


Abstract—This article presents a novel approach to seg-

mentation and counting of objects in color digital images. The

objects belong to a certain class, which in this case are honey

bees. The authors briefly present existing approaches which use

Convolutional Neural Networks to solve the problem of image

segmentation and object recognition. The focus however is on

application of U-Net convolutional neural network in an

environment where knowledge about the object of interest is

only limited to its rough, single pixel location. The authors

provide full access to the details of the code used to implement

the algorithms, as well as the data sets used and results

obtained. The results show an encouraging low level of

counting error at 14.27% for the best experiment.

I. INTRODUCTION

ONVOLUTIONAL Neural Networks (CNNs)

are considered state of the art architectures for object

detection and segmentation in color images [1]-[4]. In this

article we apply a specific type of CNN, called U-Net CNN

(UNETCNN) [5], [6], to count instances of honey bees

in color images captured by digital video camera.

The dataset was sourced from [7] and is freely available

to anyone who wishes to test their own bee counting

routines. We are proposing a novel way of preparing data

modeling for a UNETCNN, where the only information

available, about the object of interest (OOI), is its

approximate location, defined as a single point in two

dimensional planes. Majority of research in the area

of CNNs assumes that an OOI location is provided by

a rectangle tightly encompassing its border [4]. We propose

to use a circle with its center placed on the OOI.

The assumption is: we are not focusing on finding exact

boundaries of OOI, but rather on counting instances

of the OOI, versus manually provided data

in a segmentation set. As we are going to show in this paper,

it is not necessary to cover an OOI with a bounding box, to

achieve high classification accuracy. Instead we are only

considering a location of a pixel lying on the surface of an

C

 This work was supported by Statutory Research funds of Institute

of Informatics, Silesian University of Technology, Gliwice, Poland

(BK/204/RAU2/2019).

OOI. The location of the pixel constitutes a center of a small

circle, which contains pixels belonging mostly to OOI and

partially to the background. This step is called UNETCNN

data generation. Following that, we employ further steps:

training of UNETCNN, using the trained model for

automatic segmentation of OOI, automatic counting of OOI

instances. The final step allows computation of the relative

error by comparing the number of OOI instances that were

detected automatically versus how many of them were

manually labelled by a human.

The article is organized as follows. In section II we

discuss recent works in the area of adopting neural network

to solve the problem of speed and accuracy in image

recognition process including bee detection. We also present

UNETCNN architecture and give reasons for adapting it for

our own solution. Section III describes in details each stage

of our experiment and presents the results. In section IV we

summarize our work and discuss future directions which

could lead to interesting findings.

II.EXISTING APPROACHES TO BEE RECOGNITION PROBLEM

AND UNET CHARACTERISTIC

A. Different approaches to OOI detection

The bee detection problem was analyzed in [8] with

various scenarios according to diversity of background

characteristic, light intensity, bee size, image segmentation

and labelling efficiency etc. The experiment evaluation

helped us to decide which aspects of image recognition

are the most important in our experiment and suggested

the way of training set preparation. It also convinced

us that Adam optimizer [9] is a good choice for training our

neural network.

In [10] bees’ recognition problem is discussed in the field

of different methods of object recognition. CNNs

are compared with Multi-Layer Perceptron (MLP) models.

According to the experiments and results presented in that

Counting Instances of Objects in Color Images Using U-Net

Network on Example of Honey Bees

Weronika W. Westwańska
Zespół Szkół Stowarzyszenia Rodzin

Katolickich Archidiecezji Katowickiej

im. Kardynała Prymasa Augusta Hlonda

ul. Kościuszki 11, 41-500 Chorzów, Poland

Email:

mkw.weronika.westwanska@gmail.com

Jerzy S. Respondek
Silesian University of Technology,

Institute of Informatics, AEI Faculty,

ul. Akademicka 16, 44-100 Gliwice, Poland

Email: jerzy.respondek@polsl.pl

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 87–90

DOI: 10.15439/2019F94

ISSN 2300-5963 ACSIS, Vol. 18

IEEE Catalog Number: CFP1985N-ART c©2019, PTI 87

paper, it was found that MLP performance is much worse

than CNN (taking into account the same dataset).

The author stated that ADAM optimizer [9] gave reliable

results in comparison to others. In terms of kernel size

it was suggested that choosing it as 5x5 pixels, provides

better performance of the model. In [10] it was noticed, that

one of the problems in proper classifying the bees

is a possible presence of bee shadow, which has got

the same shape as the bee.

B. UNet

UNETCNN is a NN architecture designed for image

segmentation, characterized by low demand on number

of annotated training images, and fast data processing.

In [5] the authors use medical images as source of training

data and demonstrate state of the art results, compared

to manual labelling, making this architecture a de facto

standard in medical images segmentation.

A typical UNETCNN consists of two paths. One (the

contracting path) is represented by a typical CNN with two

operations of convolution and max pooling following one

after another. This path reduces spatial information,

but provides better information where OOI

might be present. The second path (expansive) matches the

features extracted in contracting path using a sequence of

up-scaling transformations.

A game changing innovation in [5] was the fact that

a small set of training images can yield more precise

segmentations than larger training sets in other algorithms.

For a UNETCNN the training data is sourced from

the images by dividing them into smaller windows,

and then randomly chosen to be included in a training set.

Another feature of UNETCNN is that the algorithm

enables finding the solution not only for diverse data set,

but also for relatively similar data. Normally lack

of diversity would lead to difficulties in recognizing objects

in images which do not present features close to the ones

the network was trained on. In order to alleviate

this phenomenon and make the results independent

of the input data, an excessive data augmentation is used.

The network gains the data not only straight from the input

data, but also from elastic deformations of the training

images. This way the network training process can be

invariant to deformations even if the images used

in the process do not contain enough OOI. Recent works

on UNETCNN [6], [11]–[14] prove that this architecture

yields very good results and currently might be the best

for solving objects recognition problem not only for 2D

but also for 3D data.

In our approach we decided not to segment the training

data manually, because of the amount of time it would take.

We decided to verify if it would be practical to find a way of

solving the problem of manual segmentation,

by not providing bounding box or a mask for each object

in the image. We decided to segment images based only

on single points for each OOI located in any of the training

images.

III. THE PROPOSED SOLUTION

As we mentioned above, there are 4 stages applied

in OOI counting, each described in detail below.

For the purpose of our experiments, we decided to use data

set downloaded from [7]. At the time of performing

experiments, the dataset contained only 550 manually

labelled images. We enhanced this data set with a further

1086 images, manually labelled by us, using custom written

software. The algorithms examined in this work are

publicly available via [15].

A. Stage 1 – UNETCNN input data generation

As it was commented earlier we decided to adopt a shape

of a circle to describe part of an area belonging to each

OOI. As the input images are of size 640 x 480 pixels

we empirically set the size of the circle to be 16 pixels

in radius (which is fully configurable). The idea is that

when an OOI is labelled, a point is placed on its surface.

We assumed that the pixels lying within the nearest

neighborhood of the labelled location belong with a high

probability to the OOI itself. We decided to simulate such

a neighborhood with a circle of a chosen radius, where

the pixels lying more towards the circle’s edges are less
likely to be part of the OOI itself. A linear probability

decrease function is implemented with a minimum

probability Pmin declared for the edge of the circle

and maximum probability Pmax for the center of the circle.

We set these values to 0.99 and 1.0 respectively for circles

with radius of 16 pixels, and to 0.80 and 1.0 for circles with

radius of 20 pixels (within different sets of experiments –

see Table I). Any pixels lying outside of the circle are

considered to belong fully to the background. This approach

means that the problem becomes a binary classification one,

where we set class 0 as background, and class 1 as an OOI.

Any pixel in the generated modelling data has a probability

associated with it: background and foreground. Both

probabilities sum up to 1.0.

After all the images from the dataset were labelled, and

the parameters of the data generation decided (such as circle

radius, Pmin and Pmax), we could finally create a numeric

representation of the modelling data, stored as two separate

Python numpy files. The first file described the color RGB

channels of the pixels from the labelled images, normalized

to values between 0.0 and 1.0. The second file described

probability values for non OOI (NOOI) and OOI classes for

every pixel, meaning that each pixel has a 2 dimensional

feature vector associated with it.

The idea behind such generalization for the shape

of an OOI as a circle, was that we were dealing with bees,

which are relatively similar in size. We also were using the

88 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

fact that NN is working with fuzzy data, where we can

assume that a pixel can partially belong to the NOOI

and partially to the OOI. Based on that assumption

and the fact that training algorithms for NN find local

optimal solution we decided to test if this approach worked.

B. Stage 2 – Training UNETCNN model

In previous stage 1 we created 2 sets: one representing

samples X, and the second set Y representing corresponding

values mapped to probabilities of all the pixels from

modelling set. These sets stored on a hard drive are quite

large in size, depending on amount of images

in the modeling set. The X and Y sets, stored as Python

numpy files, were used as a source for training

of the UNETCNN model. The model we used was a slight

modification from the original, with last layers changed to

use 2 instances of RELU layer, followed by a Dropout layer

and SoftMax used for classification. This solution was

introduced to minimalize the risk of overfitting the network

and gave significant improvement according to results of

computations. SoftMax layer enabled classification of

background and foreground classes and would allow us to

use it for classification of more than only two classes in the

future.

In order to provide the training data for the UNETCNN,

the generated data had to be randomly accessed to retrieve

rectangular windows of pixels which contained modelling

samples for the OOI and the NOOI classes. We adopted

an algorithm, where each modeling image has a total of 80

(configurable value) windows randomly retrieved. Among

the 80 windows, a specific amount of windows

are considered as OOI windows and the rest are considered

as NOOI windows. In order for a window to be OOI based,

it has to pass a minimum percentage threshold for OOI

pixels count. The amount of OOI windows would vary

per image, depending on how many manually labelled OOI

samples were present, versus total OOI samples

in the modelling set. For example if image IMG1 had 2

OOIs labelled, and image IMG2 had 4 OOIs labelled,

then there would have to be 2 times less OOI based

windows randomly selected from IMG1 than compared

with a number of randomly selected OOI based windows

from IMG2. This individual approach was dictated to

preserve a balanced number of OOI and NOOI classes in

training data. The details of how the modelling set is

created from the data generated in Stage 1 are available in

[15].

The modelling data collected so far was then further split

into training and validation sets (80/20 ratio) to be used

in UNETCNN. On average we achieved a decent 96%

validation set accuracy.

C. Stage 3 – OOI Segmentation

After the UNETCNN model was trained we could use it

to perform OOI detection on images from segmentation set.

As it was mentioned in Stage 2, the model operates

on assumption that the input tensor used in classification

is of certain dimensions. In our experiments the dimensions

were Nx32x32x3, where N is the number of windows

collected from the segmented image, 32x32 are width

and height of the window, and 3 stands for RGB channels

normalized to [0,1] interval. The value of 32 is also

configurable within the source code, and corresponds

to diameter of the OOI modelling circle from Stage 1 [15].

We propose a custom approach for segmenting an input

image, where a set of windows meshes is created. A single

mesh is started at a specific (x, y) offset from the top left

corner of a segmented image. The idea is to cover as much

of the image as possible with windows tightly attached

to each other, where every window needs to be wholly

fitting into the image. The windows and their pixel RGB

values would create a set which is then classified

by the trained UNETCNN model from stage 2. The results

of each mesh’s classification were then added into a special

matrix with values taken for OOI class at corresponding

locations to the mesh pixels. Another matrix is also kept

to count how many classifications were computed for each

pixel from the segmented image. In the end, when all

meshes are classified, the accrued classification results

are scaled (using the accumulated classification counts),

so that a heat map is created. The meshes created

for the segmentation process are generated at a specified

step of 2 pixels (configurable value) from coordinates

of (0, 0) to (32, 32), where 32 is a size of classification

window for UNETCNN.

The fore mentioned heat map is later converted

to a binary image, where each pixel is decided to be

as a part of the OOI or part of the background, based

on the scaled voting produced by meshes.

D. Experiments - Counting OOI

In our experiments we decided to examine how different

parameters affect counting error which is expressed

as a difference between 100% and a percentage

of automatically detected instances of OOI (bees) versus

total amount of manually labelled instance of OOI.

In Table I we present OOI relative counting error,

dependent on modelling size set and window size used

for training of U-Net and further segmentation. The error

progression is visualized in Fig. 1. Minimum percentage of

pixels per window, so that can be considered as an OOI

based window, was set as 45 and 50 for Experiment 1 and

Experiment 2 respectively. More details can be found in

logs provided in [15]. It turns out that the more images are

available, the better results. Interestingly, error started

dropping dramatically at about 500 images, reaching its

JERZY RESPONDEK, WERONIKA WESTWAŃSKA: COUNTING INSTANCES OF OBJECTS SPECIFIED BY VAGUE LOCATIONS 89

minimum value for full modelling set size of 1096 images

with the OOI window size set at 40 pixels (Experiment 1).

TABLE I.

BEES COUNTING ERROR DEPENDING ON AMOUNT OF IMAGES USED IN

MODELING SET ALONG WITH WINDOW SIZE

Attempt

number

[Modeling images count, window

size]

OOI Relative

Counting Error

1 [100,40] 75.08%

2 [200, 40] 73.00%

3 [500, 40] 24.23%

4 [1000, 40] 16.83%

5 [1096, 40] 14.27%

6 [100, 32] 75.24%

7 [200, 32] 74.55%

8 [500, 32] 26.35%

9 [1000, 32] 16.87%

10 [1096, 32] 18.17%

Fig. 1 OOI Counting Relative Error for experiments on parameters set 1and

set 2.

IV. CONCLUSIONS

In this article we presented a review of the most recent

methods of OOI segmentation and detection. Based on these

we chose a UNETCNN architecture which we adapted

to a fairly new topic of counting of OOI, based only on their

singular locations in the training set. We developed a new

approach for generating modeling data, using the trained

UNETCNN for segmentation, and further for counting

occurrences of OOI in the validation set. We reached

a satisfactory level of error at 14.27%, which encourages

us to pursue this topic further. The experiments performed

show that the training data preparation does not have

to be mundane and time consuming and just a few hours

spent on the process of labeling images can yield good

results, not only in terms of counting error reduction

but also decent outcome in OOI segmentation. The Python

code which was developed for the purpose of this research

is available freely to anyone from [15]. We would like

to thank Mr. Jonathan Byrne for making his data set

available in [7].

REFERENCES

[1] I. Goodfellow, Y. Bengio, A.Courville, Deep Learning, Cambridge CA:

Massachusetts, pp. 321–359, 2016.

https://www.deeplearningbook.org/

[2] E.R Davies, Computer Vision. Principles, Algorithms, Applications,

Learning, 5th ed., London, pp. 456–462, 2018.

[3] R. Yamashita, M. Nishio, R. Kinh Gian Do, K. Togashi, "Convolutional

neural networks: an overview and application in radiology", Insights into

Imaging, vol. 9, pp. 611–629, 2018.

https://doi.org/10.1007/s13244-018-0639-9

[4] Z. Zhao, P. Zheng, S. Xu, X. Wu, “Object detection with deep learning:

A Review”, Journal of Latex Class Files, vol. 14, no. 8, 2017

https://doi.org/10.1109/TNNLS.2018.2876865

[5] O. Ronneberger, P. Fischer, T. Brox, “U-Net: convolutional networks for

biomedical image segmentation”, International Conference on Medical

Image Computing and Computer-Assisted Intervention, pp. 234–241,

2015.

https://doi.org/10.1007/978-3-319-24574-4_28

[6] K. H. Jin, M. T. McCann, E. Froustey and M. Unser, "Deep

convolutional neural network for inverse problems in imaging", IEEE

Transactions on Image Processing, vol. 26, no. 9, pp. 4509-4522, 2017.

https://doi.org/10.1109/TIP.2017.2713099

[7] https://www.kaggle.com/jonathanbyrne/to-bee-or-not-to-bee, accessed on

the 1st of February 2019.

[8] M. Kelcey, “Counting bees on a rasp pi with a conv net”, 2018.

http://matpalm.com/blog/counting_bees

[9] P. Kingma, J. Lei Ba, “ADAM: a method for stochastic optimization”,
arXiv preprint arXiv:1412.6980, 2014.

https://arxiv.org/abs/1412.6980

[10] A. Tiwari, “A deep learning approach to recognizing bees in video

analysis of bee traffic”, Utah State University All Graduate Theses and

Dissertations, 7076, 2018.

https://digitalcommons.usu.edu/etd/7076/

[11] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger,

“3D U-Net: Learning dense volumetric segmentation from sparse

annotation”, Medical Image Computing and Computer-Assisted

Intervention, vol. 9901, pp. 424–432, 2016.

https://doi.org/10.1007/978-3-319-46723-8_49

[12] J. Chen, L. Yang, Y. Zhang, M. Alber, D.Z. Chen, “Combining Fully

Convolutional and Recurrent Neural Networks for 3D Biomedical

Image Segmentation”, NIPS'16 Proceedings of the 30th International
Conference on Neural Information Processing Systems, pp. 3044–
3052, 2016.

https://arxiv.org/abs/1609.01006

[13] J.P. Vigueras-Guillén,B. Sari, S.F. Goes, H.G. Lemij, J. van Rooij, K.A.

Vermeer, L.J. van Vliet, "Fully convolutional architecture vs sliding-

window CNN for corneal endothelium cell segmentation", BMC

Biomedical Engineering, vol. 1, 2019.

https://doi.org/10.1186/s42490-019-0003-2

[14] S. Baek, Y. He, B.G. Allen, J.M. Buatti, B.J. Smith, K. A. Plichta, et al.

“What does AI see? Deep segmentation networks discover biomarkers

for lung cancer survival”, 2019.
https://arxiv.org/abs/1903.11593

[15] https://github.com/WeronikaWestwanska/ToBeOrNotToBee, accessed

on the 8th of May 2019.

90 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019

