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Abstract—Maximum simulated likelihood estimation can be
employed in empirical health economics, amongst others, to
tackle issues concerning endogenous treatment effects. While
theory suggests that maximum simulated likelihood estimation
is asymptotically consistent, efficient and equivalent to the max-
imum likelihood estimator when both the number of simulation
draws S and sample size N → ∞ and

√
N/ S → 0, there is no

guidance on how large of an S to choose and even theory suggests
to experiment. This piece of research reviews strategies of health
economists that aim at dealing with this issue. Most pieces of
applied research rely on experimentation until numerical stability
is achieved, while some employ Monte-Carlo techniques to justify
their choice of S. A more formal test was suggested, but seemed
not to be employed yet. This lack of guidance induces a research
problem that needs to be properly addressed.

I. INTRODUCTION

E
NDOGENEITY in non-linear regression models arising

through self-selection into treatment is a problem very

often encountered in, but not limited to, health economics.

One prominent situation in which health economists face

problems with endogenous regressors is when the effect of

health insurance status on healthcare utilisation, such as visits

to the doctor, is estimated. Different types of health insurance

plans, such as deductibles and co-payments, are offered,

to incentivise an economical utilisation of scarce medical

resources. As participation in such insurance plans is non-

random, selection bias complicates studies in which the effect

of endogenous treatment (here: insurance choice) is estimated

on a healthcare utilisation outcome, such as number of visits to

the doctor. Self-selection occurs when optimising individuals

possessing unobservable characteristics, such as awareness of

future health states or risk preferences, select health insurance

plans accordingly [1]. The same unobservable characteristics

that affect insurance choice might then also affect future

healthcare utilisation, thus leading to potential unobserved

correlation between insurance choice decision and decision to

consume health services [2].

One way of addressing this endogeneity issue is the en-

dogenous treatment regression model by [1], that utilises a

latent factor structure. Latent factors are incorporated into the

treatment and outcome equations, thus allowing to make a

distinction between selection on unobservables and selection

on observables. As these latent factors cannot be observed, reg-

ular maximum likelihood estimation is not feasible. Yet, when

assuming a distribution of the latent factors (e.g. standard

normal), simulation-based estimation, i.e. maximum simulated

likelihood (MSL) estimation, remains possible [3].

The properties of MSL estimates crucially depend on the

number of simulation draws S (per observation) and sample

size N . Given that S,N → ∞ and
√
N/S → 0, MSL

is asymptotically consistent, efficient and equivalent to the

maximum likelihood estimator [3]. Yet, this ratio does not

provide guidance on what S should be for given N , it only

describes the properties of MSL as N increases [4]. Conse-

quently, researchers face a non-trivial problem when deciding

how large of an S, given sample size N , to choose. On the one

hand, the MSL-approach is computationally burdensome, as it

makes extensive use of simulation techniques [5]. Generating

random numbers requires a matrix of size S × N , as there

are S random draws for each of the N observations. As

increasing N will also necessitate an increase in S, this will

ultimately lead to non-trivial memory consumption, that is

to say, to potentially prohibitively high computational cost

[6]. On the other hand, consistency of the estimator requires

S,N → ∞ and
√
N/S → 0. Some [7] recommend using

S as large as computational reasonable, while others rely on

experimentation with different sizes of S to achieve numerical

stability of the estimator as their guide [8], [9], [4], [7].

Thus, the researcher needs to find a suitable trade-off between

precision (favouring infinitely large S) on the one hand and

computational cost (favouring fixed S) on the other hand.

This lack of guidance with respect to choice of an appropriate

amount of simulation draws imposes a serious challenge for

applied research in two ways. First, having results at hands, the

question to the researcher remains, whether or not a sufficient

amount of simulation draws was employed [6]. Similarly, and

equivalently important, the researcher’s choice regarding S
remains untraceable to the scientific community.

Consequently, the research problem of the underlying piece

of research (work-in-progress) is to find guidance with respect

to the choice of an appropriate amount of simulation draws

to be employed in maximum simulated likelihood estimation

within the endogenous treatment regression context. Establish-

ing such guidance will be beneficial to the research community

as it will make MSL-procedure more traceable. As a starting

point in establishing such guidance, strategies of dealing with

this issue in applied research are presented and discussed
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within a preliminary literature review. Firstly, however, the

MSL-approach and its peculiarities will be explained in more

detail, before the relevant literature will be summarised. After

the research problem is derived from the literature review, the

intended future work to tackle this problem will be discussed.

II. MAXIMUM SIMULATED LIKELIHOOD ESTIMATION

To deal with the endogeneity of treatment (insurance choice)

on healthcare utilisation, [1] introduced a latent factor structure

into the treatment and outcome equations to account for

selection on unobservables. These latent factors enter both

treatment and outcome equation to allow for idiosyncratic

influences on insurance status choice to affect healthcare

utilisation, thus making a distinction between selection on

unobservables and selection on observables possible [1]. These

latent factors serve as proxies for unobservable characteristics

and are interpreted as unobserved heterogeneity. Endogeneity

arises, as the same latent factors, i.e. unobservable character-

istics, determining insurance choice also affect the healthcare

utilisation decision. As they cannot be observed, problems in

estimation arise, as no closed-form solution to the respective

integral exists [1]. Yet, when making assumptions with respect

to the underlying distribution of the unobservable characteris-

tics (e.g. standard normal distribution), maximum simulation

likelihood estimation remains feasible. Here, simulation de-

pends on the fact that integrating over a density is simply a

form of averaging [10]. Thus, the effect of the unobservable

latent factors can be integrated out, resulting in an unbi-

ased (with respect to self-selection) estimate of the treatment

effect. Among several possible ways of taking endogeneity

into account (e.g. IV-approach, Difference-in-Difference, two-

stage residual inclusion) the maximum simulated likelihood-

procedure is the only approach that sufficiently addresses both

endogeneity of treatment and non-linearity (count data) in the

outcome [11].

When outcome y’s (e.g. number of doctor visits) conditional

density f(y|x, θ), where x may be individual i’s observable

characteristics, θ the parameters to be estimated and u unob-

servable characteristics, involves such an intractable integral,

such that

f(yi|xi, θ) =
∫

h(yi|xi, θ, ui)g(ui)d(ui) (1)

requires estimation [6]. Accordingly, one needs to approximate

the intractable integral h(yi|xi, θ, ui) with a subsimulator

f̃(yi|xi, θ, us
i
). To do so, S (S = 1, . . . , S) random draws

from the assumed distribution of u are drawn into the sub-

simulator. The average over S (denoted by uiS) of these

subsimulators then provides the simulator f̂(yi|xi, θ, uiS) such

that [6]

f̂(yi|xi, θ, uiS)

︸ ︷︷ ︸

Simulator

=
1

S

S∑

s=1

f̃(yi|xi, θ, us

i )

︸ ︷︷ ︸

Subsimulator

. (2)

While the usual maximum likelihood estimator maximises the

log-likelihood lnLN (θ) =
∑N

i=1
ln f(yi|xi, θ), the maximum

simulated likelihood estimator instead maximises the log-

likelihood based on the simulated estimation of the density

[6]

ln L̂N (θ) =

N∑

i=1

ln f̂(yi|xi, θ, uiS)

︸ ︷︷ ︸

Simulator

. (3)

As the estimator is simulated rather than calculated pre-

cisely, simulation error is introduced [10]. This simulation

error can be decomposed into three sources of error: simulation

chatter, simulation noise and simulation bias [10]. Simulation

chatter occurs, when different random draws are used at each

likelihood iteration [10], [5]. While simulation chatter might

render (simulated) likelihood maximisation infeasible, it can

be easily encountered by using the same simulation draws per

observation [10], [5]. Thus, simulation chatter does neither

depend on the choice of S nor N. Deviations from each

simulated value of its expectation lead to simulation noise [10].

As simulation noise cancels out over observations, it decreases

with N, even if S is fixed [10]. Simulation bias occurs as the

MSL simulator ln f̂ is biased for ln f , even if the simulator

f̂ is unbiased for f , as a consequence of taking the natural

logarithm [6]. An asymptotic bias-adjusted MSL-estimator,

that makes use of a bias-adjusted log-likelihood function, is

suggested by [3]. As this bias-adjustment assumes bias to be

small, [6] adds, that the usefulness of this bias-reduction may

vary from case to case, as the small bias-assumption may not

always hold. After all, for the simulation bias to disappear,

S and N → ∞, while S must increase faster than
√
N , such

that
√
N/S → 0 [3], [10]. If the latter condition is met, MSL

is asymptotically normal, efficient and equivalent to maximum

likelihood estimation [3], [10]. However, this ratio does not

state what S should be for given N , it only describes the

properties of the MSL estimator as N increases [4].

III. LITERATURE REVIEW

Whether or not one has done a sufficient amount of si-

mulations to tackle the simulation error issues is a difficult

question to answer [6]. As no empirical guidance exists,

theory suggest to experiment with different sizes of S until

numerical stability of the estimator is achieved [4], [8], [6].

Consequently, [12], [1], [13], [14] report to have relied on such

experimentation to find an appropriate S. From experience, [1]

suggest, that estimating MSL in the context of endogenous

treatment requires “considerably more” simulation draws than

models involving seemingly unrelated errors. Yet, [1] do not

further elaborate what this might imply in practical terms. Still,

[1] state that their choice of S is based on other empirical

studies that use MSL. Table I provides a summary of the

choice of S, with respect to N , of empirical studies that

employed the MSL-approach in the context of endogenous

regressors in health economics. While there is no clear guid-

ance on the quantity of simulation draws, consensus seems

to exist regarding their quality. Quasi-random draws, such

as the Halton-sequence, rather than pseudo-random draws,
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TABLE I: OVERVIEW OF CHOICES REGARDING S IN

APPLIED HEALTH ECONOMICS RESEARCH.

Reference N S

√

N

S
Random variates

[14] 2,467 1,600 0.031 Halton
[1] 8,129 2,000 0.045 Halton
[12] 26,514 1,000 0.162 Halton
[7] 5,033 400 0.177 Halton
[16] 4,406 300 0.221 Antithetic
[13] 109,349 200 1.653 Halton
[21] Did not report S Halton
[11] Did not report S Halton
[2] Did neither report S nor type of random variates

are considered to greatly reduce the number of simulation

draws required for a given amount of precision [10], [4],

[5]. Halton-draws are more evenly distributed than pseudo-

random draws, while also displaying lower variance, as they

are negatively correlated [10]. Even though Halton-draws are

rather deterministic than random, [8] add, that when it comes

to simulation techniques, the randomness of draws is not as

important as their uniform coverage over the domain of inte-

gration. Their desirable properties made the Halton-sequence

the quasi-random variate of choice, as displayed in Table I.

Also, consensus exists that MSL-estimation is, as suggested by

theory [4], [6], a rather computationally burdensome approach,

as also explicitly stated in several pieces of applied research

[13], [12], [7], [15]. Even more so, [12] report to have used

less simulation draws than desired (due to having relatively

large N ) to ensure convergence of their model, while [13] even

report that one of their models did not converge after four days

of CPU time. One notable deviation of the experimentation-

strategy within applied research seems to be the approach

by [16] who conducted a Monte-Carlo experiment prior to

their empirical study to justify their choice regarding the

number of simulation draws. Also, [17] are able to quantify

simulation noise and simulation bias of their MSL approach,

as their econometric model also offers an analytical solution,

to which they can compare their MSL results. Similarly, [18]

are able to quantify simulation error, as within their theoretical

approach, they employ a simulated dataset, for which the true

parameters are known. A different, more formal approach in

choosing S is suggested by [19], who describes a diagnostic

test, constructed from a Wald test statistic, that captures the

magnitude of simulation bias and could be used to compute an

amount of S that will produce an acceptable estimator. Even

though some pieces of literature [6], [4] point out to this formal

test, it was not employed in the reviewed literature. Yet, e.g.

[20] employ this diagnostic test in the context of MSL-based

dynamic probit models.

IV. DISCUSSION AND OUTLOOK

Within applied research, the question whether one has

used enough simulation draws remains challenging. As no

clear guidance exists, researchers rely on experimentation

with different values of S to achieve numerical stability of

the estimator. This procedure does not necessarily satisfy

the reader’s interest in transparency and traceability with

respect to empirical research. One exception [16] in applied

health economics research employed a Monte-Carlo study as

a benchmark for their subsequent choice of S. Even though

translating conclusions drawn from self-designed experimental

data to “exogenous” real-world data might similarly raise

doubts, it at least seems to be a somewhat more traceable way

of justifying one’s choice of S. Also, having an analytical, thus

correct, solution, as a benchmark, might very much answer

the question, whether or not one has used enough simulation

draws. Yet, not having an analytical solution remains the

motivation to employ MSL in the first place.

This piece of (emerging) research is tackling this overall

lack of guidance with respect to choosing S by producing an

empirical benchmark within the endogenous treatment context.

This benchmark should not be solely based on self-designed

experimental data, such as [16], as this type of data might not

reflect real-world complexity, that is known to make the MSL-

approach burdensome [6], [7]. Nevertheless, such a Monte-

Carlo study might clearly be supplemental to reach this overall

goal. Also, employing an econometric model on real-world

data, for which an analytical solution is possible, does neither

seem to be a desirable option, even though the true parameters

would be known and could thus serve as a reference. Yet,

as already stated, the lack of an analytical solution is the

motivation to employ MSL in the first place.

In order to exploit real-world data, while also knowing the

true parameter (with respect to selection on unobservables), the

Oregon Health Insurance Experiment [22] will be employed.

In 2008, within this experiment, a limited amount of Medicaid

insurance coverage was allocated randomly to low-income in-

dividuals, while also recording healthcare utilisation behaviour

of lottery winners and losers afterwards. Randomly assigned

Medicaid insurance (i.e. treatment) can be considered exoge-

nous with respect to healthcare utilisation. Thus, employing [1]

endogenous treatment regression model, the effect of selection

on unobservables on healthcare utilisation will be hypothe-

sised to be zero (due to randomisation). Making use of the

Oregon experiment will thus be beneficial to illustrate MSL-

convergence behaviour in the context of endogenous treatment

regression. These results can ultimately serve as a guide for

other health economists to choose an appropriate amount of

S, as the simulation error can be estimated quite well, as the

true estimates (with respect to selection on unobservables) are

known. Thus, MSL-convergence behaviour can be explicitly

illustrated for different values of S. Additionally, the formal

Wald-based test, suggested by [19], will be employed, to

formally support (or reject) the findings. Also, the literature

dealing with the MSL-procedure, especially in the realm of

health economics, will be reviewed more extensively and in-

tensively, with respect to strategies of choosing an appropriate

S, while also promising alternatives to the MSL-approach, as

suggested by [18], need to be studied closely. As a result,

health econometricians will benefit from this ongoing piece of

research, as it will provide them with some guidance whether

or not they have chosen a sufficiently large S, when employing

MSL estimation.
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