions necessary to discuss

the later sections.

A tree T is a connected graph (V,E) without cycles, where

V is the set of vertices and E is the set of edges. We denote V

and E by V (T ) and E(T ). The size of T is |V | and denoted

by |T |. We sometime denote v ∈ V (T ) by v ∈ T . We denote

an empty tree (∅, ∅) by ∅. A rooted tree is a tree with one

node r chosen as its root. We denote the root of a rooted tree

T by r(T ).

Let T be a rooted tree such that r = r(T ) and u, v, w ∈
T . We denote the unique path from r to v, that is, the tree
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(V ′, E′) such that V ′ = {v1, . . . , vk}, v1 = r, vk = v and

(vi, vi+1) ∈ E′ for every i (1 ≤ i ≤ k − 1), by UPr(v).
The parent of v(6= r), which we denote by par (v), is its

adjacent node on UPr(v) and the ancestors of v(6= r) are the

nodes on UPr(v)− {v}. We say that u is a child of v if v is

the parent of u and u is a descendant of v if v is an ancestor

of u. We denote the set of children of v by ch(v). We call

a node with no children a leaf and denote the set of all the

leaves in T by lv (T ).
The degree of v, denoted by d(v), is the number of children

of v, and the degree of T , denoted by d(T ), is max{d(v) |
v ∈ T }. The height of v, denoted by h(v), is max{|UPv(w)| |
w ∈ lv (T [v])}, and the height of T , denoted by h(T ), is

max{h(v) | v ∈ T }.
We use the ancestor orders < and ≤, that is, u < v if v is

an ancestor of u and u ≤ v if u < v or u = v. We say that w

is the least common ancestor of u and v, denoted by u ⊔ v,

if u ≤ w, v ≤ w and there exists no node w′ ∈ T such that

w′ ≤ w, u ≤ w′ and v ≤ w′. Let T be a rooted tree (V,E)
and v a node in T . A complete subtree of T at v, denoted

by T [v], is a rooted tree T ′ = (V ′, E′) such that r(T ′) = v,

V ′ = {u ∈ V | u ≤ v} and E′ = {(u,w) ∈ E | u,w ∈ V ′}.
We say that u is to the left of v in T if pre(u) ≤ pre(v)

for the preorder number pre in T and post(u) ≤ post(v)
for the postorder number post in T . We say that a rooted

tree is ordered if a left-to-right order among siblings is given;

unordered otherwise. We say that a rooted tree is labeled if

each node is assigned a symbol from a fixed finite alphabet Σ.

For a node v, we denote the label of v by l(v), and sometimes

identify v with l(v). In this paper, we call a rooted labeled

unordered tree a tree simply. Furthermore, we call a set of

trees a forest.

As the restricted form of trees, we introduce a rooted labeled

caterpillar (caterpillar, for short) as follows, which this paper

mainly deals with.

Definition 1 (Caterpillar (cf., [3])): We say that a tree is a

caterpillar if it is transformed to a rooted path after removing

all the leaves in it. For a caterpillar C, we call the remained

rooted path a backbone of C and denote it by bb(C).
It is obvious that r(C) = r(bb(C)) and V (C) = bb(C) ∪

lv(C) for a caterpillar C, that is, every node in a caterpillar

is either a leaf or an element of the backbone.

Next, we introduce an edit distance and a Tai mapping

between trees.

Definition 2 (Edit operations for trees [10]): The edit op-

erations of a tree T are defined as follows, see Figure 1.

1) Substitution: Change the label of the node v in T .

2) Deletion: Delete a node v in T with parent v′, making

the children of v become the children of v′. The children

are inserted in the place of v as a subset of the children

of v′. In particular, if v is the root in T , then the

result applying the deletion is a forest consisting of the

children of the root.

3) Insertion: The complement of deletion. Insert a node v

as a child of v′ in T making v the parent of a subset of

the children of v′.

Substitution (v 7→ w)

v 7→ w

Deletion (v 7→ ε)

v′

v

7→ v′

Insertion (ε 7→ v)

v′ 7→
v′

v

Fig. 1. Edit operations for trees.

Let ε 6∈ Σ denote a special blank symbol and define Σε =
Σ∪{ε}. Then, we represent each edit operation by (l1 7→ l2),
where (l1, l2) ∈ (Σε × Σε − {(ε, ε)}). The operation is a

substitution if l1 6= ε and l2 6= ε, a deletion if l2 = ε, and

an insertion if l1 = ε. For nodes v and w, we also denote

(l(v) 7→ l(w)) by (v 7→ w).
We define a cost function γ : (Σε×Σε \{(ε, ε)}) 7→ R

+ on

pairs of labels. For (v, w) ∈ V (T1) × V (T2), we also denote

γ(l(v), l(w)) by γ(v, w) simply.

We often constrain a cost function γ to be a metric, that is,

γ(l1, l2) ≥ 0, γ(l1, l2) = 0 iff l1 = l2, γ(l1, l2) = γ(l2, l1)
and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3). In particular, we call the

cost function that γ(l1, l2) = 1 if l1 6= l2 a unit cost function.

Definition 3 (Edit distance for trees [10]): For a cost func-

tion γ, the cost of an edit operation e = l1 7→ l2 is given by

γ(e) = γ(l1, l2). The cost of a sequence E = e1, . . . , ek of

edit operations is given by γ(E) =
∑k

i=1 γ(ei). Then, an edit

distance τTAI(T1, T2) between trees T1 and T2 is defined as

follows:

τTAI(T1, T2) = min



γ(E)

∣∣∣∣∣∣

E is a sequence

of edit operations

transforming T1 to T2



 .

Definition 4 (Tai mapping [10]): Let T1 and T2 be trees.

We say that a triple (M,T1, T2) is a Tai mapping (a mapping,

for short) from T1 to T2 if M ⊆ V (T1)×V (T2) and every pair

(v1, w1) and (v2, w2) in M satisfies the following conditions.

1) v1 = v2 iff w1 = w2 (one-to-one condition).

2) v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).

We will use M instead of (M,T1, T2) when there is no

confusion denote it by M ∈MTAI(T1, T2).

Let M be a mapping from T1 to T2. Let IM and JM be

the sets of nodes in T1 and T2 but not in M , that is, IM =
{v ∈ T1 | (v, w) 6∈ M} and JM = {w ∈ T2 | (v, w) 6∈ M}.
Then, the cost γ(M) of M is given as follows.

γ(M) =
∑

(v,w)∈M

γ(v, w) +
∑

v∈IM

γ(v, ε) +
∑

w∈JM

γ(ε, w).
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Trees T1 and T2 are isomorphic, denoted by T1 ≡ T2, if

there exists a mapping M ∈ MTAI(T1, T2) such that IM =
JM = ∅ and γ(M) = 0.

Theorem 1 (Tai [10]): τTAI(T1, T2) = min{γ(M) | M ∈
MTAI(T1, T2)}.

III. ALIGNMENT DISTANCE

In this section, we introduce the alignment distance and

characterize it by using the variation of Tai mappings.

Definition 5 (Alignment [5]): Let T1 and T2 be trees. Then,

an alignment between T1 and T2 is a tree T obtained by the

following steps.

1) Insert new nodes labeled by ε into T1 and T2 so that the

resulting trees T ′
1 and T ′

2 are isomorphic with ignoring

labels and l(φ(v)) 6= ε whenever l(v) = ε for an

isomorphism φ from T ′
1 to T ′

2 and every node v ∈ T ′
1.

2) Set T to a tree T ′
1 obtained by relabeling a label l(v)

for every node v ∈ T ′
1 with (l(v), l(φ(v))). (Note that

(ε, ε) 6∈ T .)

Let A(T1, T2) denote the set of all possible alignments be-

tween trees T1 and T2.

For a cost function γ, the cost of an alignment T , denoted

by γ(T ), is the sum of the costs of all labels in T .

Definition 6 (Alignment distance [5]): Let T1 and T2 be

trees and γ a cost function. Then, an alignment distance

τALN(T1, T2) between T1 and T2 is defined as follows.

τALN(T1, T2) = min{γ(T ) | T ∈ A(T1, T2)}.
Also we call an alignment between T1 and T2 with the mini-

mum cost an optimal alignment and denote it by A∗(T1, T2).

The notion of the alignment can be easily extended to

forests. The only change is that it is now possible to insert a

node (as the root) of trees in the forest. We denote the set of all

possible alignments between forests F1 and F2 by A(F1, F2)
and an optimal alignment by A∗(F1, F2).

Example 1: For two caterpillars C1 and C2 illustrated in

Figure 2, A∗(C1, C2) is the optimal alignment between C1

and C2. Also, for two caterpillars C3 and C4 illustrated in

Figure 2,A∗(C3, C4) is the optimal alignment between C3 and

C4. Under the unit cost function, it holds that τALN(C1, C2) =
3 and τALN(C3, C4) = 3.

a

b b b

a

b

a

b b

a a

a; a

b; b

"; a

b; b b; b

"; a "; a

C1 C2 A∗(C1, C2)

b

a a

b




b


 


b

a

b; b

a; 
 a; 


b; b


; a

C3 C4 A∗(C3, C4)

Fig. 2. Two caterpillars C1, C2, C3 and C4 and the optimal alignments
A∗(C1, C2) and A∗(C1, C2). in Example 1.

Next, we introduce the variations of Tai mappings, including

the mapping characterizing the alignment distance.

Definition 7 (Variations of Tai mapping): Let T1 and T2 be

trees and M ∈ MTAI(T1, T2).

1) We say that M is a less-constrained mapping [7], de-

noted by M ∈MLESS(T1, T2), if M satisfies the follow-

ing condition for every (v1, w1), (v2, w2), (v3, w3) ∈M :

(v1 ⊔ v2 < v1 ⊔ v3) =⇒ (w2 ⊔ w3 = w1 ⊔ w3).

Also we define a less-constrained distance τLESS(T1, T2)
as the minimum cost of all the less-constrained map-

pings, that is:

τLESS(T1, T2) = min{γ(M) |M ∈MLESS(T1, T2)}.

2) We say that M is an isolated-subtree mapping [11]

(or a constrained mapping [14]), denoted by M ∈
MILST(T1, T2), if M satisfies the following condition

for every (v1, w1), (v2, w2), (v3, w3) ∈M :

(v3 < v1 ⊔ v2) ⇐⇒ (w3 < w1 ⊔w2).

Also we define an isolated-subtree distance τILST(T1, T2)
as the minimum cost of all the isolated-subtree map-

pings, that is:

τILST(T1, T2) = min{γ(M) |M ∈MILST(T1, T2)}.

Theorem 2: Let T1 and T2 be trees, where n =
max{|T1|, |T2|} and d = min{d(T1), d(T2)}.

1) It holds that τALN(T1, T2) = τLESS(T1, T2) [6]. Also it

holds that τTAI(T1, T2) ≤ τALN(T1, T2) ≤ τILST(T1, T2)
but the equations always do not hold (cf., [5], [6], [14]).

2) The problem of computing τTAI(T1, T2) is MAX SNP-

hard [15]. This statement holds even if both T1 and T2

are binary, the maximum height of T1 and T2 is at most

3 or the cost function is the unit cost function [1], [4].

3) The problem of computing τALN(T1, T2) is MAX SNP-

hard. On the other hand, if the degrees of T1 and T2

are bounded by some constants, then we can compute

τALN(T1, T2) in polynomial time with respect to n [5].

4) We can compute τILST(T1, T2) in O(n2d) time (cf., [12]).

Example 2: Consider two caterpillars C1 and C2 in Fig-

ure 2 in Example 1 and assume the unit cost function.

Then, M1 and M2 illustrated in Figure 3 are the mini-

mum cost mappings inMLESS(C1, C1)(=MTAI(C1, C2)) and

MILST(C1, C2). Here, it holds that M1 6∈ MILST(C1, C2).
Then, it holds that τTAI(C1, C2) = τALN(C1, C2) = 3 < 5 =
τILST(C1, C2).

a

b b b

a

b

a

b b

a a

a

b b b

a

b

a

b b

a a

M1 M2

Fig. 3. The minimum cost mappings M1 ∈ MLESS(C1, C2) and M2 ∈

MILST (C1, C2) in Example 2.

Example 3: Consider two caterpillars C3 and C4 in Fig-

ure 2 in Example 1 and assume the unit cost function.
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Then, M3 and M4 illustrated in Figure 4 are the minimum

cost mappings in MTAI(C3, C4) and MLESS(C3, C4). Here,

it holds that M3 6∈ MLESS(C3, C4). Hence, it holds that

τTAI(C3, C4) = 2 < 3 = τALN(C3, C4).

b

a a

b




b


 


b

a

b

a a

b




b


 


b

a

M3 M4

Fig. 4. The minimum cost mappings M3 ∈ MTAI(C3, C4) and M4 ∈

MLESS(C3, C4) in Example 3.

Example 2 shows that there exists a pair of caterpillars

whose minimum cost less-constrained mapping is not an

isolated-subtree mapping. Then, we cannot use the algorithm

to compute the isolated-subtree distance between caterpil-

lars [12], [13], [14], [16] to compute their alignment distance.

Also Example 3 shows that there exists a pair of caterpillars

whose minimum cost Tai mapping is not a less-constrained

mapping. Then, we cannot use the algorithm to compute

the edit distance between caterpillars [8] to compute their

alignment distance. Furthermore, it still remains open whether

or not Theorem 2.3 holds for caterpillars.

Hence, in the next section, we discuss the problem of

computing the alignment distance between caterpillars.

IV. THE ALGORITHM OF COMPUTING ALIGNMENT

DISTANCE BETWEEN CATERPILLARS

In this section, we design the algorithm to compute the

alignment distance τALN between caterpillars.

A. Edit distance for multisets

In order to compute the edit distance between the sets of

leaves, it is necessary to introduce an edit distance for multisets

on labels occurring in the set of leaves. Then, we prepare the

notions of the edit distance for multisets according to [9].

A multiset on an alphabet Σ is a mapping S : Σ→ N. For

a multiset S on Σ, we say that a ∈ Σ is an element of S if

S(a) > 0 and denote it by a ∈ S (like as a standard set). The

cardinality of S, denoted by |S|, is defined as
∑

a∈Σ

S(a).

Definition 8 (Edit operations for multisets): Let a, b ∈ Σ
such that S(a) > 0 and a 6= b. Then, a substitution (a 7→ b)

operates S(a) to S(a) − 1 and S(b) to S(b) + 1, a deletion

(a 7→ ε) operates S(a) to S(a) − 1 and an insertion (ε 7→ b)

operates S(b) to S(b) + 1.

Also we assume a cost function γ as in Section II.

Definition 9 (Edit distance for multisets): Let S1 and S2

be multisets on Σ and γ a cost function. Then, an edit distance

µ(S1, S2) between S1 and S2 is defined as follows.

µ(S1, S2) = min



γ(E)

∣∣∣∣∣∣

E is a sequence

of edit operations

transforming S1 to S2



 .

For multisets S1 and S2 on Σ, we define the difference

S1 \ S2 between S1 and S2 as a multiset satisfying that (S1 \
S2)(a) = max{S1(a)− S2(a), 0} for every a ∈ Σ.

Lemma 1 ([9]): Let Π1 be the set of all the injections from

S1 to S2 when |S1| ≤ |S2| and Π2 the set of all the injections

from S2 to S1 when |S1| > |S2|. Then, we can compute

µ(S1, S2) as follows:

µ(S1, S2) =





min
π∈Π1





∑

a∈S1

γ(a, π(a)) +
∑

b∈S2\π(S1)

γ(ε, b)



,

if |S1| ≤ |S2|,

min
π∈Π2





∑

b∈S2

γ(π(b), b) +
∑

a∈S1\π(S2)

γ(a, ε)



,

otherwise.
Furthermore, if we adopt the unit cost function, then we can

compute µ(S1, S2) as follows:

µ(S1, S2) = max{|S1 \ S2|, |S2 \ S1|}.
In this case, µ(S1, S2) coincides with a famous bag dis-

tance (cf., [2]) between multisets S1 and S2.

Lemma 2 ([9]): Let m = max{|S1|, |S2|}. Then, we can

compute µ(S1, S2) in O(m3) time under the general cost

function. If we adopt the unit cost function, then we can

compute µ(S1, S2) in O(m) time.

B. Recurrences

Let L be the set of leaves and C a non-leaf caterpillar. Then,

every forest obtained by deleting the root from a caterpillar is

one of the forms of {C}, L or L ∪ {C}. As same as [8], we

denote these forests by 〈∅ |C〉, 〈L |∅〉 and 〈L |C〉, respectively.

In particular, we denote an empty forest 〈∅ |∅〉 by Φ simply.

Let C[v] be a caterpillar with the root v, where L(v) denotes

a (possibly empty) set of leaves as the children of v and B(v)
denotes at most one caterpillar of the child v. Then, C[v] is

one of the forms in Figure 5. Furthermore, by deleting v from

C[v], we obtain one of the forests of 〈∅ |B(v)〉, 〈L(v) |∅〉 and

〈L(v) |B(v)〉, respectively.

v

C[v℄

B(v)

v

C[v℄

L(v)

v

C[v℄

L(v)

B(v)

Fig. 5. The representation of a caterpillar C[v].

Figure 6 illustrates the recurrences of computing the align-

ment distance τALN(C1[v], C2[w]) between two caterpillars

C1[v] and C2[w]. Here, we regard a set L of leaves as a multi-

set of labels on Σ occurring in L, which we denote by L̃. Also

δALN(〈L1 | B1〉, 〈L2 | B2〉) describes the alignment distance

between forests 〈L1 |B1〉 and 〈L2 |B2〉. Furthermore, assume

that the forest obtained by deleting v (resp., w) from C1[v]
(resp., C2[w]) is 〈L1(v) |B1(v)〉 (resp., 〈L2(w) |B2(w)〉).

Theorem 3: The recurrences in Figure 6 are correct to

compute the alignment distance τALN(C1[v], C2[w]) between

C1[v] and C2[w].
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τALN(∅, ∅) = 0. (T0)
τALN(C1[v], ∅) = γ(v, ε) + δALN(〈L1(v) |B1(v)〉,Φ). (T1)
τALN(∅, C2[w]) = γ(ε, w) + δALN(Φ, 〈L2(w) |B2(w)〉). (T2)

δALN(〈L1 |C1〉,Φ) =
∑

v∈L1

γ(v, ε) +
∑

v∈C1

γ(v, ε). (F1)

δALN(Φ, 〈L2 |C2〉) =
∑

w∈L2

γ(ε, w) +
∑

w∈C2

γ(ε, w). (F2)

δALN(〈L1 |∅〉, 〈L2 |∅〉) = µ(L̃1, L̃2). (F3)
(A) τALN(C1[v], C2[w])

= min





γ(v, w)
+ δALN(〈L1(v) |B1(v)〉, 〈L2(w) |B2(w)〉), (T3)

γ(v, ε) + τALN(B1(v), C2[w])
+ δALN(〈L1(v) |∅〉,Φ), (T4)

γ(ε, w) + τALN(C1[v], B2(w))
+ δALN(Φ, 〈L2(w) |∅〉) (T5)





.

(B) δALN(〈L1 |∅〉, 〈L2 |C2[w]〉)

= min





γ(ε, w)
+δALN(〈L1 |∅〉, 〈L2 ∪ L2(w) |B2(w)〉), (F4)

min
v∈L1

{γ(v, w) + δALN(〈L1 \ {v}|∅〉, 〈L2 |∅〉)}

+δALN(Φ, 〈L2(w) |B2(w)〉) (F5)





.

(C) δALN(〈L1 |C1[v]〉, 〈L2 |∅〉)

= min





γ(v, ε)
+δALN(〈L1 ∪ L1(v) |B1(v)〉, 〈L2 |∅〉), (F6)

min
w∈L2

{γ(v, w) + δALN(〈L1 |∅〉, 〈L2 \ {w}|∅〉)}

+δALN(〈L1(v) |B1(v)〉,Φ) (F7)





.

(D) δALN(〈L1 |C1[v]〉, 〈L2 |C2[w]〉)
= δALN(〈L1 |∅〉, 〈L2 |∅〉) + τALN(C1[v], C2[w]). (F8)

Fig. 6. The recurrences of computing the alignment distance
τALN (C1[v], C2[w]) between C1[v] and C2[w].

Proof: The recurrences of (T0), (T1), (T2), (F1), (F2)
and (F3) are obvious.

First, consider the recurrences for τALN . Let T be the

optimal alignment (tree) A∗(C1[v], C2[w]). Then, for the label

in T , one of the following four cases holds.

1) (v, w) is a label in T .

2) (v, ε) and (v′, w) are labels in T .

3) (ε, w) and (v, w′) are labels in T .

4) (v, ε) and (ε, w) are labels in T .

It is not necessary to consider the case 4) because the

resulting alignment to delete the two nodes and then add (v, w)
as the new root, which is the case 1), has a smaller cost.

For the case 1), the root of T is (v, w). By the forms

of C1[v] and C2[w], it holds that τALN(C1[v], C2[w]) =
γ(v, w) + δALN(〈L1(v) | B1(v)〉, 〈L2(w) | B2(w)〉), which is

the recurrence (T3).

For the case 2), the root of T is (v, ε). By the form of C1[v],
since |B1(v)| ≥ 2, B1(v), not L1(v), contains the node v′ cor-

responding to w in C2[w]. Then, T contains a label (v′′, ε) for

every v′′ ∈ L1(v). Hence, it holds that τALN(C1[v], C2[w]) =
γ(v, ε) + τALN(B1(v), C2[w]) + δALN(〈L1(v) | ∅〉,Φ), which

is the recurrence (T4). The case 3) is similar to the case 2),

which is the recurrence (T5).

Next, consider the recurrences for δALN .

Let F be the optimal alignment (forest) A∗(〈L1 | ∅〉, 〈L2 |
C2[w]〉). Then, for the label in F , one of the following two

cases holds.

1) (ε, w) is a label in F .

2) (v, w) for some v ∈ L1 is a label in F .

For the case 1), by deleting w from C2[w], 〈L2 | C2[w]〉
is transformed to 〈L2 ∪ L2(w) |B2(w)〉. Hence, it holds that

δALN(〈L1 | ∅〉, 〈L2 |C2[w]〉) = γ(ε, w) + δALN(〈L1 | ∅〉, 〈L2 ∪
L2(w) |B2(w)〉), which is the recurrence (F4).

For the case 2), once (v, w) for some v ∈ L1 becomes a

label in F , every label in F for every w′ ∈ 〈L2(w) |B2(w)〉
is always of the form (ε, w′). Also the labels concerned with

leaves except v ∈ L1 in F can be computed as δALN(〈L1\{v}|
∅〉, 〈L2 | ∅〉). Hence, by selecting v ∈ L1 with the minimum

cost, we obtain the recurrence (F5).

By using the same discussion, for the case that F is the

optimal alignment (forest)A∗(〈L1 |C1[v]〉, 〈L2 |∅〉), we obtain

the recurrences (F6) and (F7).

Let F be the optimal alignment (forest) A∗(〈L1 |
C1[v]〉, 〈L2 | C2[w]〉). Since |C1[v]| ≥ 2 and |C2[w]| ≥ 2,

F contains labels for the alignment of C1[v] and C2[w] and

that of L1 and L2. Hence, it holds that δALN(〈L1 |C1[v]〉, 〈L2 |
C2[w]〉) = δALN(〈L1 | ∅〉, 〈L2 | ∅〉+ τALN(C1[v], C2[w]), which

is the recurrence (F8).

Example 4: Consider two caterpillars C1 and C2 in Fig-

ure 2 in Example 1 and assume the unit cost function. By

applying the recurrences in Figure 6, we obtain that the

alignment distance τALN(C1, C2) between C1 and C2 is 3
illustrated in Figure 7. Here, we represent a multiset as a

sequence enclosed by “[” and “]” and a caterpillar as a term-

like representation with “[” and “]”, that is, C1 = a[b, b, b] and

C2 = a[b, a[b, b[a, a]]].

τALN(C1, C2)
= γ(a, a)︸ ︷︷ ︸

=0

+δALN(〈[b, b, b] |∅〉, 〈[b] |a[b, b[a, a]]〉) (T3)

= γ(ε, a)︸ ︷︷ ︸
=1

+δALN(〈[b, b, b] |∅〉, 〈[b, b] |b[a, a]〉) (F4)

= 1 + γ(b, b)︸ ︷︷ ︸
=0

+δALN(〈[b, b] |∅〉, 〈[b, b] |∅〉)

+δALN(Φ, 〈[a, a] |∅}〉) (F5)
= 1 + µ([b, b], [b, b])︸ ︷︷ ︸

=0

+ γ(ε, a)︸ ︷︷ ︸
=1

+ γ(ε, a)︸ ︷︷ ︸
=1

(F2), (F3)

= 3.

Fig. 7. The result of computing τALN (C1, C2) in Example 4.

Example 5: Consider two caterpillars C3 = a[a, d[b, c]] and

C4 = a[c, e[b, a]] in Figure 2 in Example 1 and assume the

unit cost function. By applying the recurrences in Figure 6,

we obtain that the alignment distance τALN(C3, C4) between

C3 and C4 is 3 illustrated in Figure 8.
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τALN(C3, C4)
= γ(b, b)︸ ︷︷ ︸

0

+δALN(〈[a] |a[b, c]〉, 〈[c] |c[b, a]〉) (T3)

= γ(a, c)︸ ︷︷ ︸
1

+δALN(〈[a] |∅〉, 〈[c] |∅〉)

+δALN(〈[b, c] |∅〉, 〈[b, a] |∅〉) (F8)
= 1 + µ([a], [c])︸ ︷︷ ︸

=1

+µ([b, c], [a, b])︸ ︷︷ ︸
=1

(F3)

= 3.

Fig. 8. The result of computing τALN (C3, C4) in Example 5.

C. Algorithm and time complexity

Let C1[v] and C2[w] be caterpillars. Then, we denote

bb(C1[v]) by a sequence v1, . . . , vn such that vn = v and

par (vi) = vi+1 (1 ≤ i ≤ n− 1) and bb(C2[w]) by a sequence

w1, . . . , wm such that wm = w and par (wj) = wj+1 (1 ≤ j ≤
m−1). In this case, we denote by bb(C1[v]) = [v1, . . . , vn] and

bb(C2[w]) = [w1, . . . , wm]. Also we use the same notations

of L1(vi) and B1(vi) for 1 ≤ i ≤ n and L2(wj) and B2(wj)
for 1 ≤ j ≤ m.

Based on the recurrences in Figure 6, Algorithm 1 illustrates

the algorithm to compute the alignment distance τALN(C1, C2)
between caterpillars C1 and C2. Here, the statement “v ←
(A)” means to substitute the value of computing the right side

of the recurrence (A) to v, for example.

Theorem 4: Let C1 and C2 be caterpillars, where h =
max{h(C1), h(C2)} and λ = max{|lv(C1)|, |lv (C2)|}. Then,

we can compute the alignment distance τALN(C1, C2) between

C1 and C2 in O(h2λ3) time. Furthermore, if we adopt the unit

cost function, then we can compute it in O(h2λ) time.

Proof: Let bb(C1) = [v1, . . . , vn] and bb(C2) =
[w1, . . . , wm]. Then, it is obvious that h(C1) = n + 1 and

h(C2) = m+ 1, so it holds that m ≤ h− 1 and n ≤ h− 1.

The algorithm of computing τALN(C1, C2) calls every pair

(vi, wj) ∈ bb(C1) × bb(C2) just once. When computing

δALN(〈L1(vi−1) |C1[vi]〉, 〈L2(wj−1) |C2[wj ]〉) for 2 ≤ i ≤ n

and 2 ≤ j ≤ m, it is possible to construct multisets S1 =
˜L1(v1) ⊔ · · · ⊔ ˜L1(vi−1) and S2 = ˜L2(w1) ⊔ · · · ⊔ ˜L2(wj−1)

and compute the edit distance µ(S1, S2) between multisets in

the worst case. By Lemma 2, we can compute it in O(λ3)
time under the general cost function and in O(λ) time under

the unit cost function.

Hence, the total running time of computing τALN(C1, C2)
under the general cost function is described as follows:

n∑

i=1

m∑

j=1

O(λ3) = O(λ3)mn ≤ O(λ3)(h− 1)2 = O(h2λ3).

By replacing O(λ3) with O(λ), this time complexity is re-

duced to O(h2λ) time under the unit cost function.

Theorem 4 also claims that the structural restriction of

caterpillars provides the limitation of tractable computing the

alignment distance for unordered trees as follows. We say

that a tree is a generalized caterpillar if it is transformed

procedure τALN(C1, C2)
/* C1, C2: caterpillars, bb(C1) = [v1, . . . , vn],
bb(C2) = [w1, . . . , wm], vn = r(C1), wm = r(C2) */
τALN(∅, ∅)← 0; /* (T0) */1

for i = 1 to n do τALN(C1[vi], ∅)← (T1);2

for j = 1 to m do τALN(∅, C2[wj ])← (T2);3

for i = 1 to n do4

for j = 1 to m do5

τALN(C1[vi], C2[wj ])← (A);6

procedure δALN(〈L1 |C1〉, 〈L2 |C2〉)
/* L1, L2 : set of leaves, C1, C2: caterpillars */
if C1 = ∅ and C2 = ∅ then7

δTAI(〈L1 |∅〉, 〈L2 |∅〉)← (F3);8

else if C1 6= ∅ and C2 = ∅ then9

/* bb(C1) = [v1, . . . , vn], vn = r(C1) */
if L2 = ∅ then δTAI(〈L1 |C1〉,Φ)← (F1);10

else11

for i = 1 to n do12

δTAI(〈L1 |C1[vi]〉, 〈L2 |∅〉)← (B);13

else if C1 = ∅ and C2 6= ∅ then14

/* bb(C2) = [w1, . . . , wm], wm = r(C2) */
if L1 = ∅ then δTAI(Φ, 〈L2 |C2〉)← (F2);15

else16

for j = 1 to m do17

δTAI(〈L1 |∅〉, 〈L2 |C2[wj ]〉)← (C);18

else19

/* bb(C1) = [v1, . . . , vn], bb(C2) = [w1, . . . , wm],
vn = r(C1), wm = r(C2) */
for i = 1 to n do20

for j = 1 to m do21

δTAI(〈L1 |C1[vi]〉, 〈L2 |C2[wj ]〉)← (D);22

Algorithm 1: τALN(C1, C2)

to a caterpillar after removing all the leaves in it. Then, the

following theorem also holds as a corollary of [8].

Theorem 5 (cf., [1], [4]): The problems of computing the

alignment distance τALN between generalized caterpillars are

MAX SNP-hard, even if the maximum height is at most 3 and

the cost function is the unit cost function.

Proof: It is straightforward from the proof of Corollary

4.3 in [1] or Theorem 1 in [4] and because the Tai mapping

constructed in their proof is a less-constrained mapping.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have designed the algorithm to compute

the alignment distance τALN between caterpillars in O(h2λ3)
time under the general cost function and in O(h2λ) time under

the unit cost function.

It is an important future work to implement the algorithms

and then give experimental results to compute τALN , with

comparing the results of τTAI in [8] with those of τALN . Since

the proof in Theorem 4 is rough, it is possible to improve

the time complexity, together with that of computing the edit

distance between multisets under the general cost function

(Lemma 2), which is also a future work.

24 POSITION PAPERS. LEIPZIG, 2019



REFERENCES

[1] T. Akutsu, D. Fukagawa, M. M. Halldórsson, A. Takasu, K. Tanaka:
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APPENDIX

In this appendix, we point out the number of caterpillars in

real data and revise the result for the edit distance between

caterpillars in [8].

A. Caterpillars in real data

Table I, which is represented in [8], illustrates the number

of caterpillars in N-glycans and all glycans from KEGG2,

CSLOGS3, dblp4, and SwissProt, TPC-H, Auction, Nasa,

Protein and University from UW XML Repository5. Here, #cat

is the number of caterpillars and #data is the total number

of data. For D ∈ {Auction, Nasa, Protein, University}, D−

denotes the trees obtained by deleting the root for every tree

in D. Since one tree in D produces some trees in D−, the total

2Kyoto Encyclopedia of Genes and Genomes, http://www.kegg.jp/
3http://www.cs.rpi.edu/˜zaki/www-new/pmwiki.php/Software/Software
4http://dblp.uni-trier.de/
5http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata

/www/repository.html

number of trees in D− is greater than that of D. Hence, there

are some cases containing many caterpillars in real dataset.

TABLE I
THE NUMBER OF CATERPILLARS IN N-GLYCANS AND ALL GLYCANS FROM

KEGG, CSLOGS, DBLP, SWISSPROT, TPC-H, AUCTION, UNIVERSITY,
PROTEIN AND NASA.

dataset #cat #data %

N-glycans 514 2,142 23.996
all glycans 8,005 10,704 74.785
CSLOGS 41,592 59,691 69.679
dblp 5,154,295 5,154,530 99.995
SwissProt 6,804 50,000 13.608
TPC-H 86,805 86,805 100.000

Auction 0 37 0
Nasa 0 2,430 0
Protein 0 262,625 0
University 0 6,738 0

Auction− 259 259 100.000

Nasa− 21,245 27,921 76.089

Protein− 1,874,703 2,204,068 85.057

University− 74,638 79,213 94.224

B. The revision of the edit distance for caterpillars

Muraka et al. [8] have designed the algorithm to com-

pute the edit distance τTAI(C1, C2). Then, they have pointed

out that its time complexity is O(h2λ2) time, where h =
max{h(C1), h(C2)} and λ = max{|lv(C1)|, |lv(C2)|}.

Note that their recurrence between the set of leaves is

based on the string edit distance. However, as similar as the

alignment distance in this paper, in order to compute the edit

distance between the set of leaves, it is necessary to adopt the

edit distance for multisets.

Let s(L) be the string representation of the set L of leaves

and σ the string edit distance. Then, Muraka et al. [8] have

introduced the following recurrence to compute τTAI(C1, C2):

δTAI(〈L1 |∅〉, 〈L2 |∅〉) = σ(s(L1), s(L2)).

On the other hand, as stated above, it is necessary to replace

this recurrence with the following recurrence to compute

τTAI(C1, C2) as same as Figure 6:

δTAI(〈L1 |∅〉, 〈L2 |∅〉) = µ(L̃1, L̃2).

Consider the time complexity of O(h2λ2) presented in

[8]. The part O(λ2) follows from the time complexity of

computing the string edit distance between the set of (all the)

leaves in two caterpillars. On the other hand, by replacing the

recurrence as above, it is necessary to revise this part based on

the time complexity of computing the multiset edit distance,

that is, revise to O(λ3) under the general cost function and

O(λ) under the unit cost function by Lemma 2. Furthermore,

we can improve the proof of [8] to the similar proof of

Theorem 4.

Hence, we can compute τTAI(C1, C2) in O(h2λ3) time

under the general cost function and O(h2λ) time under the

unit cost function, which is the same result of τALN(C1, C2).
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