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Abstract—As more and more data are available, training a
machine learning model can be extremely intractable, especially
for complex models like Support Vector Regression (SVR) train-
ing of which requires solving a large quadratic programming
optimization problem. Selecting a small data subset that can
effectively represent the characteristic features of training data
and preserve their distribution is an efficient way to solve this
problem. This paper proposes a systematic approach to select
the best representative data for SVR training. The distributions
of both predictor and response variables are preserved in the
selected subset via a 2-layer data clustering strategy. A 2-layer
step-wise greedy algorithm is introduced to select best data points
for constructing a reduced training set. The proposed method
has been applied for predicting deck’s win rates in the Clash
Royale Challenge, in which 10 subsets containing hundreds of
data examples were selected from 100k for training 10 SVR
models to maximize their prediction performance evaluated using
R-squared metric. Our final submission having a R

2 score of
0.225682 won the 3

rd place among over 1200 solutions submitted
by 115 teams.

Index Terms—Clash Royal, Support Vector Regression (SVR),
R-squared metric (R2), Radial Basis Function kernel (RBF), k-
means clustering

I. INTRODUCTION

N
OWADAYS with the growth of the Internet of Things

(IoT), 2.5 quintillion bytes of data are produced every

day at our current speed [1]. As 2 sides of a coin, a large

amount of available data help to build complex and robust

machine learning models, while data processing and model

training can be rather intractable. Among all data collected,

some of them are irrelevant to targets, inter-dependent, and

noisy with outliers, leading to inefficient or even intractable

training procedure, and more seriously, poor generalization

capability.

Support Vector machine (SVM), developed at AT & T Bell

Laboratories by Vladimir Vapnik and his co-workers [2], [3],

[4], [5], [6], [7] based on the statistical learning theory (or

VC theory) [8], [9], [10]. The SVM has shown competitive

generalization over many existing machine learning models

in various fields, e.g. optical character recognition (OCR),

object recognition, time series prediction, etc. [6], [11], [12],

[13], [14], as well as in regression, denoted as Support Vector

Regression (SVR) [15], [16], [17], [18]. As we know, training

a SVR model needs to solve a large quadratic programming

optimization problem, which becomes computation intractable

on large datasets.

To overcome this disadvantage, it is useful to identify a

representative and discriminative data subset from full training

data, which is the intention of the Clash Royale Challenge

2019. Clash Royale is a popular video game which combines

elements of collectible card game and tower defense genres.

In the game, players build decks having 8 cards representing

playable troops, buildings, and spells to attack opponent’s

towers and defend against their cards. Wining a game is highly

dependent on decks. The task of the challenge is to select

small data subsets from a large training dataset, on which SVR

models can be trained to predict win rates of decks.

To address this problem, a systematic approach is proposed

in this paper. The major advantages of our proposed method

can be summarized as follows:

1) Selecting data points on the clustered space of response

variables helps to preserve response distribution, allow

parallel implementation, and reduce computational cost.

2) Selecting data points from cluster centers of predictor

variables can largely speedy up search procedure by

removing most of training examples from the selection

candidates pool, meanwhile reserving predictors’ distri-

bution and their characteristic features.

3) Although no guarantee of global optimality, the sys-

tematic approach can deterministically find near-optimal

solutions.

By using our method in the challenge, 10 subsets containing

only hundreds of examples were selected from 100k data

points, on which 10 SVR models were trained to predict win

rates of decks. The average R-squared metric of the 10 models

on unknown testing data is 0.225682, wining 3rd place among

over 1200 solutions submitted by 115 teams.

This paper is organized as follows. The challenge is de-

scribed in Section II. The details of the proposed method are

presented in Section III. Section IV discusses the experiment

results. Conclusions are given in Section V.

II. CLASH ROYALE CHALLENGE

A. Challenge task

The intention of the Clash Royale Challenge is to find a

small subset from a large training dataset, on which a SVR

model with Radial basis function (RBF) kernel can be effi-

ciently trained for predicting win rates of decks. Specifically,

competition participants are required to submit 10 subsets of
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decks, including 600, 700, 800, 900, 1000, 1100, 1200, 1300,

1400, and 1500 decks, respectively, each of which allows

training an efficient SVR based win rate prediction model, and

the hyper-parameters of the SVR trained on the these subsets,

i.e. ǫ, C, and γ.

B. Database

The data used in the challenge are divided into training,

validation, and testing sets. The training data consist of 100k

Clash Royale decks that were most commonly used by players

during 3 consecutive league seasons in 1v1 ladder games. The

decks in the validation and testing data were popular during

the three next game seasons after the training data period. The

validation dataset consists of 6k decks, which was provided

to competitors for self-evaluation of their solutions, while

the test set was not revealed to participants. The win rates

of decks were also provided in the training and validation

datasets. Since the decks in the 2 sets were collected from

different game seasons, the same decks in different sets may

have different win rates.

C. Solution evaluation

The quality of solutions is assessed using prediction perfor-

mance measured in the R-squared metric of the models trained

on the indicated subsets and the associated hyper-parameters.

The R-squared metric is defined as

R2 = 1−
RSS

TSS
, (1)

where RSS is the residual sum of squares and TSS is the

total sum of squares, which can be expressed as

RSS =
∑

i

(yi − fi)
2, (2)

and

TSS =
∑

i

(yi −
1

N

∑

i

yi)
2, (3)

where yi and fi are the ground truth label of the ith data

example and its prediction, respectively, and N is the number

of data records in the dataset. The score of a solution is the

average R2 metric of the 10 SVR models.

Leaderboard scores were provided in the preliminary stage

of the challenge, which were calculated based on a small

subset of the testing data fixed to all participants. The final

scores of the 2 best solutions submitted by a competitor

evaluated on the full testing set were provided at the end of

the challenge.

III. METHOD FOR SUBSET SELECTION

A. Method overview

A systemic method is proposed to select a small subset of

data for training an efficient SVR model, which consists of 5

parts concluded as follows, as shown in Fig. 1.

1) Dividing training data into ky groups according to the

response variable, denoted as y, e.g. win rates in the

challenge.

Figure 1. Flowchart of the proposed method.

2) Dividing each of ky groups into kx clusters according

to predictor variables, denoted as x, e.g. decks in the

challenge, and constructing ky sets of cluster centers.

3) Selecting a specific number of data points individually

from each of ky center-sets by step-wise greedy search.

The number is dependent on the sizes of the full dataset,

center-set and the subset to be constructed, which will

be discussed later. Note that the total number of selected

points should be much more than the desired size of the

subset.

4) Combining all points selected from the ky center-sets

and selecting exact number of points to construct the

required subset by applying again the step-wise greedy

algorithm.

5) Obtaining the settings of hyper-parameters (ǫ, C, and γ)

for the SVM model trained on the selected subset.

B. Data representation

A data example is represented using a binary vector with a

length of 90 representing 90 unique cards. Each value in the

vector indicates whether or not a card is in the deck, i.e.

• 1- the associated card is used in the deck,

12 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



• 0- the associated card is not used in the deck.

The training data containing 100k examples are represented

using a matrix with a dimension of 100000 × 90 and the

validation data having 6000 examples are represented using a

matrix with a dimension of 6000× 90. The response variable

of the training data, i.e. win rates, is represented using a vector

with a length of 100000, and similarly, the win rates of the

validation set are represented using a vector with a length of

6000.

It has been mentioned in Section II that the decks in

training and validation sets were extracted from different game

seasons. Although the same decks may exist in both sets,

their win rates are likely different because the game evolves

in time, players adapt to new strategies, and the balance of

individual cards and their popularity changes slightly from

one season to another. Removing the training examples having

the same decks as the validation set but with different win

rates can avoid uncertainty of such gap, which, however,

cannot yield significant improvement on prediction accuracy.

This indicates, from a certain of view, the robustness of our

selection method.

C. Two-layer clustering analysis

Clustering analysis is firstly applied to guild data selection.

Specifically, a 2-layer clustering strategy inspired by the work

presented in [19] is employed to divide training data into

groups, as illustrated in Fig. 1. In our method, data clustering

is performed by using the K-means clustering algorithm that

is a classical and popular unsupervised machine learning

algorithm [20]. The aim of clustering analysis here is to

preserve the distribution of the full training dataset and reflect

their characteristic features in a reduced dataset.

Clustering analysis is performed independent on predictor

and response variables, e.g. decks and win rates in the chal-

lenge.

1) The training dataset is firstly separated into ky clusters

according to the response variable. The value of ky
can be set empirically based on the distribution of y,

e.g. ky = 2 in win rate prediction. In this way, the

distribution of y can be preserved, and meanwhile the

subsequent steps can be implemented in parallel.

2) Each of yk groups are then further divided into kx clus-

ters according to the predictor variables. The value of kx
is empirically determined according to the distribution

of x as well as the sizes of training dataset and the subset

to be selected.

We can finally obtain ky groups, each having kx cluster

centers, via the 2-level clustering strategy. Similarly, the val-

idation dataset can be divided into groups using the same

cluster centers as the training data.

D. Two-layer step-wise greedy search

The data subset is selected to feed to SVR training to

maximize the prediction performance of the model via a 2-

layer step-wise greedy search strategy .

1) First, a specific number of data points are independently

selected from each of ky center-sets by step-wise greedy

search that follows below procedure, where X denotes

the full training set containing N data points, S repre-

sents the subset to be built and R(S) is its R2 score.

• Step 1. The search procedure starts with a full

training set of X and an empty subset of S.

• Step 2. Adding the data point, denoted as p, selected

from X to S, which gives the highest score among

all points in X .

• Step 3. Removing the pth point from X , and N =
N − 1.

• Step 4. Going to Step 2 until S is fully filled.

The score of a SVR model is the R-squared metric given

in (1) calculated on the validation dataset.

Let Ni be the number of data points selected from the

ith center-set, which is set as:

Ni = Nall × (
cti
Nt

+
cvi
Nv

)/2, (4)

for i ∈ [1, 2, ..., ky], where

• Nall is the approximate total number of data points

to be selected from all of ky clusters, which can be

empirically set to be twice as the desired size of the

data subset under selection;

• cti and cvi are the sizes of the ith center-sets of the

training and validation sets, respectively;

• Nt and Nv are the sizes of the full training and

validation sets, respectively.

2) After the data points are selected from each of ky
center-sets, they are combined to construct a bigger set,

on which the step-wise greedy search is applied again

to select best data points based on the same selection

criteria as the first layer of greedy search.

E. SVR hyper-parameters

The hyper-parameters of the non-linear SVR model with a

Gaussian radial basis function kernel, including ǫ, C, and γ,

are optimized for each selected subset using a heuristic grid

search with a range around the seeds and a grid of 0.00001.

The seeds of the hyper-parameters are set as follows.

1) ǫ in the ǫ-insensitive loss function controls the smooth-

ness of the SVR model and the number of support

vectors, which can largely affect model complexity and

its generalization capability. ǫ is set to be an estimate of

a tenth of the standard deviation using the inter-quartile

range of the response variable y, expressed as:

ǫ = iqr(y)/13.49, (5)

where iqr(y) is the inter-quartile range of y.

2) The parameter C controls the trade off between training

error and model complexity, i.e. margin maximization,

e.g. C = ∞ yielding a hard margin SVR model. In

our method, C is set to be an estimate of the standard

deviation of the response variable, expressed as:

C = iqr(y)/1.349. (6)
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3) γ is a free parameter used in the radial kernel. The radial

basis function kernel, or RBF kernel on two samples xi

and xj is defined as

K(xi, xj) = exp(−γ||xi − xj ||
2). (7)

The value of γ is optimized by the heuristic procedure

using sub-sampling [21].

IV. EXPERIMENT RESULTS

The numbers of clusters in the 2-layer clustering analysis

were set to be:

ky = 2, (8)

i.e. the data were divided into 2 clusters according to win rates,

and

kx = 5000, (9)

i.e. the data in each of the 2 groups were divided into 5000

clusters. The full training dataset containing 100k examples

were reduced into 10k cluster centers from 2-layer clustering

analysis, among which 10 relative small subsets containing the

required numbers of data examples were selected by using the

2-layer step-wise greedy search strategy.

The best solution that we submitted to the competition as

the final solution has a preliminary R-squared metric of 0.2352

evaluated on a subset of testing data and a final score of

0.225682 evaluated on the full testing set, which was scored

the 3rd place in the challenge among over 1200 solutions

submitted by 115 teams.

Although the current version of the proposed method was

designed to select a best data subset for SVR model training,

our method can be easily extended for other machine learning

methods without many modifications. The search procedure

followed in our method adding data points in a recursive way

cannot guarantee global-optimal performance. Improvement

can be expected with suitable implementation of global search.

V. CONCLUSIONS

It is useful to select a subset from full labeled data for effi-

ciently training machine learning models, in order to maximize

prediction performance at a small number of data examples.

This cannot only reduce computational cost but also lead to

better generalization capability. To address this, a systematic

approach is proposed for data selection, the performance of

which has been shown in the Clash Royale Challenge, in which

100k data points were reduced to 600-1500 inputted to train

Support Vector Regression (SVR) based win rate prediction

models, wining the 3rd place in the challenge. This method,

although developed for data selection in SVR training, can be

easily modified for other machine learning methods. Future

work will also improve the search procedure by introducing

global optimization methods like evolutionary algorithms.
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