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Abstract— We propose a biologically inspired, distributed co-
ordination scheme based on nearest-neighbor interactions for a
set of mobile kinematic agents equipped with vision sensors.
It is assumed that each agent is only capable of measuring
the following three quantities relative to each of its nearest
neighbors (as defined by a proximity graph): time-to-collision,
a single optical flow vector and relative bearing. We prove that
the proposed distributed control law results in alignment of
headings and flocking, even when the topology of the proximity
graph representing the interconnection changes with time. It is
shown that when the proximity graph is ”jointly connected” over
time, flocking and velocity alignment will occur. Furthermore, the
distributed control law can be extended to the case where the
agents follow a leader. Under similar connectivity assumptions,
we prove that the headings converge to that of the leader.
Simulations are presented to demonstrate the effectiveness of
this approach.

I. I NTRODUCTION

Over the past few years a considerable amount of attention
has been focused on the problem of coordinated motion
and cooperative control of multiple autonomous agents. From
ecology and evolutionary biology to social sciences, and from
systems and control theory to complexity theory, statistical
physics, and computer graphics, researchers have been trying
to develop an understanding of how a group of moving objects
such as flocks of birds, schools of fish, crowds of people
can perform collective tasks such as reaching a consensus or
moving in a formation without centralized coordination.

Such problems have been studied in ecology and theoretical
biology, in the context of animal aggregation and social
cohesion in animal groups. There is evidence that individuals
within such groups often only have access to local information
about the behavior of near-neighbors. Nevertheless this is
sufficient as an organizing principle for the entire group to
perform collective locomotion, yet remain cohesive even when
moving around obstacles or when avoiding predators [28].

Furthermore, there has been a large body of research
focused on mimicking the observed social aggregation phe-
nomena in different animal species using computer simulation.
The pioneering work in this area was done by Reynolds [29].
More recently, several researchers in the area of statistical
physics and complexity theory have addressed flocking and
schooling behavior in the context of non-equilibrium phe-
nomena in many-degree-of-freedom dynamical systems and

self organization in systems of self-propelled particles, starting
from the work of Vicseket al. [34].

In robotics and control theory, these problems have been
studied in the context of cooperative control of autonomous
robots, unmanned vehicles, and general multiagent systems. A
nonexhaustive list of references include [5], [8], [10], [12],
[15], [17], [25], [26], [32]. A simple but compelling model
of flocking and coordination is the model proposed by Vicsek
et al. in [34] and analyzed in [15]. The model describes a
set of agents moving with constant speedv, whose heading
direction is updated by a simple alignment rule. The heading
of each agent is updated in discrete time as the average of
the heading of itself and those who fall within a disc of
a pre-specified radius centered around each agent. As the
agents move, the set of nearest neighbors change, resulting
in a discontinuous change or switching in the control law.
The neighborhood relationship between any two agents can
be described conveniently with a graph whose nodes represent
the agents and the edges represent the neighborhood relation.
It was shown in [15] that if the neighborhood graph stays
connected in time, then the headings of all agents converge to
a common value. As a result all agents align, and the pairwise
distances stabilize. Furthermore, it was shown that when one
agent acts as a leader, the headings converge to that of the
leader under similar conditions.

Over the past 2 years, a plethora of similar results have
appeared in the control literature. Also, extensions to dynamic
point-mass models have also appeared [26], [32]. These results
assume that each agent is capable of measuring the heading of
its nearest neighbors (in discrete time models), or difference
between headings of itself and its neighbors (in continuous-
time models), effectively requiring communication on top of
sensing.

While the nearest neighbor interactions have been shown to
be biologically plausible and have been observed in schools of
fish and flocks of birds, the assumptions about knowledge of
relative headings and distances is not biologically plausible.
Even if some species might use ultrasound to estimate dis-
tances or binocular vision to estimate positions and motions
of others, such sensing mechanisms do not perform well
for flocking where simultaneous measurements in multiple
directions are needed. The simplest assumption we can make
is that such systems have only monocular vision and that they



have basic visual capabilities like the estimation ofoptical
flow and time to collision. Experimental evidence suggest
that several animal species, including pigeons, are capable of
estimating time to collision [20], [36]. Computationally, time
to collision can be estimated from the ratio of area change
to area or from the divergence of the optical flow [4], [19].
Regarding optical flow, we refer the reader to the survey [3].

Many of the existing vision-based distributed control strate-
gies assume that the robots are capable of communicating
to their neighbors an estimation of their position [30], [38],
[39] and are based on distributed computation [1]. Other
cooperative systems are based on local computation work in
the configuration space [11], [24]. From the vision point of
view, our paper is mostly related to the formation control
systems in [6], [7], [35]. However, these approaches assume
that a specific vertical pose of an omnidirectional camera
allows the computation of both bearing and distance, while
we use only the optical flow (bearing derivative) and time-to-
collision.

Our goal in this paper is to develop a provably correct
coordination and flocking scheme that is also biologically
plausible. We will show that coordination and flocking is
possible based on measuring time-to-collision and optical flow,
even if the neighborhood graph topology changes, so long
as a weak notion of connectivity denoted as ”connectivity
in time” is preserved (same as in [15]). We will also show
that the above problem is directly related to the Kuramoto
model of coupled nonlinear oscillators, a famous problem in
mathematical physics [16], [31].

II. GRAPH THEORY PRELIMINARIES

In this section we introduce some standard graph theoretic
notation and terminology. For more information, the interested
reader is referred to [13].

An (undirected) graphG consists of a vertex set,V, and
an edge setE , where an edge is an unordered pair of distinct
vertices inG. If x, y ∈ V , and (x, y) ∈ E , thenx and y are
said to be adjacent, or neighbors and we denote this by writing
x ∼ y. The number of neighbors of each vertex is its valence.
A path of lengthr from vertexx to vertexy is a sequence
of r + 1 distinct vertices starting withx and ending withy
such that consecutive vertices are adjacent. If there is a path
between any two vertices of a graphG, thenG is said to be
connected. If there is such a path on a directed graph ignoring
the direction of the edges, then the graph is weakly connected.

The adjacency matrixA(G) = [aij ] of an (undirected) graph
G is a symmetric matrix with rows and columns indexed by
the vertices ofG, such thataij = 1 if vertex i and vertexj are
neighbors andaij = 0, otherwise. The valence matrixD(G)
of a graphG is a diagonal matrix with rows and columns
indexed byV, in which the (i, i)-entry is the valence of
vertex i. The (un)directed graph of a (symmetric) matrix is
a graph whose adjacency matrix is constructed by replacing
all nonzero entries of the matrix with 1.

The symmetric singular matrix defined as:

L(G) = D(G)−A(G)

is called the Laplacian ofG. The Laplacian matrix captures
many topological properties of the graph. The LaplacianL is
a positive semidefinite M-matrix (a matrix whose off-diagonal
entries are all nonpositive) and the algebraic multiplicity of
its zero eigenvalue (i.e., the dimension of its kernel) is equal
to the number of connected components in the graph. Then-
dimensional eigenvector associated with the zero eigenvalue
is the vector of ones,1.

Given an orientation of the edges of a graph, we can define
the edge-vertexincidence matrixof the graph to be a matrixB
with rows indexed by vertices and columns indexed by edges
with entries of 1 representing the source of a directed edge
and -1 representing a sink. The Laplacian matrix of a graph
can be also represented in terms of its incidence matrix as
L = BBT independent of the orientation of the edges.

III. D ISTRIBUTED COORDINATION AND FLOCKING WITH

K INEMATIC MODELS

A. System Model

Consider a group ofN agents on a plane. Each agent is
equipped with a vision sensor that is capable of sensing some
information from its neighbors as defined by:

Ni
.= {j|i ∼ j} ⊆ {1, . . . , N}\{i}.

The neighborhood set of agenti,Ni, is a set of agents that can
be “seen” by agenti. The exact definition of “sensing” will
be discussed shortly. The characteristics of the vision sensor
limits the size of the neighborhood. We therefore assume
that there is a predetermined radiusR which determines
the neighborhood relationship. The location of agenti, (i =
1, . . . , N) in the world coordinates is given by(xi, yi) and it’s
velocity isvi = (ẋi, ẏi)T . The heading or orientation of agent
i is θi and is given by:

θi = atan2(ẏi, ẋi).

It is assumed that all agents move with constance speedv.
We assume a unicycle kinematic model for each agent:

ẋi = v cos θi

ẏi = v sin θi

θ̇i = ωi i = 1, . . . , N (1)

The goal is to design a control inputωi so that the group of
mobile agents flock in the sense of following definition:

Definition 3.1: (Flocking) A group of mobile agents is said
to (asymptotically) flock, when all agents attain the same
velocity vector and distances between the agents are stabilized.

In order to make the model biologically plausible, we
impose constraints on what each agent can measure. Letβij

(bearing) be the relative angle between agentsi and j as
measured in the local coordinate of agenti. To formally define
the sensing, we assume that each agenti can measure:

• βij or the relative bearing in agenti’s reference frame
• β̇ij or ”optical flow”: the rate of change of bearing
• τij or ”time-to-collision”



Fig. 1. Configuration of 2 agents.

for any agentj in the set of its neighborsNi. Note that
measurement of time-to-collisionτij is not equivalent to
measurement of the relative distance between agents as is
usually the case in visual motion problems. This is due to
the fact that time-to-collision can only recover the distance up
to an unknown factor which in our case is different for every
agent. The reader should also note that only one optical flow
vector per rigid body is observed. Thus, making it impossible
to rely on structure from motion algorithms.

Simple calculation reveals that bearing and relative distance
between agentsi and j are given by (see Figure 1):

Distance : l2ij = (xj − xi)2 + (yj − yi)2 (2)

Bearing : βij = atan2(yj − yi, xj − xi)− θi +
π

2
(3)

It can be shown that the time-to-collision between agents
i and j can be measured as the rate of growth of the image
area [20], i.e. the relative change in the areaAij of projection
of agentj on the image plane of agenti. In other words

τij =
Aj

Ȧj

=
lij

l̇ij
.

B. The Distributed Control Law

In order to have a successful distributed control law which
results in heading alignment and flocking, we need to have a
measure of misalignment appear as a term in the controller.
One way for the control input of any agenti to be spatially
distributed and result in alignment, is to have the formθ̇i =
−∑

j wij(θi − θj), where weightswij are positive when
agent i is a neighbor of agentj, and zero otherwise. Such
a distributed control law is effectively the negative of the
weighted Laplacian of the proximity graph, and has been
analyzed in [2], [15], [21], [22], [26]. However, as we
said before, since there is no communication between nearest
neighbors, the relative heading information is not available.
It turns out however, that we do not need to haveθi − θj

explicitly in the controller. Instead, it suffices to have an odd
function of θi − θj .

How can we generate a distributed control law based on
measured quantities? A simple calculation indicates that when
two agents are aligned, the resulting optical flow is zero. This
suggests that perhaps the sum of optical flows between each
agent and its neighbors is a plausible choice. Unfortunately,
having the sum of optical flows between each node and its
nearest neighbors equal to zero is necessary for alignment,
but is not sufficient. This is where the knowledge of time to
collision becomes useful.

Consider any pair of agentsi and any of its neighborsj.
By differentiating (2) we get

1
τij

=
l̇ij
lij

=
2v

lij
sin(

θi − θj

2
) cos(βij +

θi − θj

2
) (4)

and by differentiating (3) we obtain

β̇ij + ωi = −2v

lij
sin(

θi − θj

2
) sin(βij +

θi − θj

2
) (5)

A straightforward computation, using trigonometry identi-
ties, shows that the following relation between (4) and (5)
holds:

1
τij

cosβij − (ωi + β̇ij) sin βij =
v

lij
sin(θi − θj). (6)

This provides us with an odd function ofθi − θj . Since this
equation holds for any agenti and any of its neighborsj ∈ Ni,
we can sum (6) over all its neighbors to get
∑

j∈Ni

1
τij

cosβij−
∑

j∈Ni

(ωi+β̇ij) sin βij =
∑

j∈Ni

v

lij
sin(θi−θj).

(7)
We will show in section IV that a control law of the form

ωi = −
∑

j∈Ni

v

lij
sin(θi − θj) (8)

will result in flocking according to definition 3.1. Equation (7)
reveals that the above control law can be exactly computed
using the measured quantities from nearest neighbors. By
plugging (8) in (7), we get:

ωi =
1

1−∑
j∈Ni

sin βij

∑

j∈Ni

(
β̇ij sin βij − 1

τij
cos βij

)
.

(9)
In the next section, we will show that the above distributed
control strategy will result in flocking even when the set of
nearest neighbors change in time.

IV. STABILITY ANALYSIS

We now prove that the above chosen control law results in
flocking of all agents first when the proximity graph is fixed
and connected, and then when the graph changes with time
but a weaker notion of connectivity is preserved. Note that
the heading equation is now exactly the well-known Kuramoto
model of coupled nonlinear oscillators, which has been studied
extensively in the mathematical physics literature [31], and its
stability properties was analyzed recently in [16], [22], [26].
The particular case of all-to-all connected graphs was also
analyzed in [18].



A. Fixed Graphs

We first consider the case where the neighboring relations
among agents are represented by a fixed, weighted graph.

Definition 4.1: The neighboring graphG = {V, E ,W} is a
weighted graph consisting of:

• a set of verticesV indexed by the set of mobile agents;
• a set of pairsE = {eij = (νi, νj) | νi, νj ∈ V, and i

neighbor ofj };
• a set of positive edge weightswij , for each edgeeij .

Assume an arbitrary orientation for the edges ofG. Consider
the N × e incidence matrixB of this oriented graph,G with
N vertices ande edges. Then, we can write (8) as:

θ̇ = ω = −BW sin(BT θ) (10)

whereθ = [θ1, . . . , θN ]T , andW is the diagonal matrix whose
entries are the edge weights forG. The equation (10) can be
written in a more compact form as:

θ̇ = ω = −BWBT θ, (11)

whereW = diag{ v
lij

sinc(θi − θj) | (i, j) ∈ E}.
The quantitiesv and lij are positive and sinc(∆θ) =

sin(∆θ)
∆θ is positive when the heading vectorθ is in the cube

(−π/2, π/2)N . ThereforeW is a valid weight matrix. Now
consider the quadratic Lyapunov functionU = 1

2θT θ. Then,

U̇ = θT θ̇ = −θT BWBT θ = −θT Lwθ ≤ 0

whereLw = BWBT is the Laplacian of the graphG. Because
U is a non-increasing function along the trajectories of the
system (U ≥ 0 and U̇ ≤ 0), the set

Ωc = {θi, i = 1, . . . , N | U ≤ c}
is positively invariant for the largest value ofc such that
Ωc ⊆ (−π/2, π/2)N . It is also compact (closed and bounded)
becauseθ’s are bounded and vary continuously. Hence, ac-
cording toLaSalle’s invariance principleany solution starting
in Ωc converges to the largest invariant set,Sθ, contained in

E = {θi, i = 1, . . . , N | U̇ = 0}
ast →∞. This largest invariant set,Sθ, is a set of states that
are solutions ofLwθ = 0. Therefore, vectorθ is in the null
space of the weighted Laplacian.

If graph G is connected, null space ofLw is the span of
the vector1 .= [1, . . . , 1]T . Thus,

Sθ = {(θ1, . . . , θN ) | θ1 = . . . = θN = θ̄} (12)

which suggests that all agents reach the same heading ast →
∞.

Now we can show that eventually the relative distances
between agents stabilizes. In order to havelij equal to a
constant, we just need to show thatlimt→∞ l̇ij = 0. From
(4) we can show that:

lim
t→∞

l̇ij = lim
t→∞

2v sin(
θi − θj

2
) cos(

θi − θj

2
+ βij)

From (12) and the fact thatsin(·) is a bounded function we get:
limθi,θj→θ̄ l̇ij = 0. Thus, the inter-agent distances stabilizes
eventually and the group of mobile agents reaches a formation.
We have therefore proven the following theorem:

Theorem 4.2:Consider a set of kinematic mobile agents
described by (1). Assume that each agenti is capable of
measuring the bearing angleβij , the optical flow β̇ij , as
well as the time-to-collisionτij . If the graphG representing
the neighborhood relationship is fixed and connected, then
(9) will result in flocking and the consensus state is locally
asymptotically stable, i.e., all headings will eventually align
and all pair-wise distances will stabilize.

Note that for all initial conditions that the connectivity
condition holds the result is valid.

B. Switching Graphs

In practice, the motion of individual agents will result in
change in topology. This change in topology could be taken
into account by using smooth “bump functions” [26], or by
resorting to nonsmooth analysis [32]. To avoid complications
that occur because of discontinuous change in the set of nearest
neighbors, we will assume that there is always a minimum
time, called adwell timeover which the graph does not change.
This simplifying assumption will avoid infinite switches over a
finite period of time, and can be relaxed by using nonsmooth
analysis [9]. What this means in the present context is that
each agent is constrained to change its control law only at
discrete time instances. Each agenti would use a control law
similar to (8) (which is now hybrid, since the set of neighbors
Ni changes discontinuously). By assuming a minimum dwell
time, the controller would be of the form:

ωi(t) = −
∑

j∈Ni(tik)

v

lij(t)
sin(θi(t)− θj(t))

t ∈ [tik, tik + µi)

where µi is a pre-specified positive number called adwell
time and {t0, t1, . . . } is an infinite time sequence such that
ti(k+1) − tik = µi, k ≥ 0. In the sequel we will analyze
controls of this form subject to two simplifying assumptions.
First we will assume that allN agents use the same dwell
time which we henceforth denote byµD. Second we assume
the agents are synchronized in the sense thattik = tjk for all
i, j ∈ {1, 2, . . . , N} and allk ≥ 0.

Definition 4.3: A collection of graphs
{Gp1 ,Gp2 , . . . ,Gpm}, each with vertex setV is called
jointly connected, if the graphG with vertex setV and edge
set equaling the union of the edge sets of all of the graphs in
the collection is connected.

It is natural to say that theN agents under consideration
arelinked togetheracross a time interval[t, τ ] if the collection
of graphs{Gσ(t),Gσ(t+1), . . . ,Gσ(τ)} encountered along the
interval, is jointly connected. In [15] it was shown that the
proposed nearest neighbor law results in heading alignment
and flocking if there is an infinite sequence of non-consecutive,
bounded, non-overlapping time intervals over which the agents
are linked together.



This result was further extended in [21], [22] to the case
where the agents are linked together over infinite time inter-
vals. This means that for any timet0, the collection of graphs
over [t0,∞) has to be jointly connected. If the uniformity
requirement is removed, only asymptotic convergence of all
headings is achieved, as opposed to exponential convergence.
It turns out that the existence of uniformly bounded time in-
tervals is necessary for exponential alignment ofall headings.

In trying to extend the previous theorem to graphs with
the above mentioned switching regime, we need the following
lemma, which was proven in [15].

Lemma 4.4:If {Gp1 ,Gp2 , . . . ,Gpm
} is a jointly connected

collection of graphs with Laplacians
Lp1 , Lp2 , . . . , Lpm , then

m⋂

i=1

kernel Lpi
= span {1}. (13)

The above lemma states that the intersection of the null
space of the Laplacian of a set of jointly connected graphs
is only the vector of ones. In other words, even though the
graphs might be disconnected, and as a result their Laplacian
have a larger kernel, the intersection is only the vector of ones.
We can now state the following theorem:

Theorem 4.5:Let the initial heading vectorθ0 be fixed and
let σ : {0, 1, 2, . . .} → P be a switching signal mapping the
integers to a finite set of indices corresponding to all graphs
over N vertices for which there exists an infinite sequence
of contiguous, non-empty, bounded, time-intervals[ti, ti+1),
i ≥ 0, starting at t0 = 0, with the property that across each
such interval, theN -agent group is linked together. Then

lim
t→∞

θ(t) = θss1 (14)

for some valueθss, i.e., all agents will asymptotically flock.
Proof: We use the same Lyapunov functionU := 1

2θT θ
as before. Using the same notation, we now have

U̇ = θT θ̇ = −θT Bσ(t)Wσ(t)(θ)BT
σ(t)θ = −θT Lwσθ ≤ 0

whereσ is the switching signal, and for eachp ∈ P, Lwp is the
weighted Laplacian matrix of the corresponding graph. Again,
we note that since the headings are in the cube(−π/2, π/2)N ,
the weights are positive, andLwσ is a positive semidefinite
matrix. By LaSalle’s invariance principle, over the compact
set Ωc = {θ | U ≤ c} (for the largest value ofc such that
Ωc ⊆ (π/2, π/2)N ), the trajectories converge to the largest
invariant set in the seṫU = 0. Becauseσ(·) is such that there is
an infinite sequence of jointly connected collection of graphs,
and because of the previous lemma, the largest invariant set
over the setU̇ = 0 is only the span of vector1. Therefore, in
the region(−π/2, π/2)N there is an exponential decrease in
the value of the Lyapunov function for the component of the
heading along1⊥.

In other words, we can decompose the vectorθ as the
direct sum of two components along1 and its orthogonal
complement in the subspace1⊥. Since there is no other
direction in the setU̇ = 0, the component ofθ along 1⊥

decays to zero exponentially fast and therefore all agents align.
Once the agents’ headings are aligned, the velocity vectors
become the same, and as before,l̇ij goes to zero and all pair-
wise distances stabilize to a constant value.

Remark 4.6:It is shown in [27] that if the measurements
of the headings from neighboring agents is delayed byti, then
linear stability still holds.

V. L EADER FOLLOWING

In many flocking instances observed in the nature, such as
flocking of birds, one of the flock-mates acts as the leader
of the group and others follow the leader while staying in
a formation. Similarly, here we consider the case that one
additional agent, labeled0, acts as the group’s leader. Agent
0 moves with the constant velocityv (same as others) and a
fixed headingθ0. Other agents in the group may or may not
have the leader as a neighbor. Here we find a control law that
results in a stable formation of the group while following the
leader, so that in the end all agents reach the desired heading
θ0.

Consider the input of each agent in the leaderless case that
is given by (8). We can separate the leader from other agents
and write:

θ̇i = −
∑

j∈Ni

v

lij
sin(θi − θj)− ci

v

li0
sin(θi − θ0), (15)

whereci = 1 if agenti and the leader are neighbors andci = 0
otherwise.

To show that all the headings become equal toθ0, we
consider the error termei = θi − θ0. Since ėi = θ̇i, we can
write (15) as follows:

ėi = −
∑

j∈Ni

v

lij
sin(ei − ej)− ci

v

li0
sin ei.

Similar to calculations of section IV, the error dynamics
becomes:

ė = −BWBT e−Wle

= −(
Lw + Wl

)
e

= −Hle (16)

where W = diag{ v
lij

sinc(θi − θj) | (i, j) ∈ E} and Wl =
diag{ci

v
li0

sinc(θi − θ0) | (i, 0) ∈ E}. Both W and Wl are
weight matrices with positive entries, because sinc(θi− θ0) is
positive forθi ∈ (−π/2, π/2), andv, lij andci are all positive
coefficients.

In order to show that the error is asymptotically stable,
consider the Lyapunov functionU = 1

2eT e.
The derivative of this along the trajectory of the error system

can be written aṡU = −eT Hle, whereHl =
(
Lw + Wl

)
.

Next, we will prove thatHl is positive definite, and the error
will asymptotically decay to zero. Note that bothLw andWl

are positive semi-definite matrices and so isHl. We need to
show thatHl is indeed positive definite. To do this, we make
the following observations:
• Hl is an irreducible matrix (because if we replace nonzero

elements ofLw with 1 we obtain the adjacency matrix of



Fig. 2. The sphere and its tangent plane.

the neighboring graph that is strictly connected. Adding
the diagonal matrixWl doesn’t change the neighboring
graph, thusHl is irreducible);

• Lw is diagonally dominant;
• For at least one of the rows ofHl the diagonal entry is

strictly greater than the sum of off-diagonal entries (be-
causeWl ia a diagonal matrix with nonnegative entries).

According to Taussky theorem[14] Hl is an irreducibly
diagonally dominantmatrix and is invertible (hence, no zero
eigenvalues). Thus,Hl is a positive definite matrix.

As a result,U̇ < 0 and the error vector asymptotically
decays to zero; consequentlyθi = θ0 for every i = 1, . . . , N ,
as t → ∞. In the case of changing topology, given that
conditions of Theorem 4.5 hold, and by using Lemma 4.4
we can show that leader following is achieved (the analysis is
dropped due to lack of space).

VI. EXTENSIONS TO FLOCKING IN3 DIMENSIONS

Consider a group ofN agents in the 3 dimensional space.
Our goal in this section is to extend the flocking results
we obtained for planar motion in section IV to flocking in
three dimensions. Similar assumptions on the local interactions
among agents hold. Without loss of generality, it is assumed
that all agents move with a constant speed1. The velocity of
agenti in 3 dimensions is given by:

vi =




cos θi sinφi

sin θi sin φi

cosφi


 (17)

whereφi andθi are the attitude and heading angles of agent
i. The dynamics equation of agenti then becomes

v̇i = UiθXiθ + UiφXiφ (18)

where theorthonormalvectorsXiθ andXiφ are

Xiθ =



− sin θi

cos θi

0


 , Xiφ =




cos θi cos φi

sin θi cosφi

− sin φi




and Uiθ and Uiφ are the control inputs for agenti. Figure 2
shows the tangent space containing the vectorsXiθ, Xiφ and
the geodesic directionYij .

Fig. 3. The polar angleβij and the azimuthψij for two agents in 3D.

The notion of a geodesic control law was first introduced
in [23], and the inputs

Uθi
= −

∑

j∈Ni

sin φj sin(θi − θj) (19)

Uφi
= −

∑

j∈Ni

sin φi cosφj − sin φj cosφi cos(θi − θj) (20)

were derived for the alignment of the velocity vectors of a
group of kinematics agent. We state the following theorem
without proof and refer the reader to [23] for more details.

Theorem 6.1:Consider the system ofN agents with dynam-
ics given by (18). If the proximity graph of the agents is fixed
and connected, then the control laws (19) and (20) result in
flocking (at least locally) in the sense of definition (3.1), i.e.,
the consensus state is locally asymptotically stable.

We now use the geodesic control laws to design control
inputs that are only functions of the measurable quantities of
bearing, optical flow and time-to-collision. Note that in 3D the
bearing is expressed by two projection anglesβij , ψij (Figure
3), and consequently the optical flow of a neighboring agent
is represented bẏβij , ψ̇ij , which are the speeds of projections.

Let lij denote the distance between two agentsi andj. Then
Qij = lijqij is a vector inR3 connectingi to j, and

Qij =




lij sin ψij cosβij

lij sin ψij sin βij

lij cosψij


 . (21)

The optical flow equation for agenti is now given by
∑

j∈Ni

Q̇ij = −
∑

j∈Ni

ωi ×Qij +
∑

j∈Ni

(vj − vi) (22)

whereωi ∈ R3 is the angular velocity vector of agenti. vi and
vj are the velocity vectors of agentsi andj given in the body
frame of agenti. The summation is over the set of neighbors
Ni of agenti.

The angular velocityωi in terms of the desired inputs (19)
and (20) becomes

ωi =
∑

j∈Ni

vi × vj =



−Uiθ

Uiφ

0


 . (23)
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Fig. 4. At T = 0 (sec) agents form a connected graph.

After plugging in (21) and (23) in the optical flow equation
(22), we can solve for the control inputUiθ andUiφ in terms of
the measured quantitiesβij , ψij , β̇ij , ψ̇ij and τij . It is shown
in the next section that the geodesic control laws can result in
the alignment of the velocities vectors of a multi-agent system.

VII. S IMULATIONS

In this section we numerically show that the distributed
control law (9) can force a group of agents to flock according
to definition (3.1). In our simulations the group consists of
10 agents with dynamics described by (1). The initial position
and heading of all agents are generated randomly within a
pre-specified area. The initial location of agents are shown by
(¦), and the final location by(∗). The neighboring radius is
chosen large enough so that agents form a connected graph.

The initial states of 10 agents are shown in Figure 4. Figure
5 shows that agentssmoothlyadjust their headings and after a
reasonable amount of time they converge to a formation, and
their relative distances stabilizes.

The effect of a leader in the group is shown in Figures 6 and
7. In the simulations, one of the agents is randomly chosen to
be the leader of the group, and its heading is constant. Without
knowing which one of them is the leader, all other agent adjust
their headings to follow him so that the formation remains
stable. Even if the leader’s motion has dynamics, agents in
the group will follow him, as it is shown in Figure 7.

Figure 8 shows how the geodesic control laws (19) and (20)
result in flocking of agents in three dimensions.

VIII. C ONCLUSIONS ANDFUTURE WORK

We provided a coordination scheme which resulted in
flocking of a collection of kinematic agents. The control law
was based on nearest neighbor sensing, without the need
for explicit communication between agents. The coordination
scheme was based on measurement of relative bearing, optical
flow and time-to-collision between each agent and its nearest
neighbors. It was shown that it possible to develop a distributed
control law similar to that of the Kuramoto model of coupled
nonlinear oscillators [16].
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Fig. 5. At T = 100 (sec) group reaches a stable formation - (Leaderless case)
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Fig. 6. All agents are forced to follow the leader.

It was shown that flocking is possible despite possible
changes in the topology of the proximity graph representing
the neighborhood relationship. Furthermore, we showed that
similar results extend to leader-follower formations. A gener-
alization of the current analysis would be to develop results
similar to [32], [33] for dynamic models, by using artificial
potential functions similar to [10] while avoiding explicit use
of relative headings.

An important question that we need to answer is how to
enforce the connectivity condition of the proximity graph. This
idea is known as topology control in the mathematics and
networking community. A starting point could be to follow
the work of [37] as a primary result in topology control for
planar graphs.
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