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Abstract—This  article  presents  a  novel  approach  to  seg-

mentation and counting of objects in color digital images. The

objects belong to a certain class, which in this case are honey

bees. The authors briefly present existing approaches which use

Convolutional Neural Networks to solve the problem of image

segmentation and object recognition. The focus however is on

application  of  U-Net  convolutional  neural  network  in  an

environment where knowledge about the object of interest is

only  limited  to  its  rough,  single  pixel  location.  The  authors

provide full access to the details of the code used to implement

the  algorithms,  as  well  as the data  sets  used  and  results

obtained.  The  results  show  an encouraging  low  level  of

counting error at 14.27% for the best experiment.

I. INTRODUCTION

ONVOLUTIONAL Neural  Networks  (CNNs)

are considered state of the art  architectures  for object

detection and segmentation in color images [1]-[4]. In this

article we apply a specific type of CNN, called U-Net CNN

(UNETCNN)  [5],  [6],  to  count  instances  of  honey  bees

in color  images  captured  by  digital  video  camera.

The dataset  was  sourced  from  [7]  and  is  freely  available

to anyone  who  wishes  to  test  their  own  bee  counting

routines.  We are proposing a novel way of preparing data

modeling  for  a  UNETCNN,  where  the  only  information

available,  about  the  object  of  interest  (OOI),  is  its

approximate  location,  defined  as  a  single  point  in  two

dimensional  planes.  Majority  of  research  in  the  area

of CNNs  assumes  that  an  OOI  location  is  provided  by

a rectangle tightly encompassing its border [4]. We propose

to  use  a  circle  with  its  center  placed  on  the  OOI.

The assumption  is:  we  are  not  focusing  on  finding  exact

boundaries  of  OOI,  but  rather  on  counting  instances

of the OOI,  versus  manually  provided  data

in a segmentation set. As we are going to show in this paper,

it is not necessary to cover an OOI with a bounding box, to

achieve  high  classification  accuracy.  Instead  we are only

considering a location of a pixel lying on the surface of an
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OOI. The location of the pixel constitutes a center of a small

circle, which contains pixels belonging mostly to OOI and

partially to the background. This step is called UNETCNN

data  generation.  Following  that,  we employ  further  steps:

training  of  UNETCNN,  using  the  trained  model  for

automatic segmentation of OOI, automatic counting of OOI

instances. The final step allows computation of the relative

error by comparing the number of OOI instances that were

detected  automatically  versus  how  many  of  them  were

manually labelled by a human.

The  article  is  organized  as  follows.  In  section  II  we

discuss recent works in the area of adopting neural network

to  solve  the  problem  of  speed  and  accuracy  in  image

recognition process including bee detection. We also present

UNETCNN architecture and give reasons for adapting it for

our own solution. Section III describes in details each stage

of our experiment and presents the results. In section IV we

summarize  our  work  and  discuss  future  directions  which

could lead to interesting findings.

II.EXISTING APPROACHES TO BEE RECOGNITION PROBLEM

AND UNET CHARACTERISTIC

A. Different approaches to OOI detection

The  bee  detection  problem  was  analyzed  in  [8]  with

various  scenarios  according  to  diversity  of  background

characteristic, light intensity, bee size, image segmentation

and  labelling  efficiency  etc.  The  experiment  evaluation

helped  us  to  decide  which  aspects  of  image  recognition

are the  most  important  in  our  experiment  and  suggested

the way  of  training  set  preparation.  It  also  convinced

us that Adam optimizer [9] is a good choice for training our

neural network.

In [10] bees’ recognition problem is discussed in the field

of  different  methods  of  object  recognition.  CNNs

are compared with Multi-Layer Perceptron (MLP) models.

According to the experiments and results presented in that
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paper, it was found that MLP performance is much worse 

than CNN (taking into account the same dataset). 

The author stated that ADAM optimizer [9] gave reliable   

results in comparison to others. In terms of kernel size 

it was suggested that choosing it as 5x5 pixels, provides 

better performance of the model. In [10] it was noticed, that 

one of the problems in proper classifying the bees 

is a possible presence of bee shadow, which has got 

the same shape as the bee. 

B. UNet 

UNETCNN is a NN architecture designed for image 

segmentation, characterized by low demand on number 

of annotated training images, and fast data processing. 

In [5] the authors use medical images as source of training 

data and demonstrate state of the art results, compared 

to manual labelling, making this architecture a de facto 

standard in medical images segmentation. 

A typical UNETCNN consists of two paths. One (the 

contracting path) is represented by a typical CNN with two 

operations of convolution and max pooling following one 

after another. This path reduces spatial information, 

but provides better information where OOI 

might be present. The second path (expansive) matches the 

features extracted in contracting path using a sequence of 

up-scaling transformations.  

A game changing innovation in [5] was the fact that 

a small set of training images can yield more precise 

segmentations than larger training sets in other algorithms. 

For a UNETCNN the training data is sourced from 

the images by dividing them into smaller windows, 

and then randomly chosen to be included in a training set. 

Another feature of UNETCNN is that the algorithm 

enables finding the solution not only for diverse data set, 

but also for relatively similar data. Normally lack 

of diversity would lead to difficulties in recognizing objects 

in images which do not present features close to the ones 

the network was trained on. In order to alleviate 

this phenomenon and make the results independent 

of the input data, an excessive data augmentation is used. 

The network gains the data not only straight from the input 

data, but also from elastic deformations of the training 

images. This way the network training process can be 

invariant to deformations even if the images used 

in the process do not contain enough OOI. Recent works 

on UNETCNN [6], [11]–[14] prove that this architecture 

yields very good results and currently might be the best 

for solving objects recognition problem not only for 2D 

but also for 3D data. 

In our approach we decided not to segment the training 

data manually, because of the amount of time it would take. 

We decided to verify if it would be practical to find a way of 

solving the problem of manual segmentation, 

by not providing bounding box or a mask for each object 

in the image. We decided to segment images based only 

on single points for each OOI located in any of the training 

images. 

III. THE PROPOSED SOLUTION 

As we mentioned above, there are 4 stages applied 

in OOI counting, each described in detail below. 

For the purpose of our experiments, we decided to use data 

set downloaded from [7]. At the time of performing 

experiments, the dataset contained only 550 manually 

labelled images. We enhanced this data set with a further 

1086 images, manually labelled by us, using custom written 

software. The algorithms examined in this work are 

publicly available via [15]. 

A. Stage 1 – UNETCNN input data generation 

As it was commented earlier we decided to adopt a shape 

of a circle to describe part of an area belonging to each 

OOI. As the input images are of size 640 x 480 pixels 

we empirically set the size of the circle to be 16 pixels 

in radius (which is fully configurable). The idea is that 

when an OOI is labelled, a point is placed on its surface. 

We assumed that the pixels lying within the nearest 

neighborhood of the labelled location belong with a high 

probability to the OOI itself. We decided to simulate such 

a neighborhood with a circle of a chosen radius, where 

the pixels lying more towards the circle’s edges are less 
likely to be part of the OOI itself. A linear probability 

decrease function is implemented with a minimum 

probability Pmin declared for the edge of the circle 

and maximum probability Pmax for the center of the circle. 

We set these values to 0.99 and 1.0 respectively for circles 

with radius of 16 pixels, and to 0.80 and 1.0 for circles with 

radius of 20 pixels (within different sets of experiments – 

see Table I). Any pixels lying outside of the circle are 

considered to belong fully to the background. This approach 

means that the problem becomes a binary classification one, 

where we set class 0 as background, and class 1 as an OOI. 

Any pixel in the generated modelling data has a probability 

associated with it: background and foreground. Both 

probabilities sum up to 1.0. 

After all the images from the dataset were labelled, and 

the parameters of the data generation decided (such as circle 

radius, Pmin and Pmax), we could finally create a numeric 

representation of the modelling data, stored as two separate 

Python numpy files. The first file described the color RGB 

channels of the pixels from the labelled images, normalized 

to values between 0.0 and 1.0. The second file described 

probability values for non OOI (NOOI) and OOI classes for 

every pixel, meaning that each pixel has a 2 dimensional 

feature vector associated with it. 

The idea behind such generalization for the shape 

of an OOI as a circle, was that we were dealing with bees, 

which are relatively similar in size. We also were using the 

88 PROCEEDINGS OF THE FEDCSIS. LEIPZIG, 2019



 

 

 

 

fact that NN is working with fuzzy data, where we can 

assume that a pixel can partially belong to the NOOI 

and partially to the OOI. Based on that assumption 

and the fact that training algorithms for NN find local 

optimal solution we decided to test if this approach worked. 

B. Stage 2 – Training UNETCNN model 

In previous stage 1 we created 2 sets: one representing 

samples X, and the second set Y representing corresponding 

values mapped to probabilities of all the pixels from 

modelling set. These sets stored on a hard drive are quite 

large in size, depending on amount of images 

in the modeling set. The X and Y sets, stored as Python 

numpy files, were used as a source for training 

of the UNETCNN model. The model we used was a slight 

modification from the original, with last layers changed to 

use 2 instances of RELU layer, followed by a Dropout layer 

and SoftMax used for classification. This solution was 

introduced to minimalize the risk of overfitting the network 

and gave significant improvement according to results of 

computations. SoftMax layer enabled classification of 

background and foreground classes and would allow us to 

use it for classification of more than only two classes in the 

future. 

In order to provide the training data for the UNETCNN, 

the generated data had to be randomly accessed to retrieve 

rectangular windows of pixels which contained modelling 

samples for the OOI and the NOOI classes. We adopted 

an algorithm, where each modeling image has a total of 80 

(configurable value) windows randomly retrieved. Among 

the 80 windows, a specific amount of windows 

are considered as OOI windows and the rest are considered 

as NOOI windows. In order for a window to be OOI based, 

it has to pass a minimum percentage threshold for OOI 

pixels count. The amount of OOI windows would vary 

per image, depending on how many manually labelled OOI 

samples were present, versus total OOI samples 

in the modelling set. For example if image IMG1 had 2 

OOIs labelled, and image IMG2 had 4 OOIs labelled, 

then there would have to be 2 times less OOI based 

windows randomly selected from IMG1 than compared 

with a number of randomly selected OOI based windows 

from IMG2. This individual approach was dictated to 

preserve a balanced number of OOI and NOOI classes in 

training data. The details of how the modelling set is 

created from the data generated in Stage 1 are available in 

[15]. 

The modelling data collected so far was then further split 

into training and validation sets (80/20 ratio) to be used 

in UNETCNN. On average we achieved a decent 96% 

validation set accuracy. 

C. Stage 3 – OOI Segmentation 

After the UNETCNN model was trained we could use it 

to perform OOI detection on images from segmentation set. 

As it was mentioned in Stage 2, the model operates 

on assumption that the input tensor used in classification 

is of certain dimensions. In our experiments the dimensions 

were Nx32x32x3, where N is the number of windows 

collected from the segmented image, 32x32 are width 

and height of the window, and 3 stands for RGB channels 

normalized to [0,1] interval. The value of 32 is also 

configurable within the source code, and corresponds 

to diameter of the OOI modelling circle from Stage 1 [15]. 

We propose a custom approach for segmenting an input 

image, where a set of windows meshes is created. A single 

mesh is started at a specific (x, y) offset from the top left 

corner of a segmented image. The idea is to cover as much 

of the image as possible with windows tightly attached 

to each other, where every window needs to be wholly 

fitting into the image. The windows and their pixel RGB 

values would create a set which is then classified 

by the trained UNETCNN model from stage 2. The results 

of each mesh’s classification were then added into a special 

matrix with values taken for OOI class at corresponding 

locations to the mesh pixels. Another matrix is also kept 

to count how many classifications were computed for each 

pixel from the segmented image. In the end, when all 

meshes are classified, the accrued classification results 

are scaled (using the accumulated classification counts), 

so that a heat map is created. The meshes created 

for the segmentation process are generated at a specified 

step of 2 pixels (configurable value) from coordinates 

of (0, 0) to (32, 32), where 32 is a size of classification 

window for UNETCNN. 

The fore mentioned heat map is later converted 

to a binary image, where each pixel is decided to be 

as a part of the OOI or part of the background, based 

on the scaled voting produced by meshes. 

D. Experiments - Counting OOI 

In our experiments we decided to examine how different 

parameters affect counting error which is expressed 

as a difference between 100% and a percentage 

of automatically detected instances of OOI (bees) versus 

total amount of manually labelled instance of OOI.  

In Table I we present OOI relative counting error, 

dependent on modelling size set and window size used 

for training of U-Net and further segmentation. The error 

progression is visualized in Fig. 1. Minimum percentage of 

pixels per window, so that can be considered as an OOI 

based window, was set as 45 and 50 for Experiment 1 and 

Experiment 2 respectively. More details can be found in 

logs provided in [15]. It turns out that the more images are 

available, the better results. Interestingly, error started 

dropping dramatically at about 500 images, reaching its 
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minimum value for full modelling set size of 1096 images 

with the OOI window size set at 40 pixels (Experiment 1). 

TABLE I. 

BEES COUNTING ERROR DEPENDING ON AMOUNT OF IMAGES USED IN 

MODELING SET ALONG WITH WINDOW SIZE 

Attempt 

number 

[Modeling images count,   window 

size] 

OOI Relative 

Counting  Error 

1 [100,40] 75.08% 

2 [200, 40] 73.00% 

3 [500, 40] 24.23% 

4 [1000, 40] 16.83% 

5 [1096, 40] 14.27% 

6 [100, 32] 75.24% 

7 [200, 32] 74.55% 

8 [500, 32] 26.35% 

9 [1000, 32] 16.87% 

10 [1096, 32] 18.17% 

 

 
Fig.  1 OOI Counting Relative Error for experiments on parameters set 1and 

set 2.  

IV. CONCLUSIONS 

In this article we presented a review of the most recent 

methods of OOI segmentation and detection. Based on these 

we chose a UNETCNN architecture which we adapted 

to a fairly new topic of counting of OOI, based only on their 

singular locations in the training set. We developed a new 

approach for generating modeling data, using the trained 

UNETCNN for segmentation, and further for counting 

occurrences of OOI in the validation set. We reached 

a satisfactory level of error at 14.27%, which encourages 

us to pursue this topic further. The experiments performed 

show that the training data preparation does not have 

to be mundane and time consuming and just a few hours 

spent on the process of labeling images can yield good 

results, not only in terms of counting error reduction 

but also decent outcome in OOI segmentation. The Python 

code which was developed for the purpose of this research 

is available freely to anyone from [15]. We would like 

to thank Mr. Jonathan Byrne for making his data set 

available in [7]. 
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