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Abstract—We use representatives to reduce complexity in many
areas of life. Clusters are often replaced with their centre, and
then these representatives are used to classify new objects. If
the objects are described as a vector of real numbers, then the
centre can be easily calculated. However, this method is unusable
if only a similarity relation is given instead of coordinates of the
object or the distances between the objects. Google can filter
and rank relevant pages for a particular question; and here we
follow a similar approach. The difference is that we have an
undirected graph while the PageRank algorithm uses a directed
one. In this article we show what conditions we set for our own
ranking system. Following the description of the details of this
method we demonstrate that it satisfies our criteria and how
it selects the (mathematically proven) most typical elements of
each cluster. Finally, we apply this method on several partitions
of the natural numbers and on non-transitive tolerance relations
to present the representatives of the numbers.

I. INTRODUCTION

INSTEAD of examining the entire population, polls usually

only survey a small sample. This can be done because

the results obtained are very close to what we would get by

examining the entire population. However, the sample should

be selected carefully. Almost everyone knows the concept of

the representative sample, but only few know exactly what

it means. Many people think that the larger the sample, the

better; which is not true. The sample is representative in some

respects, i.e., the specific properties are as similar in the sample

as in the entire population. The sample can be representative

in one aspect, while not representative in another. There are

various standard methods for determining the sample.

If the population is significantly inhomogeneous, i.e. it has

high variability according to the survey, then the stratified

(random) sampling is used. In this case, the population is

divided into several sub-populations (strata), where these sub-

populations are homogeneous according to the examined cri-

teria. From a homogeneous strata, we can randomly select the

individuals to be sampled (i.e., the representative of the group),

typically in proportion to the size of the group.

If we can represent an object with a vector of num-

bers, we can consider the difference of vectors belonging

to each object, where this difference/distance usually meets

the requirements of metrics. Using this distance function,

many clustering methods have been developed over the last
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sixty years. The most well-known k-means method replaces

a cluster with its centre (one representative). The k-medoids

algorithm is a version of this k-means method, and it replaces

the cluster with the sample element closest to the cluster

centre. The CURE method (clustering using representatives)

goes one step further, replacing non-ellipsoid clusters with

maximum c sample elements. The most common use of k-

means (or its enhancements) is the k-nearest neighbours (k-

NN) classification algorithm, where newly added objects must

be categorized into an existing cluster/class. Since comparing

the new elements with all stored elements in a large database

is a time costly task, by replacing the elements of the clusters

with some of their representatives we can significantly reduce

the complexity of the classification of new elements.

Polls can not ask too many questions from a person because

their patience is finite. However, there are cases where we

leave behind a lot of information, think for example our

medical cards, our data stored at different kinds of service

providers, or our digital footprint on the social network. In

these cases, it is not worth transforming this information into

a unified form in order to be able to define the differences

between the data of objects. It is much easier to directly decide

for two given objects whether they are similar or not.

In this article, we present a mathematical method which—

having an existing partition and similarity relation–determines

which is the most typical object in a given cluster, i.e. which

one can be considered representative. We assign a real number,

a rank to each of these objects, and the highest-ranking object

in each cluster becomes the representative of the cluster.

In the next section, we present the requirements we expect

from the rank of the objects. In the Section III we present

the power method and how it can be used for our purposes.

Next we demonstrate the results of our method through two

special relations, and how matches our expectations. Finally

we conclude our results.

II. THE PROPERTIES OF RANKING

In the following, we identify how to describe relations using

signed graphs. Each element in a relation will be a vertex of

the graph and two vertices are connected with an edge if and

only if their two corresponding elements are in relation.

In case of graphs, we can speak of the distance between

two vertices (as the shortest path between the two vertices),

but it carries much less information than the difference of

two large vectors. Therefore, the similarity information should
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Fig. 1. Simple ranking problems

already be included in the graph, so the graph will correspond

to a similarity relation. As we usually have partial similarity

relations in practice, we will have edges in the graph that

denote the similarity and we will have edges that denote the

dissimilarity. The partiality is represented by missing edges.

For example, links between individual websites or citations

between scientific articles define a directed graph, i.e. a partial

similarity relation, but there is no representation of dislike

i.e. dissimilarity.

Google’s PageRank algorithm [2] is a great example of a

ranking system on directed graphs. Considering the web pages

(vertices) and the links between them (edges) as a directed

graph, the boundary distribution of the random walk on the

graph gives the rank of each page. For example, if the web

page p is more likely to be accessed than the web page q,

then the rank of p will be higher than that of q and will

therefore be ranked higher in the hit list. Here, if a page with

a low rank refers to a page with a high rank, or a novice

author refers to a well-known author in his article, it raises

the rank of the page/author to a higher rank, but—through a

non-symmetrical relation—this reference has no effect on the

rank of the page/author with the lower rank.

However, if the graph is not directed, the edge between the

two vertices will affect the rank of both vertices. Since the

similarity relation is a tolerance relation (reflexive, symmetric,

but not necessarily transitive), the associated graph is not

directed.

Let’s see our (naive) expectations of a ranking method. In

Fig. 1 on the left, we have three vertices (a, b and c) in a

common cluster. In this figure, a cluster is represented by

vertices of the same colour, while the similarity of vertices

is denoted by a solid, and the difference by a dashed line.

Because in this sub-graph each element is similar to each

other, we expect the same rankings due to symmetry. In the

middle graph of Fig. 1—where d, e and f are in a common

cluster—a difference appears. This graph is called a minimal

frustrated graph, because there is no such partition of vertices

where similar elements are common, and different elements

are clustered separately. In this graph, vertex d has only similar

vertices, while vertices e and f both have similar and also

different vertices. The fact that an object differs from an

object in its own cluster reduces the rank of the object/vertex

and thus the chance of being a representative of the cluster.

Conversely, if an object similar to an object in its own cluster,

then this increases its rank. Based on these, this cluster will be

represented by vertex d because it will have the highest rank.

Moreover—according to the symmetry—the rank of vertices e

and f should be the same.

Finally, take the graph on the right side of the Fig. 1.

Here, the vertices were divided into two clusters: {g, h} and

{i}. The fact that the vertices of g and i are similar, but

are found in different clusters also reduces the rank of both

vertices, because similarity to vertices in others clusters means

deviation from the idealized characteristics of the group. The

vertex h is similar to vertex g which belongs to h’s cluster, and

h is different from the vertex i belongs to another cluster. This

latter also raises the rank of the vertex h and hence h becomes

the representative of its own cluster. In the other cluster, the

only vertex will be the representative.

Based on the examples above, the similar objects of the

same cluster and dissimilar objects of other clusters can be

called the fosterer of the object, while the similar objects of

different clusters, and dissimilar objects of the same cluster

can be called the adversary of the object. The fosterer objects

help an object to become a representative, while the adversary

objects prevent it this from happening.

Let’s summarise what we would expect from the rankings.

• Be symmetric, that is, if two vertices have the same

number of vertices of the same rank in the same type

relation (fosterer or adversary), then their rank is the

same.

• The rank of a particular item is immediately raised if:

– one of its fosterer object increases in rank, or

– one of its adversary object falls in rank, or

– a new fosterer object appears.

• The rank of a particular item is immediately reduced if:

– one of its adversary object increases in rank, or

– one of its fosterer object falls in rank, or

– a new adversary object appears.

• It does not directly change the rank of a particular item

if:

– another object that is not compared to it or is

incomparable appears in any cluster, or

– the rank of such an object changes.

We were mindful of our usage of the word immediately. If

a new object that is dissimilar to the current object, but similar

to another object of the cluster, is added to this cluster, then

it raises the rank of objects that are similar to it. This will

have a ripple effect on objects that are similar to objects are

similar to the new object, and so on. Therefore, if we think

of representing this with an algorithm, we need an iterative

method that will escalate these effects step by step. On the

other hand, since almost every objects are related to every

objects, we need to treat the rank of all objects altogether.

III. OUR RANKING METHOD

Let V denote the set of objects/vertices, and for simplicity,

denote the objects with numbers: V = {1, 2, . . . , n}. The set

of the clusters means a partition. This partition is interpreted

as a function—denoted by p—that assigns a number to each

object, so p : V → N. The objects i and j are in the same

cluster, if p(i) = p(j); and they are in different clusters, if
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p(i) 6= p(j). Our similarity relation is a (possibly partial)

tolerance relation T—that is reflexive, symmetric, but not

necessarily transitive. In Section IV we present the numerical

results of our ranking method through two partial tolerance

relations.

A. Social ranking

We use similar approach as PageRank or various evaluation

sites (accommodations, restaurants, marketplaces), where the

rankings of individual websites, hotels, restaurants are summed

up by aggregating individual ratings.

We could take the rank of each object as the difference

between the number of fosterer and adversary objects, but we

want to introduce a more sophisticated method. We think that

there is a significant difference between the the cases where

the adversary object is the representative of the other cluster, or

it just a marginal object there. In the former case it decreases

the rank of the current object to a greater extent. We find that

a value proportional to the rank of the adversary or fosterer

objects defines a a good amount by which we can decrease or

increase the rank of the current object.

The rank of object i is determined by its relation to all

objects. Let aij indicate the relation (fosterer or adversary)

between objects i and j. We want to consider each object

with its rank as weights, and so we get the following relation:

ri =
∑

j aij · rj for all i ∈ V , which we want to solve for

values ri. These equations combine to R = AR in matrix

notation.

So that we do not have to use different values aij from task

to task—depending on its size—let’s introduce a constant c to

normalise the values aij . This changes the previous relation

as follows ri =
∑

j(c · aij) · rj , but it can be transformed to

ri = c ·
∑

j aij · rj , which gives us R = cAR. If we take the

reciprocal of c to be denoted by λ, we get a known relation:

AR = λR, i.e. R is an eigenvector of the matrix A.

Taking into account the ideas from the previous chapter,

the normalized value aij should be 1 for fosterer objects, −1
for adversary objects, and 0 for all other cases (where the

tolerance relation is partial).

According to the much cited example, a bald man does not

resemble a hairy man, although an uprooted hairline does not

change a person. As a person can have up to two million

hairlines, the linear model of this example is reduced to only

four states. Here 1 (bald) and 4 (hairy) correspond the two

end states, while 2 and 3 are two intermediate states. 1 and 2
are in a common cluster, and so are 3 and 4. Fig. 2 shows

two graphs demonstrating this problem, where we denote

clusters by assigning different colours to the vertices. The

similarities (denoted by solid lines) are the same in both cases,

but the dissimilarities (denoted by dashed lines) have changed:

dissimilarity appears between the second neighbours in the

latter case. Hence the first graph/relation is partial, and the

second is total.

Two matrices based on the relations and partitions for each

Fig. 2. Two simple symmetric linear model

graph are:

A1 =









1 1 0 1

1 1 -1 0

0 -1 1 1

1 0 1 1









and A2 =









1 1 1 1

1 1 -1 1

1 -1 1 1

1 1 1 1









The only adversary relation is between 2 and 3, because they

are similar, but are in different clusters. In the first case 1-3
and 2-4 are not comparable, so the corresponding values of

the matrix are 0. In the second case these pairs of objects

are dissimilar, but they are in different clusters, so these are

fosterer relations.

Calculating the eigenvalues and eigenvectors for the first

graph, we get:

r1 r2 r3 r4 λ

0.7071 0.7071 0.3344 0.1368 2.4142

0.5000 -0.5000 0.6770 -0.5873 -0.4142

0.0000 0.0000 -0.6230 -0.6938 2.4132

0.5000 -0.5000 -0.2041 0.3939 -0.4142

Our graph is symmetric, so we would expect, that r1 = r4
and r2 = r3. Unfortunately, none of the eigenvectors satisfy

this. Therefore, we need to look for another method!

B. Power-method

The algorithm of von Mises [5] for a diagonal matrix A

results in the biggest eigenvalue (with the highest absolute

value), and the corresponding eigenvector. The method starts

with an arbitrary vector R0 that in our case should be 1 =
(1, . . . , 1)T . Then Rk+1 is determined as follows: the rank

vector Rk is multiplied by the matrix A and normalized as

shown by (1).

Rk+1 ←
ARk

||ARk||
(1)

Unfortunately, this iteration is converges slowly, but it is easy

to use even for large sparse matrices; which is why it is used

in PageRank implementation. If Ri ≈ Ri+1, the method is

stopped and the values in the vector Ri are considered the

rank of the objects. If matrix A has an eigenvalue that is

strictly greater in magnitude than its other eigenvalues, then

Ri converges.
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Algorithm 1 Python implementation of our ranking method

def power method (A, eps = 1e−9):

B = A

R = np . ones ( ( l e n (A ) , ) )

B2 = B@B

B2 /= m = np . max (B2@R)

whi le np . l i n a l g . norm (B@R − B2@R) > eps :

B , B2 = B2 , B2@B2

B2 /= np . max (B2@R)

re turn B2

If this method is applied to the matrices shown in

Fig. 2, then we get R = (1, 0.414, 0.414, 1)T and R =
(1, 0.618, 0.618, 1)T , where r1 = r4 and r2 = r3 as we

expected. These values also fit to our naive ideas: for the first

graph, for object 1 both objects 2 and 4 are fosterers, while

for object 2 object 1 is a fosterer and object 2 is an adversary.

So the expected relation r1 > r2 is fulfilled. In the second

case, when there are more fosterer relations, the rank gained

is also higher for objects 2 and 3.

Summarising the gives:

Rk+1 ←
ARk

||ARk||
≈

Ak+1
1

||Ak+11||

If k is a power of 2, then we can then calculate the same values

by repeated squaring using the following recurrence relation:

B1 ← A and Bi+1 ←
BiBi

||BiBi||
(2)

If Bi1 ≈ Bi+11, then let R← Bi1. Not surprisingly, the two

calculations give the same result.

Based on these, it is not difficult to write the ranking

program in Python using the services of the Numpy package

(Algorithm 1). Remark, that for Numpy, the operator @ is the

matrix multiplication operation.

Fig. 3. Changes in the rank of the objects in a random tolerance relation

Fig. 3 shows how each value ri changes for a random ma-

trix A. Here, the axis x represents the number of applications

of (2), while the axis y represents the current values of the

ranks. Due to normalisation, the highest rank is always 1, but

as we can see from the chart, the rank of the objects changes

from time to time. The algorithm is terminated when the ranks

cease changing.

IV. RANKS OF NUMBERS

As there is no standard similarity relations for larger

databases, the various clustering/classification methods are

usually tested on random graphs [6]. On the other hand, we

spent a long time looking for a tolerance relation, that is not

an equivalence relation, freely scalable, easy to understand for

the reader and enables reproducible computations. Finally, we

found the common divisor as the basis of similarity: let two

numbers be similar if they have a non-trivial common divisor,

i.e. gcd(a, b) > 1, where a, b ∈ N
+. Then 4T6 and 6T9

are fulfilled (the common divisors are 2 and 3), but 4T9 is

not, so this relation is not transitive. If we are interested in

the correlation clustering of numbers 1, . . . , n, it can be easily

formulated if n < 111 546 435, otherwise the situation become

complicated [3].

In the following, the rank of each element is determined

by using the optimal clustering of the set of numbers, except

in the first case, where we place the numbers 1, . . . , 12 in a

common cluster.

As we have a single cluster in the equation (2), we can

replace the matrix A in the calculation with the matrix of the

relation T in Fig. 4. In this matrix T , the relation between

the numbers i and j is given by the jth number from the ith

row: similar numbers are denoted by 1, dissimilar numbers

by −1. 12 and 6 are similar to the multiples of 2 and 3, these

are eight numbers including themselves, and different from

four of them (1, 5, 7, and 11). The powers of 2 are similar

to every even number (six numbers) and different from all

odd number (six numbers). The powers of 3 (itself and 9) are

similar to four numbers and different from eight numbers. 5
is similar to its duplicate, but there is no such number for 7
and 11 and for 1. Because in each case the numbers mentioned

together are similar to the same numbers, so—according to the

symmetry—their rank is the same (Table I/A). In this table the

ranks are rounded to the closest hundreds, to fit on the page.

If we do the same calculation for numbers 1, . . . , 100
(Table I/B) then the numbers will typically increase. There

are many more even numbers, which will increase the rank of

even numbers, but they have the opposite effect on the rank

of powers of 3. In this set, there are numbers similar to 7 or

11, so their rank increases; and there are more such numbers

for 7, so its rank grows more.

A. Using optimal partition

Consider the partition of natural numbers obtained by

correlation clustering [3]. The largest such cluster is the set

of even numbers. This is followed by a set of odd numbers

divisible by 3; next the set of numbers which are divisible
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TABLE I
RANKING NUMBERS. . .

A) 1, . . . , 12 in a common cluster.

1 2 3 4 5 6 7 8 9 10 11 12
-0.62 0.97 0.06 0.97 -0.32 1.00 -0.62 0.97 0.06 0.89 -0.62 1.00

B) 1, . . . , 100 in a common cluster.

1 2 3 4 5 6 7 8 9 10 11 12 . . .

-0.55 0.99 -0.03 0.99 -0.28 1.00 -0.37 0.99 -0.03 0.95 -0.44 1.00 . . .

C) 1, . . . , 12 using optimal partition.

C1 C2 C3 C5 C7 C11

1 2 4 6 8 10 12 3 9 5 7 11
1.00 1.00 1.00 0.73 1.00 0.84 0.73 0.73 0.73 0.84 1.00 1.00

D) 1, . . . , 15 using optimal partition.

C1 C2 C3 C5 C7 C11 C13

1 2 4 6 8 10 12 14 3 9 15 5 7 11 13
1.00 1.00 1.00 0.67 1 0.79 0.67 0.86 0.79 0.79 0.54 0.79 0.86 1.00 1.00

E) 1, . . . , 12 using common cluster and the weakened relation.

1 2 3 4 5 6 7 8 9 10 11 12
-0.53 1.00 0.06 0.83 -0.34 0.68 -0.53 0.70 -0.17 0.42 -0.53 0.81

F) 1, . . . , 12 using optimal partition and the weakened relation.

C1 C2 C3 C5 C7 C11

1 2 4 6 8 10 12 3 9 5 7 11
1.00 1.00 0.89 0.53 0.83 0.53 0.62 0.77 0.88 0.89 1.00 1.00

T =







































1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1

-1 1 1 1 -1 1 -1 1 1 1 -1 1

-1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1

-1 1 -1 1 1 1 -1 1 -1 1 -1 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1

-1 1 1 1 -1 1 -1 1 1 1 -1 1







































,

A =







































1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 1 1 1 1 1 -1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 -1 1 1

1 1 -1 1 1 1 1 1 -1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 -1 1 1 1 1 1 -1

1 1 1 1 -1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 -1 1 1 1 1 1 -1 1 1 1







































Fig. 4. Similarity relation on numbers 1, . . . , 12, and the suitable matrix
based on the optimal partition.

by 5, but not by 3 or 2, and so on. This can be formulated

as C2 = {x ∈ U : 2|x}, C3 = {x ∈ U : 3|x}\C2,

C5 = {x ∈ U : 5|x}\C2\C3, . . . . Of course, each prime

number has one (possibly empty) cluster.

If we consider the fosterer and adversary objects based

on the the optimal partition and the similarity relation T in

Fig. 4, then we get the matrix A presented in Fig. 4. The

partition mentioned above is optimal because it minimises the

number of negative numbers in the matrix A. This, of course,

also has an impact on rankings. While keeping the numbers

in a common cluster, multiple ranks were negative due to

dissimilarities, by using the optimal partition each cluster as

a cluster by applying similarity (Table I/C). For singletons

(containing big primes and 1) the rank 1.0 is natural, as

there are no similar numbers. In the set of even numbers,

the rank of the powers of two will also be 1.0, as they are

similar to all even numbers, and the C2 cluster has only even

numbers, and all even numbers are here. Numbers with other

divisors will have similar numbers in other clusters. The more

prime divisors a number has, the more clusters contain similar

numbers, so its rank will be reduced. In the cluster C3 the rank

of the powers of three will be the highest, but it will not reach

level 1.0, because there are nearly as many numbers that are

dividable by 3—that is, similar—in the cluster C2, as in the

cluster C3.

If we apply our method on numbers 1, . . . , 15 instead of

numbers 1, . . . , 12, then the ranks change (Table I/D). The

rank of 7 fell, as its adversary number (14) appeared. As

number 15 is adversary for both 5 and 10, it reduces the rank

of both of them. The reader may be wondering how these ranks

look when we have more numbers, e.g. 1 . . . , 1000 (Table II,

column r). Perhaps it is clear from the above that in case of an

optimal clustering, the representatives of the individual clusters

come from the powers of primes. Each power of a prime is

given the same rank because it is completely symmetrical in

terms of similarity.

B. Weakening the tolerance relation

Let’s see what happens if we expect one of the numbers to

be the divisor of the other number instead of the existence

of a real common divisor. (Remember, the relation must

be symmetrical.) The partial relation here is made from a

complete relation. We suggest to the reader to compare the

first matrices in Fig. 4 and 5. If two numbers were dissimilar

at the original tolerance relation, they will be dissimilar at the
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TABLE II
RANG OF NUMBERS 1, . . . , 1000 USING THE OPTIMAL PARTITION

x r(x) r′(x)
1 1.0 1.0
2 1.0 1.0
3 0.71587172 0.79465596
5 0.78447065 0.81182099
7 0.82770503 0.84160798

11 0.88038405 0.88841938
13 0.89607481 0.90279018
17 0.91498232 0.91946078
4 1.0 0.8102978
6 0.75571551 0.55292589
8 1.0 0.71548803

10 0.85121315 0.5761841

T
′
=







































1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

-1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1
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Fig. 5. Weakened similarity relation on numbers 1, . . . , 12, and the suitable
matrix based on the optimal partition.

weakened relation, too. Moreover for example, numbers 4 and

6 were similar before, but not anymore; so the relation holds

less often.

At first glance in Table I/E the ranks of 2, 4, 8 are different,

as well as ranks of 3 and 9. Once we have only one cluster, it

is sufficient to count how many positive and negative values

are in each row of the first matrix in Fig. 5. The number 2 is

similar to every even number, that is, to every object in its own

cluster C2, and there is no other similar numbers anywhere

else. The number 4 is similar to half of the numbers of its

own cluster, but not dissimilar to any numbers in this cluster.

The number 8 is similar to quarter of the numbers of its own

cluster, etc. The fact that we replaced some ones with zeros,

the symmetry disappeares. We remark that the numbers 1, 7
and 11 are dissimilar from all the other numbers in this case,

so now they have the same (negative) rank.

Let’s see what happens, if we take our previous optimal

partition (Table I/F). The previous asymmetry remains. The

primes have the highest rank, and the powers of primes have

lower ranks. To see this tendency, let’s see the outcome of

ranking 1, . . . , 1000 (Table II, column of r′).

If we apply the optimal partition for tolerance relation T

to the weakened tolerance relation T ′ (Table I/F), the number

of negative numbers in matrix A will also be significantly

reduced. However, because of the change in the relation, the

symmetry within the clusters is severely damaged, which also

affects the rankings. Therefore, when some ranks weaken in

the C2 cluster, this may affect elements in other clusters. If

there exists fosterer elements in other clusters, these will in

turn increase in rank.

Which partition could be optimal for this weakened re-

lation? Let us take the number of similar and dissimilar

numbers in the clusters according to some given number. If

the difference of these numbers not in their own cluster is

maximal, by moving the actual number to the maximal cluster,

we get a better partition. So now we wish to examine, whether

we improve the optimal partition. Let V = {1, . . . , 1000}, and

take the number 75 as an example, which is 3 · 52. With the

original relation T , C2 contains 267 numbers are similar to it

(which are divisible by 3 or 5), and 233 which are dissimilar.

C3 contains 167 similar numbers (all of them divisible by 3)

and C5 contains 67 similar numbers. At a weakened relation

T ′, the previously dissimilar numbers remain dissimilar, and in

C2 there are no divisors of 75, just its even multiples. These by

definition are similar to it, so C2 contains 6 members similar

to 75. In C3 we have three divisors of 75 (including itself),

as well as 6 of its odd multiples, so C3 contains 9 similar

numbers. In C5 we have two divisors of 75 and it does not

contain any of its multiples (because any multiple needs to

have a prime divisor 3, so it would either be in C3, or in C2

if the number is even). If we take the difference of similar

and dissimilar numbers for each clusters, this will be maximal

in the number’s own cluster, as here for C3. This means that

this kind of partition is stable for T ′, and with a very high

probability it is the optimal partition, but this needs to be

proved.

V. CONCLUSION AND FURTHER WORK

In this article, we presented a method that assigns a rank

to each object by using a similarity relation and a partition of

objects. In a special case, the method can be used for a single

cluster, as shown by two examples. The similarity relation

does not have to be complete, the method also works for

partial relations. Based on our tests, using successive squaring

to apply our method to a thousand objects, it is enough

to use around dozens of squaring matrices. Since the tools

used (matrix multiplication, norm calculation) are available in

standard mathematical packages in almost all programming

languages, this method is widely applicable.

Our future plans include a method to test real-life data,

for example, in case of wines described by their chemical

characteristics [1], we want to search for a typical wine—

i.e. representative—of some wine region. Similarly we are

planning to apply this method to medical data, where we will

look at suggesting treatments based on the patients’ medical

history.

In real life it is very rare to find perfect similarity, thus we

need to introduce a system of different levels of similarity.

So then a statement such as Bob is more like Charlie than

Alice, can be translated into partial similarity by saying that

the similarity between Bob and Charlie is 0.8, whilst the
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similarity of Alice and Bob is only 0.2. Therefore we can

think of partial similarity as an extension of the similarity

relations. In our case, we only used three values in the matrix

of the similarity relation T : 1, −1 and 0. Then, for partial

similarities we can extend this set of values to the interval

[−1, 1], therefore covering a range of different possibilities.

The algorithm of von Mises can still be used in this case.

Previously, we have developed a method for describing

the similarity of objects given by incomplete information [4],

which can be traced back to partial similarity.
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