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Abstract— Real-world applications of mobile robotics call for
increased autonomy, requiring reliable perception systems. Since
manually tuned perception algorithms are difficult to adapt to
new operating environments, systems based on supervised learn-
ing are necessary for future progress in autonomous navigation.

Data labeling is a major concern when supervised learning is
applied to the large-scale problems occuring in realistic robotics
applications. We believe that algorithms for automatically se-
lecting important data for labeling are necessary, and propose
to employ active learning techniques to reduce the amount of
labeling required to learn from a data set.

In this paper we show that several standard active learning
algorithms can be adapted to meet specific constraints charac-
teristic to our domain, such as the need to learn from data with
severely unbalanced class priors. We validate the solutions we
propose by extensive experimentation on multiple realistic data
sets captured with a robotic vehicle. Based on our results for
the task of obstacle detection, we conclude that active learning
techniques are applicable to our domain, and they can lead
to significant reductions in the labeling effort required to use
supervised learning in outdoor perception.

I. I NTRODUCTION

Outdoor mobile robotics has made remarkable progress
towards becoming the preferred solution for many tasks con-
sidered too dangerous or too repetitive for humans. The suc-
cessful transfer of certain robotic technologies from research
laboratories to real-world applications has generated a strong
interest in developing more advanced robots, that are robust
and provide increased autonomy and intelligence.

Reliable perception capabilities are a key requirement for
achieving these ambitious goals. While several groups have
demonstrated autonomous navigation and perception capabil-
ities using hand-tuned systems (see [1]–[5]), we believe that
this approach has a fundamental limitation: since truly general
perception systems are yet to be developed, these systems need
to be tuned to their operating environment in order to achieve
good performance. Since they tend to be complex, a large
number of parameters need to be tunedmanuallyeach time the
perception systems need to be adapted to a new environment.
This is a slow process, and key application domains for mobile
robotics require frequent such reconfigurations.

Learning techniques hold the promise of a practical solution
to the tuning problem: if training data consisting of desired
input/output pairs is available, many standard learning algo-
rithms can be used to automatically tune the parameters of
a model so that it agrees with the training data. Thus, the
problem of manual tuning can be transformed in the problem

of labeling data, i.e. providing the desired outputs for training
purposes.

Unfortunately, labeling data is itself challenging: the data
sets used in realistic outdoor perception scenarios are often
large, and manual labeling is a slow and expensive process.
Before supervised learning becomes practical for our domain,
effective methods must be conceived in order to reduce the
effort involved in labeling large data sets.

One can think of two such methods: making labeling easy
or trying to label only a subset of the available data. As an
example of the first approach, the authors of [6] described a
learning system for ground height estimation, in which large
amounts of labeled data were generated by simply driving
a vehicle over interesting terrain. Their solution is highly
practical because driving a vehicle represents an easy method
of labeling data, and because the system can benefit from
adapting its parameters online. Pomerleau [7] proposed a
different approach in the context of road following: learn a
mapping from images to steering angles by observing a human
expert drive a vehicle. This type of approaches work well, but
do not generalize to many of the classification problems in our
domain.

A more general idea, proposed and demonstrated by Ollis
[8], is to use a Bayes classifier and to estimate the posterior
of the “non-obstacle” class by using training data to model
P (data|non-obstacle) and P (data). This approach can avoid
the challenging task of explicitly modeling the “obstacle”
class, but is sensitive to howP (data) is estimated, and is
likely to fail without warning in case there is significant class
overlap. The idea of using contact sensors to automatically
detect when a collision occured (and maybe use that signal
for reinforcement learning) is also not general, since collisions
with obstacles are only tolerable in a reduced set of situations.

Since there is no generally applicable method to make
labeling easy, the remaining alternative is to only label a
subset of the data, selected either by random sampling or
by identifying the important examples to label based on the
distribution of the unlabeled data.

Although very attractive because of its simplicity, using
random sampling to reduce the amount of data labeled is
dangerous in our domain. Several of the classification prob-
lems of interest (such as obstacle detection) are characterized
by an extreme unbalance between the priors for the different
classes. For example, in many data sets collected by driving
a vehicle over interesting terrain, the vast majority of the



Fig. 1. When learning from data sets with extremely unbalanced class priors,
reducing the amount of data by random sampling can result in failing to get
any examples from the rare class.

data contains relatively non-interesting examples from the
“traversable” class (i.e. different types of roads, grass, etc.),
and only few interesting patterns corresponding to obstacles.
Applying random sampling in such cases can result in the
complete elimination of the rare examples corresponding to
obstacles, which can have catastrophic consequences. Such a
situation is depicted in Figure 1.

As a solution to these problems, this paper focuses on reduc-
ing the amount of labeling needed to achieve good generaliza-
tion performance by taking into account the distribution of the
unlabeled data. We show that several standard active learning
algorithms can be adapted to meet specific constraints that are
characteristic to our domain, such as the need to learn from
data with severely unbalanced class priors. The solutions we
propose are validated by experimentation on several data sets
captured with a robotic vehicle in representative environments.

II. A B RIEF INTRODUCTION TOACTIVE LEARNING

Active learning techniques are designed for the situation in
which some amount of unlabeled data is available, and we
are interested in obtaining good performance while labeling
only the minimal amount of data necessary. The algorithms
typically have access to the unlabeled data, and have the
freedom of choosing which queries to make to an expert who
can label data.

Active learning presents three main paradigms:constructive
query, query filteringandpool-basedapproaches. In the con-
structive approach (see [9], [10]) algorithms can generate new
query points that are most beneficial to the learner. In contrast,
query filtering and the pool-based approaches can only select
a query point from an already existent set. While the filtering
approach assumes that new examples arrive as a random
stream and the decision whether to query or not is made
for each point individually, in the pool-based methods the
entire data set can be analyzed before choosing the next query
point. Since the pool-based methods can use more information,
they are generally expected to lead to faster learning than the
filtering approaches.

The constructive approach cannot be applied in domains
where it is hard to develop a good model for the generative
process of the data: the active learning algorithm can generate
queries that do not make sense to the expert (see [11]). Given
the nature of our data, we cannot use the constructive approach
and thus we are limited to using pool-based active learning.
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Fig. 2. Typical active learning algorithms are iterative, alternating between
training classifier(s) on the available data, identifying “interesting” point(s)
and labeling them.

As shown in Figure 2, most active learning techniques
are iterative, alternating between choosing a new query point
based on a measure of interest and training one or more
classifiers on the new data set obtained after completing the
query. In cases where the computational complexity of training
the classifier(s) is high and a large number of query points
is needed, it is common to select abatch of query points
in a single step, based on the same classifier parameters. In
Section III we will discuss an interesting constraint specific
to our application domain: we need to select batches of query
points not due to computational constraints, but because in our
domain it is only practical to label entireblocksof data points
at each iteration.

The main difference between different active learning algo-
rithms consists in how the importance of an unlabeled example
is estimated. In the remaining part of this section, we introduce
and discuss several methods to compute interest scores for
unlabeled data.

A. Query-by-Committee

One of the most influential results in active learning was
the development of the Query-By-Committee (QBC) algorithm
[12], which inspired many of the algorithms we discuss in
this paper. Query-by-Bagging is centered around the idea of
reducing the size of theversion space[13], the set of all
concepts that are consistent with the labeled data available.
The version space is a representation of all the information
contained in the examples observed by the learning algorithm,
and the rate at which the size of the version space decreases
is considered a good measure of the progress of the learning
process. Observing additional training data can only reduce the
size of the set of concepts that agree with the data, and the goal
of the QBC algorithm is to identify those unlabeled data points
that, when labeled, have a high probability of eliminating a
large portion of the version space.

In [12], the authors demonstrate that for a two-class prob-
lem, the reduction in the size of the version space can be
maximized by making queries for those unlabeled examples
whose predicted class is least constrained given the current set
of hypotheses that are consistent with the training data. More
precisely, if an unlabeled examplex has probabilitiesp and
1 − p of belonging to the two classes, wherep is estimated
overall the hypotheses consistent with the training data, it can
be shown that the information gain –the expected reduction in
the size of the version space– is given by



H(p) = −p log p− (1− p) log(1− p)

which is the Shannon information content (the entropy) of
a binary random variable whose probability of being 1 isp.
The entropy is not estimated over the entire version space,
but by sampling hypotheses from it. These hypotheses form a
committee which predicts the label of unlabeled data points,
and the QBC algorithm attempts to maximize the information
gain by selecting for labeling those points where there is
disagreement in the committee.

The authors are able to prove that for certain classes of
learning problems, QBC guarantees an exponential decrease of
the prediction error as a function of the number of queries. The
proof is relatively complex, but at a high level it involves two
steps: proving that having a lower bound on the information
gain of the queries does guarantee a fast decrease in the
prediction error, and proving that for a restricted family of
parametrized concept classes, the queries made by QBC have
an expected information gain that is guaranteed to be higher
than a constant.

While the guarantees of QBC are interesting in themselves,
the algorithm has few practical uses in the exact form in which
it is presented. For most learning problems in the real world it
is impossible to find a hypothesis that is consistent with all the
labeled data due to noise; as a result, the version space would
be empty. Sampling from the version space is also an issue. In
certain cases (see [14]) researchers use generative models and
are able to sample from the distributions over their parameters,
but this is not a generally applicable solution.

In a slightly more general setting, one could use QBC
with randomized algorithms that can reach different hypothe-
ses even when presented with the same training data (e.g.
multilayer neural networks initialized randomly). For those
who intend to use a deterministic algorithms such as logistic
regression, the solution is to randomize the training process
using a method such as the Query-by-Bagging algorithm,
proposed by Abe and Mamitsuka [15].

B. Query-by-Bagging

Query-by-Bagging (QBBAG) is a combination of QBC with
the baggingalgorithm [16] based on committees of learners
trained on resampled training data. Each random subsample
used to train committee members has a distribution similar
to the initial training set and, after training the bagging com-
mittee, its members can be viewed as hypotheses “sampled”
from the version space. These hypotheses can be used just
like in QBC to identify unlabeled example with high expected
information gain by measuring the disagreement between
the committee members. Since this time randomization is
introduced directly in the training set, QBBAG can be used
with both deterministic and randomized classifiers.

A difference between the original formulation of Query-by-
Committee and Query-by-Bagging is that the first algorithm
was introduced using the query filtering paradigm, while
QBBAG is using the more common pool-based approach.

Thus, QBBAG is trying to identify themaximallyinformative
unlabeled example, which requires a measure of the disagree-
ment among the committee members.

Abe and Mamitsuka [15] use as disagreement metric the
difference between the number of committee members that
vote for each one of the two labels, which is equivalent to
scoring based on the number of committee members that are
in minority. A slightly more general version of this metric,
which is applicable to classification problems with more than
two classes, is thevote entropymethod (see [14], [17]).

Given that the classifier used for our experiments, logistic
regression, provides posterior estimates instead of just class
labels, it would be desirable to exploit this additional in-
formation. As a result, we have chosen to use Query-by-
Bagging with a different committee disagreement metric, the
Kullback-Leibler-divergence-to-the-mean(see [14], [18]). Its
main advantage is that it takes into account the confidence
of the classifications made by the committee members when
estimating their disagreement.

The KL-divergence-to-the-mean is defined as the average
of the KL-divergences between the posterior class distribution
of each committee member and the average posterior class
distribution of the entire committee1. If k is the number of
members in the QBBAG committee andx is an unlabeled
example, the KL-divergence-to-the-mean is defined as

1
k

k∑
m=1

D(Pm(C|x)||Pavg(C|x)),

whereC is a random variable over the classes, Pm(C|x)
is the posterior class distribution of committee memberm,
and Pavg(C|x) is the average posterior class distribution of
the committee. The KL divergence between two distributions
P1(C) and P2(C) is given by

D(P1(C)||P2(C) =
|C|∑
j=1

P1(cj) log
P1(cj)
P2(cj)

whereC is the set of classes, and P(cj) is the probability
the class label isj.

To better illustrate the difference between the KL-
divergence-to-the-mean and the vote entropy, let us consider
the example of a binary(+,−) classification problem in which
the output of the classifiers represent the probabilities of the
“+” label. The vote entropy of an example on which a three-
member committee produces outputs (0.51, 0.51, 0.49) is the
same as if the outputs were (0.99, 0.98, 0.01), because vote
entropy ignores classification confidence information. KL-
divergence-to-the-mean would score the second example much
higher than the first one, which is intuitively desired from a
committee disagreement measure. Preliminary experiments in
which we compared the two disagreement metrics confirmed
that better performance can be achieved using the metric that
takes class posteriors into account.

1We will follow here the development from McCallum and Nigam [14]



C. Uncertainty Sampling

Uncertainty Sampling (US) [19] is a heuristic alternative to
QBC, and is one of the simplest active learning algorithms
we are aware of. The algorithm requires a classifier that
can produce reasonable estimates of its prediction confidence.
After the classifier is trained on all the labeled data available,
Uncertainty Sampling applies it to all the unlabeled examples
and selects for querying the one on which the current classifier
is least confident.

The motivation for Uncertainty Sampling comes from the
desire to avoid having to sample classifiers from the version
space. Lewis and Gale propose to approximate theclassifier
uncertainty(the confidence that one of the labels occurs given
the current version space) by thelabel uncertaintyas estimated
by the unique classifier trained on all labeled data.

To understand the difference and why this approximation
can be poor, consider a hypothetical classifier that is presented
with a binary classification problem and indicates that, given
its parameters, the probability of an examplex of belonging
to the “+” class is0.99. Uncertainty Sampling would consider
such an example extremely non-interesting. In reality, it can
be the case that the training data does not constrain the
parameters of the model very well, meaning that several
decision boundaries would agree equally well with the training
data. In this case, the true uncertainty in the classification of
the example is much higher. If a QBC/QBBAG committee
analyzes the same problem with the same base learner, the
high uncertainty in the classification boundary makes it likely
that some of the hypotheses sampled from the version space
disagree on the label of the example, resulting in a query. The
problem of having over-confident classifiers is acknowledged
by Lewis and Gale in their original paper [19].

Despite the fact that Uncertainty Sampling is probably the
best known active learning algorithm, our experiments have
clearly shown that its performance is inferior to that of more
principled algorithms, such as Query-by-Bagging. As a result,
we will not include results obtained with Uncertainty Sampling
in our experimental evaluation.

D. Co-Testing

A slightly more interesting algorithm is Co-Testing [20],
which borrows the idea of usingredundant viewsfrom Co-
Training (a semi-supervised learning algorithm proposed by
Blum and Mitchell in [21]) and adapts it to the active learning
domain. According to the authors, “a domain has redundant
views if there are at least two mutually exclusive sets of
features that can be used to learn the target concept”. Since
in our domain one often uses different sensing modalities for
perception, we have considered the features extracted from the
different sensors to be our views. Thus, in our experiments we
will classify obstacles based on “color”, “texture” or “laser”
views, for example.

The algorithm works by training classifiers on the differ-
ent views of the available training data, and classifying the
unlabeled data independently in all the views. The set of
examples on which the views disagree represents the pool

of potential labeling candidates, and different flavors of Co-
Testing exist for selecting one query out of this pool. The
authors claim that the most efficient gains can be obtained by
querying contention points on which the views disagree most
strongly, but the experimental results presented were generated
by simply choosing randomly from the contention points.

Comparing Co-Testing to Uncertainty Sampling, Muslea et
al. [20] claim that by using multiple views their algorithm can
be more aggressive: querying contention points on which the
algorithms are most confident increases the probability of a
large effect in at least one of the views. For comparison to
QBC, the authors construct a learning problem which is PAC-
learnable but on which QBC fails with high probability while
Co-Testing succeeds in very few steps. In the experimental re-
sults presented in [20], Co-Testing seems to generally perform
quite similarly to Query-by-Bagging.

In our experiments, we used Co-Testing with the selection
scheme in which the most contentious unlabeled data points
are queried. Similarly to the Query-by-Bagging algorithm, we
have chosen the KL-divergence-to-the-mean as a disagreement
measure, where the members of the committee are the classi-
fiers trained on the different views of the data.

To conclude this section, we acknowledge the fact that
this list of algorithms is by no means exhaustive. Several
other principled active learning algorithms (such as the ones
proposed by Roy and McCallum in [22] or by Tong and Koller
in [23]) were not included in our experimentation, mostly
because of their computational requirements. Nevertheless, we
would like to remind the reader that the goal of our research
is to determineif active learning is applicable in our domain,
and not to identify the most effective active learning method.

III. A CTIVE LEARNING FOROBSTACLE DETECTION

A. The Initialization Problem

In the previous section we presented a number of active
learning algorithms with the potential of reducing the amount
of data labeling required for large-scale applications of super-
vised learning. Until now, we have glanced over an important
aspect: the initialization step required by all the algorithms we
presented.

In Figure 2, we indicated that the “seed” labeled data
set required to start the active learning iterations is obtained
by random sampling. This is indeed the typical initialization
method used in the active learning literature, while in other
cases data is selected manually. Unfortunately, neither of
these options is practical for our domain: manual selection
is not applicable to large data sets, and random selection
can fail as described in the introduction: when a data set
is severely unbalanced, we can obtain initialization sets that
contain examples from a single class (see Figure 1).

To address this important problem, we have developed the
Unlabeled Data Filtering (UDF) algorithm [24]. The intuition
behind UDF is simple: we are interested in reducing the size of
an unlabeled data set by discarding redundant examples, while
keeping most of the rare patterns. We define “rare” patterns
as those data points that correspond to sparse regions of the
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Fig. 3. The essence of the Unlabeled Data Filtering algorithm: when new
data is observed, discard examples corresponding to densely populated regions
of the feature space while keeping the ones from sparsely populated regions.

feature space, while the “redundant” examples are the ones
from regions of the feature space that are densely populated.

The essence of the UDF algorithm is illustrated in Figure
3: starting with any random data point, construct a setS of
data to be labeled by iteratively selecting data points from the
most sparse regions of the feature space. Sparsity is defined
using some form of probability density estimation, based on
the current setS. At a high level, UDF can be viewed as
an algorithm that attempts to select for labeling data points
that cover as uniformly as possible the feature space of the
classification problem of interest.

The Unlabeled Data Filtering algorithm is closely related to
the anomaly detection research area, in which estimating the
probability density function (PDF) over some feature space
is the method of choice for identifying anomalous patterns.
The subtle but essential difference is that UDF doesnot select
for labeling only anomalous patterns: since the PDF it uses
for estimating sparseness is based on the setS of data points
selected for labeling, in the initial stages of the algorithm any
data point is equally likely to be selected for labeling, even if it
lies at the center of a compact cluster of points in the original
unlabeled data set. The difference in the data sets over which
the sparseness of the feature space is estimated is what clearly
distinguishes the UDF algorithm from the algorithm proposed
by Pelleg and Moore in [25], which is the most closely related
work we are aware of. For a more detailed discussion, we refer
the reader to [26].

The interest measure used by UDF is the negative log-
likelihood given by the PDF estimated overS at each unla-
beled data point. For the experiments presented in this paper,
we estimate the density over the feature space using kernel
density estimation with a Gaussian kernel, whose bandwidth
is chosen using cross-validation. Since our initial feature space
is often high-dimensional, we project our data to a lower
dimensional space using Principal Component Analysis.

B. The Data Block Constraint

An additional aspect preventing the direct application of
active learning in our domain is what we call thedata block
constraint, illustrated in Figure 4.

A data blockA patch

Fig. 4. The Data Block Constraint: our classifiers and active learning
algorithms work at the image patch level, while data labeling takes place
at the image level. The interest scores assigned to individual patches need to
be aggregated to obtain image interest scores.

This constraint appears naturally in perception problems
because we often try to classify as small a region as possible to
improve the localization of our detections, while a much larger
region needs to be analyzed by a human expert before data
can be labeled. For example, we are interested in classifying
individual rectangular image patches as obstacles or non-
obstacles, but a human needs to be presented with an entire
image before being able to indicate the correct label for an
image patch. The same is true for 3-D voxels of data, if
the classification process takes place in the 3-D space. An
additional benefit of presenting experts with entire images is
that they can label a much larger number of data points at the
same time, for example by drawing contours that enclose all
the obstacles in an image.

The data block constraint can be summarized by the fact
that our classifiers and active learning algorithms work at the
image patch level, while we need interest scores for entire
images in order to select the informative ones for labeling.
To address this constraint, we need to aggregate the interest
scores assigned to individual image patches (the data points)
into interest scores assigned to images (blocks of data points).

In [24] we argued that aggregating interest measures over
all the patches within an image is undesirable because high
interest patches can be overwhelmed by large amounts of
uninteresting patches. The other extreme of scoring an image
only based on its most interesting patch is also ineffective,
because the most unusual patterns in an image will often be
outliers corresponding to various artifacts. This problem is
also reported in [14], where the authors address the outlier
problem by weighting the contributions of the different data
points based on local data density.

The solution we chose for balancing between these two
undesired behaviors was to average the interest measures of
the k highest scoring patches in each image. Experiments we
presented in [26] demonstrate that this simple accumulation
scheme is robust to the specific valuek that is chosen: while
our intuition that accumulating over too few or too many
patches is detrimental has been been confirmed, there is a
wide interval fork (roughly between 8 and 50) for which the
performance of the algorithms is almost unchanged.



TABLE I

SOME OF THE DATA SETS USED IN OUR EXPERIMENTS.

Name # Images Distance traveled (m)
FmObsCourseNonPoles01 436 372
FmObsCourseNonPoles02 558 488
FmObsCourseAll01 1018 749
FmObsCourseAll02 673 481
ApMdSpiral 1393 768
FmDriveDown01 2030 1627
FmDriveDown02 1191 938
FmVariousObs 1096 543

IV. EXPERIMENTAL EVALUATION

A. Data sets, Feature Sets and Learners

The experiments presented in this paper are based on data
collected with a robotic vehicle on a farm and in a meadow
with tall vegetation. The data sets on which we performed
most of our experiments are listed in Table I, along with
the number of images recorded and the distance traveled. To
be able to perform the randomized runs necessary to obtain
confidence bounds for the various performance estimates, we
haveexhaustivelylabeled all the data sets in Table I.

The obstacles in our data sets are either natural features
such as trees, fences and buildings, or objects that we placed
in the environment, such as green and gray flower pots hidden
in vegetation of various heights, thin and thick pipes, several
pieces of wood and a small cart. The pairs of data sets whose
names are not separated by a horizontal line in the table
contain data that is similar in nature, and thus can be used
as train/test sets. For two of our data sets we did not have
additional test sets. This is however not crucial for the kind of
experiments we perform: we measure learning efficiency and
not generalization performance.

Our vehicle is equipped with visible and infrared cameras
whose positions relative to our laser range finder units is
precisely known. As a result, for each image patch we can
extract a multi-modal feature vector containing color (COL,
5 features), texture (TEX, 24 features), range (LASER, 4
features) and infrared (IR, 2 features) information (see [26]
for more details).

While one would normally use the all the available sensing
modalities for the classification problem, for these experiments
we chose to test our algorithms on different subsets of the
feature vector. The various sensing modalities have different
characteristics, which means that for each data set we can test
the active learning algorithms on a variety learning problems
and better assess the generality of our conclusions.

For all the experiments we present, we used logistic regres-
sion as a base classifier. Logistic regression has many desirable
properties, such as fast training and testing, and guaranteed
convergence to a global minimum [27].

B. Performance Metric

In the active learning literature performance is typically
measured by comparing the performance achieved after dif-
ferent numbers of queries with the maximum information

performance, obtained when the learner has access to all the
labeled data in the training set.

We used the Area Under the ROC Curve (AUC) as our
performance metric. Many properties of the AUC make it
preferable to test error rates or precision/recall break-even
points (see [28] for an excellent discussion): it eliminates the
need to set a threshold on the class posteriors, it is robust
to unbalanced class priors and has a precise probabilistic
interpretation.

Exploiting our exhaustively labeled data sets, we performed
at least 10 randomized runs for each experiment, and we
are displaying point-wise confidence intervals of+/− 1.64σ
for all plots. According to bar-overlaps-bar test described in
[29], this width of the confidence intervals guarantees the 95%
significance of the ordering ofindividual runs, provided that
the intervals do not overlap.

C. Experiments and Results

Our experiments were designed to answer two main ques-
tions: we wanted to know if active learning can reduce labeling
requirements compared to random sampling, and to verify that
UDF is an effective initialization method.

Since the solutions we propose are meant for use in real-
world systems, adjusting the parameters of our algorithms
for the different data or feature sets is unacceptable. All the
experiments we present in this paper and in [26] are performed
without any parameter re-tuning. The initial settings were
chosen based on experiments presented in [26], analyzing their
influence on our algorithms. In particular, we used QBBAG
committees of15 classifiers, we compressed our initial data
to a two-dimensional space using PCA for UDF, and we
accumulated the interest scores over the8 highest scoring
patches in each image. These parameters have relatively wide
ranges of reasonable settings.

To answer the first question concerning the benefits of using
active learning methods in our domain, we have compared the
efficiency of QBBAG and UDF to manual and random selec-
tion. To perform randomized manual selection experiments, a
human expert created for each data set a list of images with
close-up views of all the obstacles. At run-time, the MANUAL
selection scheme could sample without replacement from these
lists of “interesting” images. In all of our plots we included for
reference a horizontal line corresponding to the performance
achieved by the MAX INFO classifier, which is trained using
the labels of all the data in the training set. Ideally, we would
want our automatic data selection schemes to get close to the
MAX INFO performance after very few image queries.

To study the effect of the initialization schemes on active
learning, we compared the performance of the QBBAG al-
gorithm using RANDOM, MANUAL, and UDF initialization.
For each initialization method, we selected5 images which
were then used as “seed” data set for QBBAG.

Due to space constraints, the results presented in Figure
5 are only a small subset of all the experiments we per-
formed; additional results are presented in more detail in
[26]. Nevertheless, Figure 5 is representative for the type of
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Fig. 5. Results on FmObsCourseNonPoles COL+TEX (a-c) , ApMdSpiral COL+TEX+LASER (d-f), and FmDriveDown COL+TEX+LASER (g-i). We are
comparing the performance of RANDOM vs. Active Learning (first column), MANUAL vs. Active Learning (second column) and the RANDOM, MANUAL
and UDF initialization methods (third column).

results we obtained. The plots in the left column compare the
performance of RANDOM selection to QBBAG with UDF
initialization and to the UDF algorithm used as a stand-
alone data selection method. The middle column compares
MANUAL selection to the same active learning methods. The
right column displays the performance achieved by QBBAG
when initialized randomly, manually, and using UDF.

The results obtained on the data sets represented in the first
two rows are very good. The data presents strongly skewed
class priors, and the phenomenon we described in Figure 1
occurs naturally: RANDOM selection is likely to query for
the labels of several non-obstacle images before an obstacle is
observed. As a result, the average performance is significantly
lower than that of both QBBAG and UDF, which quickly get
close to the MAX INFO performance. The standard deviation
for RANDOM selection is also much higher for these data sets,
because in many runs no obstacles are observed during the first
selection iterations, resulting in low test AUC scores. Both
active learning algorithms perform similarly to the MANUAL

selection method: their average performance is essentially the
same, while the standard deviations are slightly smaller. The
results in the third column show that UDF is indeed effective at
initializing active learning methods: for the first few iterations
QBBAG has roughly the same scores and confidence bounds
when initialized with either UDF or MANUAL, and both
versions are better than QBBAG with RANDOM initialization.
The difference is most significant for the ApMdSpiral data set,
which is the most skewed.

The performance of active learning on the more balanced
FmDriveDown data set was quite different: QBBAG resulted
in an improvement over RANDOM selection, but UDF per-
formed slightly worse. This is not unexpected: this data set
presents some class overlap, and given the nature of the
obstacles, a random sample of the data has a good chance to
contain most of the relevant data for obstacle detection. This
is confirmed by the relatively small performance difference
between MANUAL and RANDOM selection on this data set.
When used for QBBAG initialization, UDF resulted in a very



small improvement over RANDOM selection.
Although we are not presenting results here, our experi-

ments with Co-Testing indicate that it performs comparably
to QBBAG when the color, texture and laser features are used
as three “redundant” views of the data. This seems to confirm
the results presented by Muslea et al. in [20].

V. D ISCUSSION

Our experiments indicate that active learning has an impor-
tant role to play in making supervised learning applicable to
large-scale robotics applications. Especially when class priors
are unbalanced, which happens naturally in our domain, active
learning techniques can lead to significantly reduced labeling
requirements compared to random data selection. The learning
efficiency of our algorithms is comparable to that of a human
expert, and they can be applied to large data sets where manual
data selection is impractical.

Automatically selecting data for labeling has an additional
benefit: it makes training a perception system accessible to
end-users with minimal expertise, which opens the door to a
new set of robotics applications.

The fact that we obtained good experimental results on
several combinations of data sets and feature sets without re-
tuninganyparameters indicates that our algorithms are robust
and practical. Furthermore, in [26] we present qualitative
results showing that they scale up to data sets of close to
50, 000 images.

As future work, we intend to perform additional large-scale
experiments, and to explore robust algorithms for imposing
spatial coherency constraints among the patches used to esti-
mate the interest score of an image.
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