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Abstract—Nowadays, smart house facilities are strongly devel-
oped with the support of multiple security cameras to protect not
only a house but also a building. A large amount of video data
is produced by these cameras every day. Therefore, traditional
data management systems face challenges in collecting, storing,
and analyzing big video data. In such systems, it is difficult
to find objects and their actions from video surveillance in
the building because of either the consuming time or the lack
of intelligent technology support. In this paper, we propose a
novel big data platform for real-time video surveillance analysis
based on the combination of distributed data frameworks and
intelligent video processing libraries. The proposed platform
is able to collect both real-time video streams and historical
video data by using Kafka and Spark Structured Streaming
frameworks. Furthermore, the proposed platform provides an
intelligent video processing module for object detection by using
OpenCV, YOLO, and Keras libraries. To evaluate the proposal,
we deploy the proposed big data platform and implement a
web interface to support end-user to analyze video surveillance.
Through the results of the initial video querying implementation,
we show the viability of the proposed platform.

Index Terms—Spark Structured Streaming, Kafka, Video
Querying, Video Streaming, Video Surveillance

I. INTRODUCTION

Recently, the volume of video data has increased dramati-

cally on the internet from various sources such as Youtube,

Facebook, and Tiktok. These unstructured video data are

reservoirs of knowledge and have a direct relation to real-world

* Corresponding author.

events. It provides information about people’s interactions

and behaviors. Moreover, real-time video streams can help in

behavior analysis whether it is of traffic or human patterns.

The development of technology has also led to the develop-

ment of security and healthcare systems. A large amount of

video surveillance data is stored so that it can be processed

when any event occurs. However, manually analyzing video

surveillance will take a lot of time and effort. Therefore, video

analysis platforms are researched and developed to manage

and analyze these video data. These usually studied to evaluate

and optimize data transmission throughput and speed. Bunrong

Leang et al. [1] proposed a Hadoop ecosystem for supporting

to several features in the manufacturing industry. Because the

author only use Apache Hadoop and Kafka, ecosystem is quite

limited in speed. To address this issue, we take advantage

of Spark - a fast and general engine for large-scale data

processing. Ayae Ichinose et al. [2] proposed a Streaming

Video Engine (SVE) for uploading and processing videos in

a distributed manner. That is a framework for real-time video

analysis on Spark from which draw some conclusions about

the dependence of throughput with the number of brokers or

topic partitions. Kai Yu et al. [3] introduced a Video parsing

and evaluation platform using Spark Structured Streaming and

YARN with Kafka to solve problems existing in ordinary video

surveillance systems. However, this platform does not support

for extracting objects or properties of objects.

Mark Hamilton et al. [4] proposed a distributed image
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processing library which integrates OpenCV with Spark and

Cognitive Toolkit - a deep learning library. However, this study

is also limited to process images and does not provide any

video processing APIs. Lei Huang et al. [5] introduced a

method based on convolutional neural networks for recogniz-

ing objects in traffic video data. The video data is stored and

processed by applying Spark. Kut et al. [6] proposed solutions

based on both Hadoop and Spark for detecting edge using

canny operator and line using Hough transform. Thus, most of

the literature lacks the support for distributed feature extraction

APIs.

To address this problem, a distributed video analysis frame-

work is necessary. Md Azher Uddin et al. [7] proposed SIAT

- a distributed video analysis framework for intelligent video

surveillance. SIAT uses state-of-the-art distributed computing

technologies to handle real-time video streams and batch video

analytics to ensure scalability, efficiency, and fault tolerance.

However, this framework does not have user interface. Melenli

et al. [8] introduced a distributed image processing frame-

work in real-time using Apache Kafka and Spark. They also

used OpenCV and YOLOv3 to perform human detection and

measured the distance between people. Besides, the authors

have created an user interface which is used to define cameras,

create notifications, or access real-time dashboards.

In this paper, we propose a novel big data platform for real-

time video surveillance analysis based on the combination of

distributed data frameworks and intelligent video processing

libraries. The proposed platform be able to collect, analyze

and store both real-time video streams and historical video

data. We also implement a web interface to support end-user

to analyze video surveillance and retrieve information from

database.

II. RELATED WORK

Real-time data processing and big data analytics have been

attracting much attention recently [9, 10]. In particular, the

development of the surveillance field has generated a huge

of data daily leading to organizations must devise ways of

handling this information since the existing techniques did

not handle efficiently such a volume of data created at such

a high rate. For example, Syafrudin et al. [11] introduced a

real-time monitoring system that utilizes IoT-based sensors,

big data processing, and a hybrid prediction model for the

automotive industry. A Hadoop ecosystem is proposed to

support several features in the manufacturing industry [1].

Zhang et al. [12] also proposed a cloud-based architecture that

used Apache Kafka and Storm for real-time processing and

Hadoop based MapReduce framework for batch video data

processing. However, the Hadoop ecosystem and Kafka have

a drawback which is the limitation of speed. It is the reason

why Spark is studied and developed [13, 14].

Zhou et al. [15] introduced a distributed architecture, which

can measure and monitor online Internet traffic. Ayae Ichinose

et al. [2] proposed a Streaming Video Engine (SVE) - a frame-

work for real-time video analysis on Spark, while Kai Yu et al.

[3] introduced a video parsing and evaluation platform to solve

problems existing in ordinary video surveillance systems. On

the other hand, extracting objects or their properties of them

are also attracted much attention and research.

BigDL [16] - a distributed deep learning framework using

Spark is recently introduced, which allows users to develop

deep learning applications. In this reference, they showed

efficiency with object detection and image feature extraction.

In addition, BigDL supports immensely efficient and scalable

distributed training. Mark Hamilton et al. [4] also proposed a

distributed image processing library that integrates OpenCV

with Spark and Cognitive Toolkit. However, they do not

provide support for video processing. In contrast, Huang et

al. [5] proposed a method based on convolutional neural

networks for recognizing objects in traffic video data and using

Spark to store and process this information. However, most

of the existing proposals do not yet support the retrieval of

information from the analyzed and stored data.

Kut et al. [6] proposed solutions based on both Hadoop

and Spark for detecting edge using the canny operator and

line using Hough transform, while SIAT [7] is proposed by

Md Azher Uddin is a distributed video analysis framework for

intelligent video surveillance. However, they do not implement

a user interface. Melenli et al. [8] introduced a distributed

image processing framework in real-time using Apache Kafka

and Spark, which can detect humans, measure the distance

between people and implement a user interface.

III. DESIGN OF A BIG DATA PLATFORM FOR VIDEO

SURVEILLANCE

A. Architecture of the Proposed Platform

We propose a platform for collecting and analyzing multiple

video data in real-time with four components including Data

Collector, Data Storage, Intelligent Video Data Processor, and

Data Query Module. Figure 1 presents the architecture of our

proposed big data platform. The first component is the Data

Collector which contains two sub-components: Kafka cluster

and producers. Brokers in the Kafka cluster are managed by

Zookeeper. Producers have the responsibility for extracting

data from real-time videos and then sending them to the

brokers to store. The collected data from video by the Data

Collector will be consumed by the third component - the Intel-

ligent Video Data Processor which has a processing mission

using Spark Structured Streaming and SparkSQL. Raw data

after being consumed by the processing module is contained

by the second module - The Data Storage. The processed data

by the Intelligent Video Data Processor will be sent to the

fourth component - the Data Query Module via the HTTP

server. Then, the HTTP server will send back the data to the

Data Storage – SQL Server to store for serving the Data Query

module. We just save several frames in SQL Server to reduce

the vast number of frames, instead, we save it into Hbase -

a distributed NoSQL database and it saves the data as a file

in Hadoop Distributed File System (HDFS), so the system

can serve query tasks more rapidly. The web client in the

Data Query module is a user interface that supports humans

to query data from the SQL server.
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Fig. 1. The system architecture.

B. Design of Real-Time Data Collector Module

Fig. 2. The Kafka system.

Figure 2 shows our design for collecting data using Kafka.

This module is designed to collect the generated data from

cameras. We do not want any data loss when receiving data

from producer, so we design this component according to

replicas and use Zookeeper to manage nodes in the cluster.

We all know that the generated data from cameras are videos

that are huge collections of images. These images move fast

enough for us to see the things call animations. Producers

have the responsibility for collecting these images and then

converting them to three-dimension arrays called frames by

a powerful computer vision library – OpenCV. The problem

is that a large number of frames are generated every second.

Therefore, instead of sending all of them, we just send one

per two seconds to ensure that we have enough bandwidth to

transfer and the brokers have enough storage to store them.

However, we have a second problem: the matrices can not be

transferred by the producers. So, we convert them to bytes

strings to send more easily.

C. Design Choice of Data Storage Module

We design two sub-components in the Data Storage module.

The first component is Distributed NoSQL database named

Hbase. We use this database because it is fast when reading,

writing, or random data. Furthermore, it can store massive

data because it bases on the Hadoop Distributed File System

(HDFS) which stores data safely and distributedly. The second

component is SQL Server, we use it to store the processed data

by the Intelligent Video Data Processor module.

1) Design of Basic Distributed Storage: We need basic

storage for storing raw frame data at every time. These data

are filtered by the Intelligent Video Data processor module.

These raw data are usually sequentially contained in text files.

In this case, our type of data is byte-string which is a fixed-

length array of bytes. A byte is an exact integer between 0 and

255 inclusive. These raw data are the basic data for processing

and we use Hbase as basic storage for them.

2) Design of Storage for Querying Data: In our platform,

we also consider an easy API for querying data with SQL

language. For this, we use SQL Server because it is simple

to implement and easy to integrate into our platform. Our

platform is designed to trace objects and extract properties

from them, so we have to design a schema that is suitable for

this case. We have six tables to contain information extracted

by the Intelligent Video Data Processor module.

Fig. 3. Database schema.

• Video. It contains information about cameras which were

installed in our system. Each camera has four properties

particularly: ”VideoId” - a unique key to distinguish

from others, ”VideoName”- the name of the camera,

”VideoLocation” - the name of the location where the

camera was installed.

• Video segment. It contains information about segments

of each video. Per ten minutes, we create a new segment.

The table has five properties: VideoSegId - a unique key

to distinguish from others, VideoId - the camera’s key
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producing this segment, StartTime and EndTime are times

when video starts and stops, VideoSegName - the name

of the video.

• Frame sequence. This table contains information about

the period when the processing module detected an object

in a frame. For each object detected by the processing

module, we create a new frame sequence record.

• Frame. The fourth table is Frame which contains frames

from cameras that have objects detected by the processing

module. We have to encode the frames to base64 to store

them in the database more easily.

• Person and Thing. Person and thing contain information

about objects detected by the processing module. Table

”person” contains information about the properties of

humans and table ”thing” contains information about

anything that is not humans. The Fig.3 illustrates a

schema of the database.

D. Design Choice of Intelligent Video Data Processor Module

In order to consume the data stream from the Kafka cluster,

we design this module including AI models. The AI models

have the responsibility for detecting objects that appear in

frames sent by Kafka, then extracting properties from them.

We use a built-in library – request to send output data to the

HTTP. Leveraging the real-time querying power of SparkSQL,

we built a user-defined function (UDF) and used models inside

server.

Fig. 4. Processing progress.

1) Design Choice of Image Processing models: Figure 4

demonstrates the processing sequence of the Spark Structured

Streaming program. The input of the Intelligent Video Data

processor module is a collection of byte strings filtered by

SparkSQL after receiving data from Kafka clusters. So, we

use a powerful computer vision library – OpenCV to convert

them to frame type (NumPy array) because AI models can

not calculate byte string data. In order to detect objects in the

converted frame, we use a pre-train AI model – YOLOv3. But,

there is a problem that YOLO can not integrate with Spark

Structured Streaming. Because it is developed base on the

DarkNet platform which creates a new thread whenever it runs.

However, Spark Structured Streaming does not accept any

thread except its, therefore, we have to convert the DarkNet

model to another type of model that can be excepted by

Spark Structured Streaming. So, we use Keras to convert the

YOLOv3 model to the Keras model. We then use body portion

detection to detect the upper body portion and lower body

portion of human images classified. To train this model, we

use a pre-train model called ”Tflite Model Maker” which is

developed by Google with 20000 labeled images by Labelimg

tools. To collect images for training the model, we downloaded

some videos recorded by security cameras from Youtube

which were public. Then we use the Yolov3 model to get

a human object displayed in each frame in each video and

save them to a folder. After that, we used the LabelImg tools

to label the images. In each human frame, start point from

the shoulder to the end of the back, we labeled this part as

”upper” and from the end of the back to the ankle we labeled

it as ”lower”. For the train set, we use 10000 images, 5000

for the test set, and 5000 for validating set. Then, we use the

Tflite model maker to train our custom model with the labeled

dataset. The model after training has an accuracy is 0.81.

Finally, we use a simple machine learning model to classify

colors in body portion images. It is implemented by using the

KNN algorithm built in Scikit-learn. The output of the whole

processing process and related information (object properties)

are sent to the HTTP server. Especially, the out frames are

converted to base64 encoding to be easy to store in the

database. Figure 5 shows the image process and information

extraction process.

Fig. 5. Processing logic.
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Fig. 6. Database business.

2) Design of Database Business: The Fig.6 shows the

design of the database business. As we design the schema of

the database, we need to design a business that is suitable for

storing data in the database. First, we initialize the start time,

and information about the cameras installed in our system. We

then create new frame segments for each camera. Because,

after 10 minutes, we need to create a new segment, we need

to check the running time by subtracting the starting time

from the current time. If the running time is greater than or

equal to 10 minutes, new frame segments are created. Next,

we will check the objects detected by the YOLO model. If the

number of detected objects is greater than the number of frame

sequences, new frame sequences will be created. The number

of new sequences is equal to the number of extra objects. If

the number of detected objects is smaller than the number

of sequences, the extra sequences will be removed. Then, for

human frames, we extract properties from them. After that, we

convert the frames to base64 including things’ frames. Finally,

we send this information to the HTTP server.

E. Design Choice of Data Query module

We need a web API to query data from the database and

transfer data from the data processing module to the database.

To do this, we choose the Flask library to create one because of

its lightweight and simplicity. Our API has 6 HTTP methods

as the following:

• send segments method. It is used to send segment in-

formation from the data processing module to the HTTP

server.

• send sequences method. It is used to send frame se-

quence information to the server.

• send frames method. The send frames has the responsi-

bility for transferring base64 frames from the processing

module.

• send people and send things methods. The send people

method and send things method are used to send infor-

mation about things and humans’ properties.

• index method. It is used to return an interface to the user.

These methods use PyOdbc - a built-in library to execute

stored procedures written in the database. The query method

with its parameter – command will send a command to the

SQL server to execute the command and then receive the

result.

IV. IMPLEMENTATION AND EXPERIMENTS

A. Environment Settings

We deployed the platform in a cluster including 5 machines,

in which, two machines are used to collect data from two

cameras and three other machines are to install Hadoop and

Spark workers as a cluster. The cluster includes two workers

and a master. The master machine has 4GB RAM and 4 CPUs

and workers have 2GB RAM and 2 CPUs on each machine.

We use another machine that has 4GB RAM and 4 CPUs to

install the SQL server database and the HTTP server. And the

2 machines which are used to collect data, which we use to

deploy our Kafka cluster, have the same configuration as the

workers.

B. Implementation of Web User Interface for Querying Video

Data

We designed a web client to support the users to query

data from SQL Server more easily. To build this client, we

used AngularJS and call the API we built. The client has two

modes: Simple Mode and Raw Query Mode. In addition, to

run the platform we had to add the cameras’ information to the

database first and configuration file. Then, we started the SQL

server and HTTP server. After that, we started the Hadoop

system and Spark Structured Streaming job with our workers.

Finally, we started all cameras and the Kafka cluster.

Fig. 7. The user interface of Simple Mode.

1) Simple Mode: The user interface shown in Fig.7 has two

sections. The first section is the input of searching. It is used

to type the properties of an object and the information about
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place and time. The first component of the first section is a

list of cameras that can choose to specify which camera the

users want to query. The second component is ”Video Time”

advocating the users to query the start and end time of the

video to limit the range of time in which the object appeared.

The third component is used to query the properties of humans

appearing in the camera. The last component supports the

users to query things existing in the camera.

The second section displays the result of the search as a list

of images. We designed the second section with three buttons

to move between images or auto-play as a video. For example,

we queried the data from the camera named ”home camera”

from 18:20 to 18:30 at 2nd December to find the person who

wore a black shirt. Every search inputs are shown in Fig.8 and

the result of searching is demonstrated in Fig.9

Fig. 8. Query the person with properties display in specified camera in range
time.

Fig. 9. The result of the searching in Fig. 8.

In the other case, we searched a man who wore a grey shirt

Fig. 10. The result of the searching.

Fig. 11. User interface of Raw Query Mode.

who appear in all cameras and the all time, the result showed

in Fig.10.

2) Raw Query Mode: We built the raw query mode to

enhance the query ability of the system. It has two sections,

the first section displays the result as a list of images, and the

second section is used to write SQL commands. The interface

was designed as Fig.11. This mode can be used to query with

a complex condition that the simple mode does not support.

The example below demonstrated how to search with multiple

cameras in multiple time ranges. To display the result as an

image and display the time at which the frame is recorded,

we need to join two tables: frame and frame sequences. The

script which we used to query, is shown in Listing 1 and the

result of the query is illustrated in Fig.12.

1 SELECT * FROM frame f

2 JOIN frame_sequence fs

3 ON f.FrameSegID = fs.FrameSegID

4 JOIN video_segment vs

5 ON vs.VideoSegID = fs.VideoSegID

6 JOIN video v ON v.VideoID = vs.VideoID

7 WHERE

8 VideoLocation = ’yard’

9 OR VideoLocation = ’petrol station’

10 AND (

11 CONVERT(DATETIME, ’2022-09-11 21:35:23.000’)

<= fs.StartTime

12 AND fs.StartTime <= CONVERT(DATETIME, ’

2022-09-11 21:50:27.000’)

13 )

14 OR (

15 CONVERT(DATETIME, ’2022-09-11 22:35:23.000’)

<= fs.StartTime

16 AND fs.StartTime <= CONVERT(DATETIME, ’

2022-09-11 22:50:27.000’)

17 )

Listing 1. query images ordered by time
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Fig. 12. The result of query command in Listing 1.

V. CONCLUSIONS

This paper proposed a design and implementation of a big

data platform for real-time video surveillance. The proposed

platform was designed with the aim that supporting user to

manage their cameras system more efficiently by using the

strong analytic power of big data tools integrating with a set of

AI models. The proposed platform is able to collect both real-

time video streams and historical video data by using Kafka

and Spark Structured Streaming frameworks. It also provides

an intelligent video processing module for object detection

by using OpenCV, YOLO, and Keras libraries. Through the

results of the initial video querying implementation, we show

the viability of the proposed platform. In the future, we will

work on optimizing AI models and integrating the platform

with distributed search engines instead of using the SQL

language in the relational database to improve search speed.
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