
 

 

 

 

 Abstract— We propose a new key sharing protocol executed 

through any constant parameter noiseless public channel (as 

Internet itself) without any cryptographic assumptions and 

protocol restrictions on SNR in the eavesdropper channels. This 

protocol is based on extraction by legitimate users of eigenvalues 

from randomly generated matrices. A similar protocol was 

proposed recently by G. Qin and Z. Ding. But we prove that, in 

fact, this protocol is insecure and we modify it to be both reliable 

and secure using artificial noise and privacy amplification 

procedure. Results of simulation prove these statements. 

Index terms: key sharing protocol, physical layer security, 

privacy amplification, Shannon information. 

I. INTRODUCTION 

olving the key sharing problem between legitimate users, 

connected by some telecommunication channels, has been 

in research focus within many years and it is still completely 

unsolved. 
A protocol based on some cryptographic assumption 

(factoring problem, discrete log problem, error correction 

algorithm ctr. [1]) has been proposed by Diffie and Hellman 

[2] many years ago. There are known key distribution 

protocols based on “key commutative property” of the 

encryption algorithms [3]. But the corresponding protocol 

requires to hide the identity of the message sender [4], which 

is indeed a further cryptographic assumption. 

It was developed in recent years a new approach to key 

distribution problem based on the notion of physical layer 

security (PHY) (see excellent survey [5]). This approach 

exploits some physical properties of real communication 
channels connecting legitimate users sharing a secret key in 

the presence of eavesdroppers. In line with this setting it was 

published a pioneer paper by A. Wyner [6] and its extension 

in the papers [7, 8], where legitimate channels were superior 

to eavesdropper ones on the SNR parameter. 

Next, due to advanced Maurer’s papers [9, 10], such 

approach was extended with the use of so-called public 

discussion and privacy amplification. It enables to transform 

disadvantage on SNR for legitimate users against 

eavesdroppers into advantage at the cost of exchange by 

additional information on public channels. 

Other PHY-based protocols execute channels with random 

parameters (say, fading channels with multipath wave 
propagation) [9, 10, 11]. And this technique was used also in 

MIMO-based systems intended for a communication between 

mobile units [12, 13]. Effective key distribution problem can 

be solved also in frame of the so-called quantum 

cryptography where special quantum channels and devices 

[14] should be executed. But it is worth to note that all the key 

sharing methods mentioned above have been designed for 

known SNR in the eavesdropper channels or for the case 

where the number of antennas in the eavesdropper MIMO-

based system is limited by some value. However such 

requirements to enemy system is obviously unrealistic. 
Also there is a demand to share secret keys between users 

connected by constant (practically noiseless) channels (as  

Internet itself) and without any cryptographic assumption due 

to a risk of quantum computers to be applied in the future. 

In section 2 we remind the key sharing protocol based on 

extraction of matrix eigenvalues described in [15] as Scheme 

EVSKey and confirm that it is in fact insecure [16]. Next, we 

extend this protocol in order to provide the upper bound for 

SNR in eavesdropper channel. In section 3 we present some 

channels transform primitives. Section 4 is devoted to results 

of simulation. In section 5 we optimize protocol parameters 

to provide both security and reliability of the shared key. 

Section 6 concludes the paper and proposes some open 

problem for further investigation. 

II.  KEY SHARING PROTOCOL BASED ON EXTRACTION OF 

MATRIX CHARACTERISTIC POLYNOMIALS  

Let us remind the scheme EVSKey [15] used in the current 

paper in order to generate the binary raw sequence for further 

creation of the shared key. The scenario corresponding to this 
scheme is presented in Fig. 1.  

Before a transmission, Alice (A) and Bob (B) generate their 

own reference matrices 𝑋", 𝑋$ ∈ ℂ'×) with independent 

matrix elements distributed according to 𝐶𝑁(0, 𝜎/0) as well as 

random unitary matrices 𝐺", 𝐺$ ∈ ℂ'×' where 𝑛 is number of 

antennas employed by each user and  𝑚 is the length of pilot 

signal.     
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Fig. 1. The scenario corresponding to Scheme EVSKey. 

 

Since in our case A and B are connected by constant 

noiseless public channels, the original channel matrices 

𝐻"$ ,𝐻$" are generated by A and B as random matrices 

6ℎ"$89:89 , 6ℎ$"89:89~	𝐶𝑁(0, 𝜎=0 ). 𝑁">,𝑁$> are AWGN 

matrices 6𝑛">89:89, 6𝑛$>89:89~	𝐶𝑁(0, 𝜎?0) generated by users 

A and B, respectively, as matrices of artificially created 

Gaussian noises. We let further 𝜎=0 = 𝜎/0 = 1, 	𝜎?0 = 𝜎0. Let 

us introduce the following matrices: P = 𝐻$"𝐺$ ,	 𝑄 =𝐻"$𝐺". Then 𝑃𝑄 and 𝑄𝑃 can be estimated by users via the 

least square method as: 

 𝑃𝑄 = 𝑌"0(𝑋")E> (1) 

 𝑄𝑃 = 𝑌$0(𝑋$)E> (2) 

In [15] it was proved that matrices 𝑃𝑄 and 𝑄𝑃 have the same 

non-zero eigenvalues. In [16], it has been proved an extension 

of such statement, that in fact they have the same 

characteristic polynomials (CP): 

 𝐶𝑃[𝑃𝑄] = 𝐶𝑃[𝑄𝑃] (3) 

Thus, from (3), we have that the legitimate users A and B are 

able to extract the same characteristic polynomials after a 

completion of protocol through noiseless channels although 

matrices 𝑃𝑄 and 𝑄𝑃 can be different. The artificially added 

noises 𝑁">,𝑁$> result in errors between shared key bits 

extracted from quantized characteristic polynomial 

coefficients, eigenvalues or traces. Therefore, these errors 

have to be corrected by an additional procedure. Hence, the 

following question arises – what is the goal of adding artificial 

noises? The reason is a noising of eavesdropper channel in 

such a way that power of this noise cannot be decreased by 

any eavesdropper E! 

 
But firstly we should demonstrate that E is able to intercept 

even noisy key bits because it was claimed in [15] that it is 

impossible. Unfortunately the last statement is wrong and in 

[16] there has been described the procedure about how E is 

able to intercept key bits, not necessary in the case when she 

has a close location to legitimate users. In fact, for noiseless 

channels, if E intercepts 𝑌">, 𝑌"0 , 𝑌$>, 𝑌$0, where 𝑌"> =

𝐻$"𝐺$𝑋$ , 𝑌"0 = 𝐻$"𝐺$𝐻"$𝐺"𝑋", 𝑌$> = 𝐻"$𝐺"𝑋", 𝑌$0 =𝐻"$𝐺"𝐻$"𝐺$𝑋$, she can compute the matrix Y: 

 𝑌 = 𝑌"0(𝑌$>)E>𝑌$0(𝑌">)E> (4) 

(We note that pseudo-inverse matrices can be found by 

Penrose’s procedure [17] as  

 (𝑋H)E> = 𝑋I(𝑋𝑋I)E>). (5) 

Here “†” is conjugate transpose. It was proved in [16] that 

matrix Y is similar to matrix QP, thus they have the same 

characteristic polynomials for nonsingular matrices [18]. 

Hence the original scheme EVSKey is useless for key 

sharing but fortunately it can be used as a primary protocol 
providing lower noisy bound for eavesdropper that cannot be 

decreased because it is controlled by the legitimate users. 

But before we present the following part of key sharing 

protocol, it is important to show that both artificial noises 

𝑁">,𝑁$> should be added, otherwise eavesdropper can be able 

to intercept the legitimate key without any errors. Indeed, let 

us assume that only B creates artificial noise. Then we get: 

 𝑌$> = 𝑄𝑋" + 𝑁$>, 𝑌"0 = 𝑃𝑌$>  

 𝑌"> = 𝑃𝑋$ , 𝑌$0 = 𝑄𝑌"> (6) 

Next, A extracts CP from the matrix: 

 𝑌"0𝑋"E> = 𝑃𝑌$>𝑋"E> = 𝑃𝑄 + 𝑃𝑁$>𝑋"E>, (7) 

whereas B extracts the key from CP of the matrix: 

 𝑌$0𝑋$E> = 𝑄𝑌">𝑋$E> = 𝑄𝑃 (8) 

The eavesdropper E extracts the key from CP of the matrix: 

 𝑌"0(𝑌$>)E>𝑌$0(𝑌">)E> = 𝑃𝑄 (9) 

Thus (3) implies that E gets exactly the same key as legitimate 
user B. This means that such situation has to be excluded. 

III. DESCRIPTION OF CHANNEL TRANSFORM PRIMITIVES 

In the following section there will be presented the results 

of simulation regarding the key bit errors under the provision 

of two artificial noises 𝑁">, 𝑁$>. If such results give 

advantage to legitimate users against eavesdroppers, that is 

𝑃M < 𝑃?, where 𝑃M, 𝑃? are the key basic bit error rate (BER) 

for legitimate users and eavesdropper, respectively, then we 
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can apply privacy amplification theorem [11]. It states that 

such algorithm exists which provides an approaching to zero 

both key BER for legitimate users and Shannon information 

leaking to eavesdropper with the key generation rate: 

 𝑅 = ℎ(𝑃?) − ℎ(𝑃M), (10) 

where  
ℎ(𝑥) = −(𝑥	log0𝑥 + (1− 𝑥)	log0(1− 𝑥)) 

is the entropy function. But, for opposite situation when it 

occurs that the key BER’s satisfy to inequality 𝑃M > 𝑃? , it is 

necessary to apply in advance some additional protocol 

(primitive) that reduces the previous inequality to opposite 

one (𝑃M < 𝑃?). 

In [11] several examples of such primitives are given. It 

seems that the best of them is protocol known as “a preference 

improvement of the main channel” (PIMC). Let us consider 
the protocol PIMC in more detail, when there are two binary 

statistically independent symmetric channels without 

memory (BSC: binary symmetric channels): one with BER 𝑃M 
and another with BER 𝑃? and 𝑃M > 𝑃?. Then legitimate user A 

has to repeat S times each bit transmitting over main channel 

with BER equal to 𝑃M. Another legitimate user B receives only 

such S-blocks which consist of all zeros or ones and takes 

corresponding decision. He informs over public noiseless 

channel about blocks that he has accepted and erases other 
blocks. It is easy to see that such protocol forms the following 

BER for B: 

 𝑃MV = HWX
HWXY(>EHW)X	 (11) 

At the same time eavesdropper E intercepts S-blocks over 

BSC with BER 𝑃? and controls public noiseless channels. E 

knows exactly which S-blocks are accepted by B. But because 

E’s channel is statistically independent with the main channel 

(A→B), she should take decision about bits corresponding to 

S-block using majority rule. This means that she takes a 

decision that S-block carries bit “0”, if this block has more 

zeros than ones and decision about bit “1”, if the number of 

ones in that S-block is larger than the number of zeros. Then 

the BER after such decision will be for odd S the following: 

 𝑃?V = ∑ [𝑆𝑖^_
8`Xabc

	𝑃?8(1 − 𝑃?)_E8 (12) 

But unfortunately, it seems to be impossible to repeat bits if 

they were extracted from CP’s of the matrices PQ and QP!  
 

In order to avoid this problem let us modify slightly our 

previous protocol as it is shown in Fig. 2. We can see that just 

after a generation of “raw” bits from matrices PQ and QP, 

user B generates truly random binary string γ that is XOR-ed 

with B’s raw bits KB and it is transmitted over public and 

noiseless channel to user A that adds this string with her raw 

bits KA in order to get: 

 𝐾"e = 𝐾$⊕𝛾⊕𝐾" = 𝐾"⊕𝜀"$⊕𝐾"⊕𝛾 = 𝛾⊕𝜀"$ , (13) 

where 𝜀"$ is discrete noise string between raw key strings KA 

and KB. It is easy to see that in such setting the user B is able 

already to repeat S-times each bit of γ in order to perform the 
previous protocol. From now on we consider just γ as a new 

key string, transmitted to A over BSC with BER equal to 𝑃M. 

At the same time E, having received 𝐾$⊕𝛾 and her raw key 

𝐾?, extracted by (4), sums these sequences up. This gives: 

 𝐾?e = 𝐾?⊕𝛾⊕𝐾$ = 𝐾$⊕𝜀$i ⊕𝛾⊕𝐾$ = 𝛾⊕ 𝜀$i , (14) 

where 𝜀$i  is discrete noise string between raw key strings 𝐾$ 

and 𝐾?, that is equivalently to a transmission of key string γ to 

eavesdropper E over BSC with BER equal to 𝑃?V . 

 

 

 

Fig. 2. Modified key sharing protocol. 

IV. RESULTS OF SIMULATION 

A. Using quantized matrix traces as the raw key bits 

Since the traces of matrices are complex, they can be 

quantized both on amplitude and on phase. It was proved in 
[16] that the quantized intervals on amplitude of the traces 

providing equal probabilities of their occurrence should be 

chosen as follows: 

 𝑟kE> 	≤ |𝑍| < 𝑟k , 𝑘	 = 1, 2, … ,𝑁, (15) 

where Z is the trace of the matrices, 𝑟k 	= 	𝜎r 	s– ln(1 − k
v), 

𝜎w0 = 𝑛0𝜎x0(𝜎x0 + 𝜎?0) + 𝑛𝜎?0, N is the number of intervals. In 

table 1 there are presented the results of BER simulation for 

N = 16, different values of NSR, and different matrix sizes 

𝑛 ×𝑚. We see from this Table that for all parameters 𝑃M > 𝑃?  

and hence it is necessary to execute the protocol PIMC (see 

section III) in order to reduce to opposite situation 𝑃M < 𝑃?, 

that will be demonstrated in the sequel. 

B. Using quantized matrix eigenvalues as the raw key bits 

Unfortunately, there appears one problem in this case – how 

to compare the numbering of eigenvalues adopted by different 
users? Let us denote by NP, NA the numbers of quantization 

intervals on phase and on amplitude respectively. 

TABLE 1.  

SIMULATION RESULTS OF THE BER FOR EXTRACTION THEM FROM 

MATRICES TRACES BOTH LEGAL USERS (𝑃M) AND EAVESDROPPER (𝑃?) 

WITH 8 SECTORS AND 8 RINGS, UNIFORM PHASE QUANTIZATION AND 

AMPLITUDE STEP QUANTIZATION BY (15) 

n/m 

σ
2 

4x4 4х6 4x12 8x8 8х16 16x16 

𝑷𝒍, 𝑷𝒆 

0.1 
0.348
0.274 

0.255 
0.191 

0.155 
0.116 

0.363 
0.291 

0.152 
0.118 

0.364 
0.303 

0.01 
0.212 
0.157 

0.104 
0.075 

0.058 
0.044 

0.209 
0.139 

0.055 
0.043 

0.219 
0.158 

0.001 
0.098
0.063 

0.032 
0.022 

0.013 
0.011 

0.085 
0.063 

0.015 
0.012 

0.098 
0.064 
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Let 𝑁 = 𝑁H ×𝑁" be total number of quantization intervals. 

Then we find the number of eigenvalues that hits each of the 

N interval (cells). After a completion of eigenvalues 

extraction, we get a string of integers 𝑔>, 𝑔0,⋯ , 𝑔8 ,⋯, where 

𝑔8 is the number of the i-th cell containing at least one 

eigenvalue. If several eigenvalues occur in the same cell, then 

the cell number is repeated as 𝑔8 , 𝑔8 ,⋯…. Next each number 

𝑔8 is presented as a bit string and such strings are connected 

in a consecutive binary manner. The final binary string forms 

the raw shared key. It is easy to see that the total number of 

bits for each session of protocol can be computed as [16] 

 log0 [𝑁+𝑛− 1𝑛 ^ = log0 (𝑁+𝑛−1)(	𝑁+𝑛−2)…𝑁𝑛!  (16) 

In Table 2 there are presented the results of BER simulation 
for different matrix sizes and different NSR for eigenvalues 

extracted from matrices where each eigenvalue is quantized 

on 8 sectors and 8 rings. 

TABLE 2.  

SIMULATION RESULTS OF THE BER FOR EXTRACTION OF THEM FROM 

MATRIX EIGENVALUES BOTH LEGAL USERS (𝑃M) AND EAVESDROPPER 

(𝑃?,) WITH 8 SECTORS AND 8 RINGS FOR EACH EIGENVALUE 

n/m 

σ
2 

4x4 4х6 4x12 8x8 8х16 16x16 

𝑷𝒍, 𝑷𝒆 

0.1 
0.348 

0.288 

0.262 

0.204 

0.170 

0.121 

0.350 

0.302 

0.207 

0.159 

0.207 

0.159 

0.01 
0.215 

0.156 

0.115 

0.080 

0.069 

0.049 

0.235 

0.175 

0.085 

0.057 

0.085 

0.057 

0.001 
0.104 

0.068 

0.037 

0.027 

0.022 

0.014 

0.127 

0.082 

0.029 

0.021 

0.029 

0.021 

We see from this Table also that, as before, for all BER 

parameters, 𝑃M > 𝑃? , hence it is necessary to execute the 

protocol PIMC in order to provide the opposite situation (𝑃MV <𝑃?V ). We show in the sequel how to do it.  

V.  OPTIMIZATION OF KEY-SHARING PROTOCOL PARAMETERS 

IN ORDER TO PROVIDE GIVEN SECURITY AND RELIABILITY 

It has been proved by the Enhanced Privacy Amplification 

Theorem [19], that the eavesdropper’s expected Shannon 

information Io about the final key sequence shared by 

legitimate users, satisfies the inequality: 

 𝐼� 	≤ 	 0�(�����W���)�	M'0 	, (17) 

where k is the length of the string x generated by A and B after 

a completion of the protocol PIMC, 𝑡� is the Renyi (or 

collision) information obtained by eavesdropper E about the 

string x received by E through a BSC with BER equal to P�V , 𝑟 

is the number of check bits sent by one of legitimate users to 

another one in order to reconcile their string, 𝑙� is the length 

of the final key, α is a coefficient that approaches to 0.42 for 

any fixed	𝑟, as 𝑘, 𝑟 and 𝑘 − 𝑟 are increasing (we recall that 

the privacy amplification procedure, providing the inequality 

(17), can be performed in two stages: firstly with the use of a 

hash function chosen randomly from universal2 class and, 

secondly, by special “puncturing” of hash string [19]). 

Let us consider a scenario, that allows to optimize 

parameters: 𝑘, 𝑟, 𝑆 (see (11), (12)) for given prior values 𝑙�, 𝐼� 

and 𝑃?�e  – the probability of incorrect decoding of final key 

string. 

1. Given 𝐼�, find the bound value 

 𝑘 − 𝑡� − 𝑙� − 𝑟 = −log2(𝐼� 	𝛼	ln2) = 𝜆> (18) 

2. Calculate the value Renyi entropy [19]: 

 𝐻� = −log2 [𝑃?V 0 + (1 − 𝑃?V )0  ̂ (19) 

3. Taking into account the relation 

 𝑡� = 𝑘 − 𝑘𝐻�, (20) 

we get by (18) 

 𝑘𝐻� − 𝑟 = 𝜆> + 𝑙�. (21) 

4. In order to provide a decreasing of 𝑃?�e  for bit string of 

length k and with execution of r check bits it is necessary to 

satisfy Shannon’s inequality [21]: 

 
k
kY� 	< 𝐶, (22) 

where  

 𝐶 = 1 + 𝑃MV log2𝑃MV + (1 − 𝑃MV)log2(1 − 𝑃MV)     (23) 

5. Substituting (19) into (20) and considering (21) jointly 

with (22) (taken as equality) it is possible to solve the linear 

system of equations with respect to 𝑘 and 𝑟. 

We can take different values 𝑃M, 𝑃? from simulation results 

(see Tables 1, 2) and, by varying the parameter S into (11), 

(12), to obtain the new values 𝑃MV ,		𝑃?V , that would improve our 

protocol. For example one could increase the length of final 

key 𝑙� or to make it more secure by decreasing the value 𝐼�. It 

is worth to note that we do not find so far a final key reliability 

in terms of the value 𝑃?�e   but we only guaranty (due to 

Shannon’s theorem) the existence of such encoding and 

decoding procedures that provide an approaching of this 

probability to zero. 

Selection of the constructive encoding/decoding 

procedures requires further research. Seemingly, it should be 

of well known class of codes like LDPC. The later approaches 

the Shannon limit for large block lengths [20]. But before we 

face with some examples, it is necessary to fix the value Io by  

a reasonable manner. Let us present a lower bound for 𝑃?�e   

based on Fano’s inequality [21]: 

 𝐻(𝑈/𝑉) ≤ 	ℎ(𝑃?�e 	)	+	𝑃?�e 		log2(𝑀 − 1), (24) 

where 𝐻(𝑈/𝑉) is conditional entropy for eavesdropper E; 

 ℎ(𝑥) = −𝑥	log2𝑥	–	(1 − 𝑥)log2(1− 𝑥), 0 ≤ 𝑥 ≤ 1	 (25) 

M is the number of possible keys (in our case it is equal to 

2M�); 𝑃?�e  is the probability of incorrect decoding that means a 

transition of the key string to another one (it is worth to note 

that the meaning of inequality (24) is the following: if entropy 

𝐻(𝑈/𝑉) is large, then the probability 𝑃?�e   of incorrect 

decoding cannot be small). The graph of the function 

𝜇6𝑃?�e 	: = ℎ(𝑃?�e 	) 	+	𝑃?�e 		log2(𝑀 − 1) is shown in Fig. 3. 

 

We can see from Fig. 3 that if H(U/V) is larger than some 

value, say Ho, then 𝑃?�e   should be at least 𝑃��� 	 (see Fig. 3). 

Thus for given M = 2lo and Io, we can find the lower bound 
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for 𝑃?�e  and if it occurs very close to the value (M-1)/M (the 

probability of a random key string guessing) then it is 

assumed that the key sharing protocol is secure. If we let Io = 

10-3, M = 264, then H(U/V) = 64 – 0.001 = 63.999. Using the 

graph of 𝜇(𝑃?�e ) we get that 𝑃?�e  is sufficiently close to the 

case of random guessing (M-1)/M. 

 

 

Fig. 3. Graph of function 𝜇(𝑃?�e ) against 𝑃?�e .  

 

 Examples: 

1. Let us take from Table 2 the parameters 𝑛 ×𝑚 = 4 × 4, 

𝜎0 = 0.1. Then 𝑃? = 0.29, 𝑃M = 0.35. Select S = 5 in (12), 

(13). Then we get by (12, 13) 𝑃MV = 0.043, 𝑃?V = 0.15, 𝐻� =0.425 and C = 0.439 by (20) and (24). Selecting λ1 = 10, l0 = 

64 and following to the scenario steps 1÷5, we get finally for 

key size 64 bit k = 1058, r = 374, Io ≤ 2-10 ≈ 10-3. 

2. Let us take the same as in Example 1 initial parameters 

𝑃M, 𝑃? and the same S = 5. But let us increase λ1 till 30. Then 

we get finally k = 1337, r = 472, Io ≤ 2-30 ≈ 10-9. 

So we can see that it is possible to provide better security 

by changing protocol parameters. Because in this case the 

inequality (23) coincides with equality, it is necessary to 

decrease slightly the parameter k in order to provide 

approaching of Ped to zero by Shannon theorem. 

3. Let us increase the key size l0 up to 128, because the most 

of contemporary encryption standards (like GOSI-2015 and 

AES) have namely such key sizes. We assume the same initial 

probabilities 𝑃M, 𝑃? as before and the same S = 5. Following to 

scenario steps 1÷5 we get the parameters: k = 2228, r = 787. 

Io ≤ 2-30 ≈ 10-9. We can see from this example that it is possible 

to share more longer key with a good security at the cost more 

longer error correcting code. 

4. In this example we consider the case of key bit extraction 

from matrix traces (see Table 1). 

Let us select the parameters 𝑛 ×𝑚 = 4 × 4, 𝜎0 = 0.1. 

Then we can see from Table 1 that 𝑃M = 0.348, 𝑃? = 0.274. 

Selecting parameter S = 7, we get by (12), (13) that 𝑃MV  = 0.012, 

𝑃?V  = 0.095. Following to scenario steps 1÷5 we compute for 

lo = 128, that k = 962, r = 101, Io ≈ 10-9. 

We can see that having selected such protocol parameters 

𝑛 ×𝑚 and NSR = σ2, we can perform a tradeoff between 

security (𝐼�), reliability (𝑃?�) and error correction procedure 

complexity that is proportional to k and r. 

In Fig. 4 there is presented a diagram of all procedures that 

must be executed in order to complete the key sharing 

protocol among legitimate users connected by noiseless, 

public and constant parameter communication channel. There 

is a new block (verification of key string authenticity) that has 

not been discussed before. In fact, this procedure is requested 

for any key sharing protocol in presence of an active 

adversary (eavesdropper). Otherwise the adversary can 

impersonate legitimate users and eventually share with them 

common key. It is common to use authentication method 

based on the so-called short-key [22]. The Needham-Schroder 

authentication protocol [23] can be used if users have initially 

distributed, by some trusted center, short keys. 

 

  

Fig. 4. Diagram of the whole key sharing protocol. 

 

Another way is if users can provide the so-called paring 

procedure during their “face to face” meeting (like Mag 

Pairing or Physical vibration [24, 25]. 

It is interesting to estimate (at least roughly) the length of 

the whole protocol (in transmitting channel bytes). Our 

computations show that the whole key sharing protocol 

requires about 100 Kbytes channel uses to produce 128 key 

bits. 
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VI. CONCLUSION

We  have  proposed  key  sharing  protocol  for  noiseless

public  constant  parameter  communication  channels  (like

Internet or “Direct seen”). The main novelty of our scenario

is that  it is not based on some unrealistic assumptions like

given  SNR,  cryptographic  assumption  for  eavesdropper

(hard factoring problem) or multipath wave propagation, that

is different for legitimate users and eavesdropper. The core

of our protocol is the Scheme EVSKey proposed in [15]. But

we proved that such protocol itself is insecure. Therefore we

modified it by introducing artificial noise by legitimate users

that  does  not  allow  to  decrease  this  noise  power  by

eavesdropper. Next we apply effective procedure of privacy

amplification that provides both security and reliability for

legitimate  users.  It  is  worth  to  note  that  good  statistical

properties of the final key string follow directly from such

properties of truly random generated γ (see Fig. 2). It seems

at a first glance that the paper [26] was devoted also to a

solution of the same problem as our paper.  In fact,  it  has

only  one  common  notion  –  “artificial  noise”,  but  many

differences, namely:

- we consider  key sharing problem, instead of secure

information transmission as in [26] ,

 in [26] it is executed either a MIMO system in fading

channels  or  a  set  of  “helpers”;  our  protocol  is  used  in

constant  parameter  public  channel  due  to  information

exchange between two users,

 in [26] it is created noise in “zero-space”, whereas we

execute special protocol imposing to eavesdropper artificial

noise, 

 in [26] it is provided zero noise by “zero-forcing”, but

we provide a lower bound only for noise power,

 finally, in [26] it is guaranteed only some given secrecy

capacity, but it is unknown how to realize it, namely how to

provide constructive encoding/decoding procedures? But we

on the  contrary  calculate  Shannon  information  leakage  to

eavesdropper  after  application  of  the  known  privacy

amplification procedure and find the parameters n and k for

linear  error  correcting  codes.  Next  investigations  in  the

direction of artificial noise can be found in [27, 28]. 

The problems for further investigation are: 

 consideration  of  constructive  error  correction

procedures and 

 elaboration of effective authentication algorithm against

an active adversary.
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