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Abstract— This paper introduces a dynamic map for mobile
robots that adapts continuously over time. It resolves the stability-
plasticity dilemma (the trade-off between adaptation to new
patterns and preservation of old patterns) by representing the
environment over multiple timescales simultaneously (5 in our
experiments). A sample-based representation is proposed, where
older memories fade at different rates depending on the timescale.
Robust statistics are used to interpret the samples. It is shown
that this approach can track both stationary and non-stationary
elements of the environment, covering the full spectrum of
variations from moving objects to structural changes. The method
was evaluated in a five week experiment in a real dynamic
environment. Experimental results show that the resulting map
is stable, improves its quality over time and adapts to changes.

I. INTRODUCTION

Future service robots will be required to run autonomously
over really long periods of time in environments that change
over time. Examples include security robots, robotic care-
givers, tour guides, etc. These robots will be required to live
together with people, and to adapt to the changes that people
make to the world, including transient variations at different
timescales (e.g., moving people, objects left temporarily, re-
arranged furniture, etc.) and long-term modifications to the
infrastructure of buildings. If a robot is to adapt to such
changes then life-long learning is essential.

The challenge for lifelong SLAM (simultaneous localization
and mapping) is that environments can change at different
rates, and changes can be gradual or abrupt. Moving people
follow a continuous path, while structural changes can occur
when the robot is located elsewhere. Changes may not be
permanent: an object may have been moved, a package may
have been left in the corridor for a while, etc. It is therefore
desirable for the robot to remember the old state too in case the
change is only temporary. This challenge is related to a more
general and well-known problem confronting every life-long
learning system, namely the stability-plasticity dilemma [5].
Life-long learning demands both adaption to new patterns and
preservation of old patterns at the same time. The escape from
this dilemma proposed here is to learn a representation of the
world at several timescales simultaneously, in order to cover
the full spectrum of possible changes.

A localization and mapping system is presented that main-
tains a dynamic map, which adapts continuously over time.

It uses a sample-based representation to handle changes at
different timescales. The basic idea is to replenish samples
stored for each timescale with new sensor measurements at a
timescale-specific learning rate. This representation has a well-
defined semantics, derived in section IV. The sample sets are
interpreted using robust statistics [7], and a probabilistic model
is used to infer the likelihood of new measurements for each
different timescale. During localization the robot compares its
current sensor data to all timescales in the map and chooses
the timescale that best fits the data. Consequently localization
is more robust and the map does not go out of date.

We present a working mapping and localization system
that uses these concepts, and demonstrate experimentally the
usability of this system in a real unmodified and moderately
large environment over an extended period of time. With
this approach the robot can maintain multiple hypotheses in
time about the state of the world. For example, our dynamic
map can simultaneously represent the world before, during
and after temporary objects are left in a particular place.
Thus the concept of a map is extended from a purely spatial
representation to a spatio-temporal representation that bears
many similarities to human memory.

II. PREVIOUS WORK

Traditional mapping and localization algorithms model the
world as being static and try at most to detect and filter
out moving objects such as people. Previous approaches to
dynamic mapping can be grouped into three categories.

First, some approaches attempt to explicitly discriminate
“dynamic” from “static” aspects [3], [10], [11], [6]. For
example, the RHINO tour guide robot [3] used an entropy filter
to separate sensor readings corresponding to known objects
such as walls from readings caused by dynamic obstacles such
as people. A fixed pre-installed map was used for localization,
while an occupancy grid was built on the fly to model dynamic
objects and combined with the static map for path planning.
By contrast our work uses a soft scale of learning rates to
handle changes at different timescales.

Second, several authors have investigated aging of the
map on a single timescale. Zimmer [13] presented a system
that dynamically learns and updates the topology of a map
during runtime and and showed the ability of his model to



adapt to changes. Yamauchi and Beer [12] developed a so-
called adaptive place network, where a confidence value for
each link in the network was updated in a recency-based
manner based on successful or non-unsuccessful attempts to
traverse the link, and links with low confidence were deleted.
Andrade-Cetto and Senafeliu [1] developed an EKF-based map
learning system that is able to forget landmarks that have
disappeared, where an existence state associated with each
landmark measures how often it has been seen.

Third, some authors propose richer world models with
explicit identification of objects. Anguelov et al. [2] divide
the environment into a static part and objects that can move
such as chairs. However, these efforts are decoupled from
map building and localization, and it is assumed that these
parts work independently and perfectly. The aim of Anguelov’s
work is more on obtaining one higher level map, and not to
adapt the map continuously as in this work.

In contrast to all these systems our dynamic map ad-
dresses the stability-plasticity dilemma. We do not consider
autonomous navigation or topological changes, rather our
focus is on seeing self-localization and map learning as a
never-ending cycle. Some of the previous works use recency
weighted averaging ([1], [12]). In the next sections we show
that this approach alone is not sufficient to handle the kind of
changes that occur in real dynamic environments, but also how
it can be modified and extended to cover multiple timescales.

III. ISSUES IN REPRESENTATION FOR CONTINUOUS MAP

LEARNING
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Fig. 1. A simple example environment where a dynamic map may be useful.
There is only an empty room. After some time somebody puts a cupboard
in front of one wall. Some time later the cupboard is removed. The example
map consist only of the distance d.

To introduce, motivate and justify the representation pro-
posed in this paper a simple toy example is considered. Let
the example environment be an empty room and the “map” to
be learned the distance from an arbitrary point of the room
to one of the walls (see Fig. 1). If the environment were
static then learning would be simple: all deviations from the
true value would be due to Gaussian measurement noise and
the map would be perfectly represented by the sample mean
and the the sample variance. For stationary distributions these
statistics are sufficient ([4], chapter 3.6), that is they store the
information content of all measurements and it is therefore not
necessary to keep them all in memory.

Assume now that the environment is dynamic. After some
time somebody puts a cupboard in front of the wall. Obviously

the above method is not well suited to this challenge. The time
needed for the sample mean to come closer than an arbitrary
threshold to the new true value is proportional to the time
that the wall has been seen in the old position. This means in
particular that if the wall has been seen for an infinite time the
estimated distance will never change. This behavior is certainly
not desired and the map should react to the appearance of the
cupboard independently of how long the wall has been seen.

Request 1 The time that the map needs for adapting to a
change should not depend on how much time has passed in
absolute terms. Also, the initial state should have no special
status or rank.

Recency weighted averaging is a solution to this problem
from the field of reinforcement learning that is especially
suited to non-stationary tracking problems ([9], chapter 2.6).
Here the estimate for the distance d is updated after a new
measurement according to:

dnew = (1 − α) ∗ dold + α ∗ dmeasured (1)

Effectively this methods calculates a weighted sample average.
The weight wt of a sample is thus dependent on its age t and
is given by

wt = α ∗ e−λt with λ = − ln(1 − α), (2)

assuming that measurements are made at regular intervals.
So the influence of old measurements decays according to a

well known law that also governs many growing and decaying
processes in nature. So it comes as no surprise that there is also
a theory in psychology that explains the process of forgetting:
decay theory states that forgetting occurs simply because of
time passing.

This method fulfills Request 1. In exchange a parameter λ
now governs the speed of adaption and leads to an obvious
though interesting observation:

Observation 1 The law that governs the update of a dynamic
map is inherently dependent on a timescale parameter.

Imagine that our cupboard is removed after a few days. If
λ is small (e.g., 1 year−1) only a small change in the map
will occur. On the other hand for large λs (e.g. 1 s−1) the
map will converge to the new value immediately. In the first
case the cupboard can be seen as an outlier and the quality of
the distance estimate to the wall should not get worse. This
reminds us of the notorious problem that statistics derived from
least square formulations are not robust against outliers, and
so we state that:

Request 2 The dynamic map should be robust against outliers.

In a dynamic environment this is a most natural requirement
for improving a map over time. Consider that the distance to
the wall has been measured a hundred times and then a moving
person causes one false measurement. All of the learning effort
would be in vain if that single measurement would degrade
the quality of the estimate.



But after the considerations above it is clear that the inherent
timescale determines whether a measurement should be called
an outlier. Let us assume that recency weighted averaging
would be robust against outliers. Despite that there would still
be a complaint: the estimate for the distance would change
gradually from the distance to the wall to the distance to
the cupboard, but none of these in-between estimates would
correspond to any physical reality. In contrast to many other
dynamic processes, the changes that occur in the environments
considered here are not necessarily continuous but more often
discrete and rapid. In the example it would be more natural
for the estimate to represent either the distance to the wall or
the distance to the cupboard. These considerations lead to

Request 3 The dynamic map should only yield values that
have been actually measured and it should not create inter-
polated values that can not be legitimized by the data.

The classical answer to requests 2 and 3 is to apply robust
statistics. The median of a set of samples fulfills requests 2 (it
ignores up to 50 percent of outliers) and 3. But there are no
sufficient statistics to describe the median. Sufficient statistics
preserve the information content of the whole data set and
so the data itself can be discarded. But to calculate robust
statistics we always need a full set of data. It is of course
impossible to save all data ever recorded. Our solution here is
a sample-based representation: we maintain a set of samples
drawn from the data that approximates all recent data.

The use of a sample-based representation can also be
justified by another (and less technical) observation concerning
outliers that lies in the nature of the problem: actual changes
in the environment appear in the first instance as outliers.

Observation 2 At the moment a measurement is made it is not
possible to determine whether it is an outlier or not. Outlier
detection is only possible post hoc and for a specific timescale.

Only after more time has passed (how much is dependent on
the timescale parameter) and more measurements have been
made can outliers be identified. So any method that tries to
identify outliers directly after the measurement is in principal
not suited to the problem of continuous learning of dynamic
maps. It follows that the map representation must be able
to track multiple hypotheses until it can be seen whether a
change has really happened or only outliers were measured.
So any method that represents the environment by a unimodal
distribution cannot be considered an adequate solution.

In this section the basic problems and ideas that inspired
the dynamic map were presented on a rather abstract level.
The next section describes the sample-based representation of
a dynamic map, its update rule and its properties, which we
propose as a solution to the problems described above.

IV. SAMPLE-BASED REPRESENTATION

A. Dynamic sample sets

The state of the map is represented at discrete time steps
ti. The basic representation of the dynamic map is a set S(ti)
of n samples. A sample is just a measurement that has been

recorded before time step ti. A sample set is a function of
time and is therefore the central concept that makes the map
dynamic. Its temporal evolution is calculated using an update
rule and measurements.

Let M be the set of measurements that have been made
between two subsequent time steps ti and ti+1. S(ti+1) is
then calculated by an update rule dependent on an update rate
0 ≤ u ≤ 1 as follows:

• Remove u ∗ n randomly chosen samples from S(ti).
• Replace them by u ∗ n randomly chosen samples from

M to get S(ti+1).
This algorithm is applied if the sample set is already full

(that is it contains the maximum number n of samples).
Initially a sample set is empty and until it is full an update
just consists of adding u ∗ n randomly chosen samples.

B. Semantics of a sample set

Let s be a sample that has been added at time step ti. The
probability that a randomly chosen sample from the sample
set S(ti) has just been added like s is u ∗ n/n = u. In each
subsequent time step the probability for s to be removed is
given by u. So at time step tj > ti the probability for s to be
still in S(tj) is given by (1−u)(tj−ti). Thus we can make the
following statement about the distribution of ages in a sample
set:

At any time the probability for a sample to have been added
to the sample set t time steps before is given by:

p(t) = u ∗ eln(1−u)∗t (3)

This is a pleasing result. The age of the samples is dis-
tributed just like the weights in recency weighted averag-
ing. The distribution is dependent on a timescale parameter
λ = − ln(1 − u). To get an impression of the meaning of λ
we state the following well known facts:

• The mean life time τ of a sample is given by: τ = λ−1.

• The half-life is given by t1/2 = ln 2
λ . For the sample-based

representation this means that one half of the sample set
is expected to be younger than the half-life and the other
half older.

C. Probabilistic interpretation of a sample set

To actually use the map at a time step t a normal distribution
N (ρ, σ2) can be robustly estimated from the samples using the
median and the median of absolute deviations:

ρ̂ = median(S(t)) (4)

σ̂ = 1.48 median(|x − ρ̂|, x ∈ S(t)) (5)

Additionally an outlier ratio can be estimated by declaring
all samples within an interval of 3σ around ρ as inliers (99.7 %
confidence level) and all others as outliers.

The representation and interpretation of a dynamic sam-
ple set are thus separated. This allows use of the map by
techniques with simple low-dimensional measurement models
like the unimodal model applied here. In our application this



model is used for localization, so the localization module need
not worry about complicated multimodal probability density
functions. But full information about the distribution of the
map data is retained in the sample set, where it is really needed
to represent multiple hypotheses.

D. Representation using multiple timescales

The obvious question at this point is “which timescale to
choose?” As with spatial filtering the answer is “it depends.”
For the above toy example it may be useful to maintain
two estimates, a more long-term one and a more short-term
one. Accordingly, we propose to maintain the dynamic map
simultaneously for several timescale parameters to cover the
whole spectrum of possible changes.

In this context the relationship of the timescale parameter
to actual time must also be discussed. In the toy example
the sensor is stationary and samples at regular intervals. It is
therefore easy to relate update ratios to hours or days. For an
arbitrarily moving robot the situation is different. It cannot be
said how long it will stay in a room or whether it will return
to the same room in the same day. To relate an update ratio to
the absolute time, we must wait in the order of the timescale to
know how many measurements have been recorded during that
time. Only then can samples be picked from the measurements
according to the update ratio. Accordingly in our system the
large timescale maps are updated only after a run or once a day
and are called long-term memory maps. There is also a short-
term memory map that is updated after each sensor reading.
This map is characterized by a short half-life, short enough
that the assumption of regular sampling is valid as long as the
robot stays within a certain area.

As announced in the introduction this simultaneous tracking
of different timescales is intended to tackle the stability-
plasticity dilemma. Each timescale corresponds to a position
on an imaginary stability-plasticity scale. Maintaining several
timescales simultaneously is thus a way to be everywhere on
that scale at the same time, allowing a map both to preserve
old patterns and to adapt to new patterns.

E. Simulation of a toy example

The behavior of a sample-based dynamic map is demon-
strated and compared to recency-weighted averaging in a
simulation of the toy example. In this simulation the distance
to the wall is 2 meters and the distance to the cupboard 1
meter. Measurements are simulated assuming normal noise
with a standard deviation of 10 cm. At time t = 10 the
cupboard is placed in front of the wall and at time t = 20
it is removed. Between two time-steps 20 measurements are
made. The sample set consists of 20 samples and is initialized
using the measurements of the first time-step. The recency-
weighted estimate is initialized by the mean of these first 20
measurements. The algorithm is tested using three different
update ratios: u = 0.75, u = 0.25 and u = 0.05. The update
of the sample set takes place after each time-step. The recency-
weighted average is updated directly after each measurement;
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Fig. 2. Using recency weighted averaging on toy example (left) and sample-
based dynamic map (right) for three different timescales.

the step-size parameter α is determined to correspond to the
respective update ratio.

Figure 2 shows the results of both algorithms. Recency
weighted averaging appears to work well for large update
rates like u = 0.75 when old samples are forgotten rapidly.
For smaller values of u it interpolates as expected towards
the new value and introduces values that have never been
measured. After the cupboard has been placed against the wall,
the estimate using the smallest u (corresponding to a large
timescale) is practically useless, since it represents neither of
the two objects for the whole considered time.

The behavior of the sample-based dynamic map mirrors our
requests much better. The estimates for u = 0.75 and u =
0.25 switch almost during one time step from the wall to the
cupboard and vice versa, where the values of u determine the
delay for that switch. The long-term component is unaffected
by the events, since the period during which the cupboard
appeared was too short for it to be registered.

V. A COMPLETE SYSTEM FOR CONTINUOUS

LOCALIZATION AND MAP LEARNING

This section gives an overview of the localization and
mapping system using the dynamic map. The learning system
and the representation of the map is exactly as described
in the toy example. Around it a localization and mapping
system for a real robot equipped with laser range scanner and
odometry has been built that has been shown to work robustly
in extensive long-term experiments.

The data flow of the whole system is depicted in Fig. 3.
First, an initial map is built from the first run through the new
environment. This map is build by a static SLAM algorithm
using laser scans and odometry as input and is based on scan
matching. The output is a set of selected laser scans with
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Fig. 3. An overview of the whole localization and learning system. The
dynamic map is both updated online during a run and offline after each run.

relations between them [8]. These laser scans form the initial
set of local maps.

A local map is like a 360 degree range scan from a constant
position: it quantizes the continuous space of all angles of
emanating rays from that position into a number of discrete
bins. The distances to objects in the direction of these rays
(range values) are the values tracked by the dynamic map.
A local map is linked to the global map by the position of
the projection center for these rays. The range values are
represented as sets of samples, one set for each timescale
parameter as introduced in the previous section.

For localization the robot selects local maps near to its
current position. One timescale within each local map is se-
lected in a data-driven way: the timescale is selected that best
explains the sensor data according to its learned perceptual
model. The selected local maps are then converted into a point
set called the current map and the current laser scan is then
matched to this current map. Odometry information is used as
a prior and as a bound to ensure robustness of matching.

After each localization step the short-term maps are updated
online. The long-term maps are updated offline after each robot
run or after each day. The update processes the data collected
during a run based on the estimated robot trajectory.

Technical details on local local map selection and local-
ization using scan matching are omitted here due to lack of
space, since these are both relatively straightforward. Instead
we focus next on the representational issues.

A. Local Maps

In our implementation a local map is a generalization
of a laser range scan and is linked to the global map by
a position in global coordinates. It holds several sub-maps
each corresponding to a different timescale. Each sub-map
is parameterized by a number of rays emanating from its
position, each ray corresponding to a different angle. Finally
each ray maintains a set of distance values: this sample set is
the basis of a dynamic map, see Fig. 4.
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Fig. 4. Internal map representation. The dynamic map consists of a set
of local maps. Each local map keeps several sub-maps representing different
timescale parameters. Each sub-map in turn is represented by a set of samples
for each angle.

The emanating rays cover the whole 2D space. An arbitrary
2D point can be mapped to a ray number and range value by
finding the closest ray and taking the distance to the position
of the local map as the range value.

This definition allows the representation of a local map by a
one-dimensional parameterization. Observations recorded near
to a local map’s position can be easily converted into this
representation and the learning scheme introduced with the
toy example can then be applied.

B. Perceptual model for local map selection

The sample sets set are used to derive a perceptual model
for the sensor input, that is to estimate the probability of a
laser scan given a pose and a local map at a certain timescale
(i.e., a set of samples). As outlined in section IV-A we derive
a mixture model from the sample set. The probability of a
range value measured at the position of a local map for any
ray is estimated by:

p(d) = (1−poutlier)pnormal(d)+poutlier∗puniform(d), (6)

where

pnormal ∼ N (ρ, σ2) (7)

puniform ∼ U(0, maxRange) (8)

That is, pnormal is normally distributed and puniform
uniformly distributed with parameters and mixture factor de-
termined as in section IV-A from the samples of the ray
considered. The log-likelihood of a whole scan is calculated
by adding the logarithms of p for each range scan reading. To
calculate the likelihood of a scan taken near the position of a
local map the scan readings are transformed as if taken from
that position.

This model considers not only measurement noise but also
possible measurements caused by outliers. Altogether, since
its parameters are estimated by the median and the MAD
operator, it can be considered a robust model whose parameters
are estimated robustly.



C. Localization

The localization algorithm tracks the position of the robot
over time. There is always only one single estimate for the
robot’s position and it is assumed that the starting position
is known. The problems of global localization and robot
kidnapping are not considered here.

A single localization step consists of two main parts. A
current map is synthesized by selecting those timescales that
best fit the data according to the introduced perceptual model
and the current position estimate. This current map is then
used to localize the robot in the next time step based on a
scan matching scheme that incorporates odometry information.
After scan matching, a new current map is built using the
resulting position estimate and so on. The central interaction
between map and localization occurs here: the sensor data is
used to select the most likely model of the current environment
from the available timescales.

D. Learning: Online and Offline Update of the Map

As described in section IV-D there are long-term memory
maps and a short-term memory map. The short-term memory
map is updated after each localization step. All local maps
whose centers are near (< 2.5 m) to the current position
are informed of the new measurements. The readings of the
range scans are converted to polar coordinates as in section
V-A and then used to update the sample sets of the local
maps as described in section IV-A. The robust estimates for
the perceptual model parameters are then updated online. If
there is no local map that is nearer than 2.5 m, a new one
is initialized immediately, with a global position according to
the current position estimate.

For the long-term memory maps the information (triples
of local map, range scan and pose estimate) is stored and
evaluated only after a run or after a day, but with exactly the
same method otherwise.

The next section describes the experimental setup we have
employed and details the different timescale and update inter-
vals that were tested.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The complete map learning system was tested extensively
in an indoor environment consisting of a robotics laboratory
with three rooms, a corridor with Ph.D. students’ offices and
a hallway containing stairs and also chairs and tables. Over a
period of five weeks the robot was steered manually through
this environment from a constant start position. Typically three
runs per day were performed; one in the morning, one after
lunch and one in the early evening. A SICK LMS 200 laser
scanner was used, and a total of around 100000 laser scans
together with odometry data were recorded in 75 runs with an
approximate distance covered of 9.6 km. The environment was
not prepared in any way nor were people instructed somehow
(that would also have been impossible due to the heavy traffic
of students in the hallway especially around lunchtime). The

Upd. ratio/interval timescale (t1/2) nRays nSamples

λ1 u = 0.2 / always t1/2 ≈ 3.1 360 (1 ray/◦) 5
λ2 u = 0.8 / per run t1/2 ≈ 0.43 runs 360 (1 ray/◦) 10
λ3 u = 0.8 / daily t1/2 ≈ 0.43 days 720 (2 rays/◦) 50
λ4 u = 0.2 / daily t1/2 ≈ 3.1 days 1440 (4 rays/◦) 100
λ5 u = 0.05 / daily t1/2 ≈ 13.5 days 1440 (4 rays/◦) 100

TABLE I

THE DIFFERENT TIMESCALES OF THE SUB-MAPS CONTAINED IN ONE

LOCAL MAP. λ1 IS THE SHORT-TERM MEMORY MAP, λ2-λ5 ARE THE

LONG-TERM MEMORY MAPS.

initial map built by the static SLAM algorithm is shown in
Fig. 5.
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Fig. 5. The initial map of the environment (obtained by a static SLAM
approach) in which the experiment was conducted. The filled circles mark
the positions of local maps.

Table I shows the different timescales for the sub-maps
contained in one local map. The number of sub-maps and their
properties were chosen according to the following consider-
ation: a short-term memory should react quickly to changes
so only a few data samples should be enough to forget an
old opinion. Therefore the number of samples per ray should
be small and the update ratio high. This, in turn, entails a
relatively low accuracy as all estimates are always calculated
on the small amount of available data.

The opposite is true for a real long-term map: such a map
should not react at all to temporarily changes, and adapt only if
something has really changed consistently. At the same time
the static parts of the environment should be modeled with
increased accuracy. A large number of samples per ray and a
low update ratio are able to provide these properties. The use
of robust statistics in combination with the large number of
samples then provides both accuracy and robustness against
outliers.

The first sub-map is updated online after each new laser
scan reading and can be regarded as the short-term memory
map. The high update rate effectively always inserts the latest
value into the sample set and the sample set is kept small in
order to react quickly to changes. The other four sub-maps are
then updated offline. With decreasing update ratios both the
spatial resolution (number of rays per degree) and the number
of samples increases.



B. Qualitative results

The most important result is: the dynamic map was stable
over time and did not diverge. The accuracy of its local
maps increased over time; this could be verified visually, for
example, by looking at the “straightness” of walls. In parts of
the environment where changes often occur, static parts like
walls emerge while moving objects like chairs that could be
observed in the initial map disappear. This could be observed,
for example, in the robot lab. Figure 6 shows the most long
term map (λ5) of the middle room of the lab on three different
days (Oct 18, Nov 1 and Nov 19) along with the local map that
is updated after each run (λ2) on Nov 19. It can be seen that
the static aspects improve, although on Nov 19, for example,
the lab looks quite different in some parts, as can be seen on
the rightmost map. For visualization only points are shown
for which the probabilistic model yields a standard deviation
estimate smaller than 10 cm.

To assess these statements it is interesting to know what
kind of changes actually happened in the environment. Major
structural changes happened rarely as one might expect in this
kind of environment, but one such change and the reaction of
the dynamic map is shown in Figs. 7 and 8. Another structural
change was the installation of new radiators in the hallway
where some tables were also moved. Many changes on a
smaller timescale (a few days or less) occurred frequently in
the robotics lab, where movable “walls” and other robots often
appeared at different positions as other researchers performed
their experiments. Thus severe changes from one day to the
next often posed a good challenge to the dynamic map. These
challenges were handled well, and the short-term memory map
in particular adapted quickly to the changes. Other frequent
changes occurred in the hallway, e.g., chairs were often moved.
This hallway was also the most busy place, with a lot of
students passing through most of the time.

Oct 18 / λ5 Nov 1 / λ5 Nov 19 / λ5 Nov 19/ λ2

Fig. 6. The most long-term submaps (λ5 in table I) of an example local map
(the middle room of the robot lab). The red circle marks the center of the
local map. It can be seen that static aspects improve over time, although the
environment sometimes looks quite different, e.g., on the last day as can be
seen on the rightmost submap (which is a local map with a small half time,
λ2 in table I)

C. Quantitative results

With the help of some examples is has been shown that the
dynamic map successfully adapts to changes in the environ-
ment and improves its quality where the environment remains
static. While these results may be satisfying enough from a
theoretical point of view a practitioner may still doubt whether
such a technology is really needed, as it makes the already

Fig. 7. A major change occurred on day 4 of the experiments. The design
class attendees presented their work (designs for toasters) in a small exhibition.
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�4 �3 �2

Oct 27

Nov 4

Nov 15

Fig. 8. Evolution of a local map after a major change has occurred (the
toaster exhibition). Shown are the long-term memory maps λ2-λ5 on four
different days.

difficult problem of simultaneous localization and mapping
even more complex and might lead to a less robust and slower
solution. Therefore we conducted an experimental comparison
of the localization algorithm using the dynamic map against
the same localization algorithm using the map created at the
end of the first day as a static map. Additionally this static
map was tested in two variations: with and without short-term
memory. So three maps were compared: a static map, a static
map with short-term memory (λ1 in table I activated), and the
full dynamic map (λ1–λ5 in table I activated). Thus it can be
determined how much the localization algorithm benefits from
the short term memory map alone and what additional value is
obtained from the long term memory maps. A general result is
that in all cases there was no serious localization error that the
robot could not recover from, so global localization was never
required (the start position was always the same). This does
not, of course, mean that the dynamic map is unnecessary,
and the benefit was measured as follows. In the absence of
ground truth data other indicators must be used for quantitative
evaluation, so the following two performance measures were
selected:

1) The average likelihood of a range scan reading given
the probabilistic model explained in section V-B. This
measure gives an indication of how expected a scan is.

2) The smallest eigenvalue of the covariance matrix that



0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

day

A
ve

ra
ge

 li
ke

lih
oo

d 
of

 s
ca

ns

Average likelihood

Static Map
With STM
Dynamic Map (STM+LTM)

Fig. 9. The average likelihood of a measured range value according to
the learned perceptual model (section V-B). The dynamic map, consisting of
a short-term memory map (STM) and long-term memory maps (LTM), is
compared to a static map and a static map with added short-term memory.
The static map is a snapshot of the dynamic map after the first day.

results from scan matching. This measure describes how
the localization algorithm estimates the certainty of the
result: a large value indicates a small uncertainty.

The second measure is of course specific to our scan
matching algorithm, but it can be expected that other scan
match algorithms would behave similarly. So this measure
can be seen as an indication of localization accuracy. Figs.
9 and 10 show the temporal evolution of these measures. In
both cases there is a clear benefit in using the dynamic map.
Also, using the short-term memory map alone improves the
performance. But the long-term memory map improves the
results even more, especially regarding localization accuracy.
Both figures also show an expected effect: the static map
performs better at the beginning of the experiments than at
the end. With increasing time from the start of the experiment,
both indicators show decreasing performance and after a few
days the performance seems to more or less stabilize at
a considerably lower level. By contrast, the dynamic map
improves performance with time and then also stabilizes, but
at a higher level.

VII. CONCLUSION

This paper presented the dynamic map, a way to handle
the problem of lifelong map learning in a dynamic and ever-
changing world. The key technical contribution is the use of
a sample-based representation and its interpretation through
robust statistics. Huge amounts of memory are required for the
proposed representation, but such amounts are available today
on standard computers. A further contribution was made at a
more abstract level: we investigated the general problems of
life-long map learning in dynamic environments and identified
the stability-plasticity dilemma as the most important problem.
Our solution to the dilemma is to track the state of the
world at several timescales simultaneously, and then to let the
sensor data select the most appropriate timescale for a given
situation. This solution is simple and effective, and it is also
so general that it can be expected to find application in other
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Fig. 10. The certainty of the localization estimate from scan matching. This
certainty is measured by the value of the smallest eigenvalue of the inverse
of the covariance matrix. If that value is large the corresponding uncertainty
ellipse has a small area.

areas where life-long learning is necessary. The relevance of
such learning abilities in any real autonomous system with
very long operation times should be obvious, both from an
academic view and from the view of real applications. Here
we tried to cover both theoretical and practical aspects of
the problem, and also performed the necessary experiments
to demonstrate the underlying concepts. This work may be an
important step in a promising direction where much research
remains to be done.
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