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Abstract—We propose a biologically inspired, distributed co- self organization in systems of self-propelled particles, starting
ordination scheme based on nearest-neighbor interactions for a from the work of Vicseket al. [34].
set of mobile kinematic agents equipped with vision sensors. |, robotics and control theory, these problems have been
It is assumed that each agent is only capable of measuring Lo -
the following three quantities relative to each of its nearest studied in the Context.of cooperative Contro', of autonomous
neighbors (as defined by a proximity graph): time-to-collision, robots, unmanned vehicles, and general multlagent systems. A
a single optical flow vector and relative bearing. We prove that nonexhaustive list of references include [5], [8], [10], [12],
the proposed distributed control law results in alignment of [15], [17], [25], [26], [32]. A simple but compelling model
headings and flocking, even when the topology of the proximity ¢ fi5cking and coordination is the model proposed by Vicsek

graph representing the interconnection changes with time. It is . . .
shown that when the proximity graph is "jointly connected” over et al. in [34] and analyzed in [15]. The model describes a

time, flocking and velocity alignment will occur. Furthermore, the ~ S€t of agents moving with constant spegdwhose heading
distributed control law can be extended to the case where the direction is updated by a simple alignment rule. The heading
agents follow a leader. Under similar connectivity assumptions, of each agent is updated in discrete time as the average of
we prove that the headings converge to that of the leader. yhe heading of itself and those who fall within a disc of
Simulations are presented to demonstrate the effectiveness of o .
this approach. a pre-specified radius centered aro'und each agent. As t.he
agents move, the set of nearest neighbors change, resulting
l. INTRODUCTION in a dis_continuous change or switching in the control law.
The neighborhood relationship between any two agents can
Over the past few years a considerable amount of attentigg described conveniently with a graph whose nodes represent
has been focused on the problem of coordinated motigife agents and the edges represent the neighborhood relation.
and cooperative control of multiple autonomous agents. Framwas shown in [15] that if the neighborhood graph stays
ecology and evolutionary biology to social sciences, and frogonnected in timethen the headings of all agents converge to
systems and control theory to complexity theory, statisticalcommon value. As a result all agents align, and the pairwise
physics, and computer graphics, researchers have been tryirgances stabilize. Furthermore, it was shown that when one
to develop an understanding of how a group of moving objecigent acts as a leader, the headings converge to that of the
such as flocks of birds, schools of fish, crowds of peopleader under similar conditions.
can perform collective tasks such as reaching a consensus aDver the past 2 years, a plethora of similar results have
moving in a formation without centralized coordination.  appeared in the control literature. Also, extensions to dynamic
Such problems have been studied in ecology and theoretipalnt-mass models have also appeared [26], [32]. These results
biology, in the context of animal aggregation and socialssume that each agent is capable of measuring the heading of
cohesion in animal groups. There is evidence that individuats nearest neighbors (in discrete time models), or difference
within such groups often only have access to local informatidsetween headings of itself and its neighbors (in continuous-
about the behavior of near-neighbors. Nevertheless thistiie models), effectively requiring communication on top of
sufficient as an organizing principle for the entire group teensing.
perform collective locomotion, yet remain cohesive even whenWhile the nearest neighbor interactions have been shown to
moving around obstacles or when avoiding predators [28]. be biologically plausible and have been observed in schools of
Furthermore, there has been a large body of reseafidh and flocks of birds, the assumptions about knowledge of
focused on mimicking the observed social aggregation phelative headings and distances is not biologically plausible.
nomena in different animal species using computer simulatidéven if some species might use ultrasound to estimate dis-
The pioneering work in this area was done by Reynolds [29ances or binocular vision to estimate positions and motions
More recently, several researchers in the area of statistiol others, such sensing mechanisms do not perform well
physics and complexity theory have addressed flocking afat flocking where simultaneous measurements in multiple
schooling behavior in the context of non-equilibrium phedirections are needed. The simplest assumption we can make
nomena in many-degree-of-freedom dynamical systems dadhat such systems have only monocular vision and that they



have basic visual capabilities like the estimationagtical is called the Laplacian ofs. The Laplacian matrix captures

flow and time to collision Experimental evidence suggesmany topological properties of the graph. The Laplaciais

that several animal species, including pigeons, are capableagiositive semidefinite M-matrix (a matrix whose off-diagonal

estimating time to collision [20], [36]. Computationally, timeentries are all honpositive) and the algebraic multiplicity of

to collision can be estimated from the ratio of area changs zero eigenvalue (i.e., the dimension of its kernel) is equal

to area or from the divergence of the optical flow [4], [19]to the number of connected components in the graph.nFhe

Regarding optical flow, we refer the reader to the survey [3jlimensional eigenvector associated with the zero eigenvalue
Many of the existing vision-based distributed control stratés the vector of onesl.

gies assume that the robots are capable of communicatingsiven an orientation of the edges of a graph, we can define

to their neighbors an estimation of their position [30], [38}the edge-verteincidence matriof the graph to be a matri®

[39] and are based on distributed computation [1]. Othevith rows indexed by vertices and columns indexed by edges

cooperative systems are based on local computation workwith entries of 1 representing the source of a directed edge

the configuration space [11], [24]. From the vision point ofind -1 representing a sink. The Laplacian matrix of a graph

view, our paper is mostly related to the formation contrajan be also represented in terms of its incidence matrix as

systems in [6], [7], [35]. However, these approaches assumbe= BB” independent of the orientation of the edges.

that a specific vertical pose of an omnidirectional camera

allows the computation of both bearing and distance, whiléll- DISTRIBUTED COORDINATION AND FLOCKING WITH

we use only the optical flow (bearing derivative) and time-to- KINEMATIC MODELS

collision. A. System Model
Our goal in this paper is to develop a provably correct

coord_|nat|0n anq flocking scheme t_hat_ Is also b'°|0.g'ca."¥quipped with a vision sensor that is capable of sensing some
plausible. We will show that coordination and flocking IS formation from its neighbors as defined by:

possible based on measuring time-to-collision and optical flow, '

even if the neighborhood graph topology changes, so long N; = {jli~j5}y C{1,...,N}\{i}.

as a weak notion of connectivity denoted as "connectivit ] ]

in time” is preserved (same as in [15]). We will also show N neighborhood set of agent\/;, is a set of agents that can
that the above problem is directly related to the Kuramof$ “Seen” by ageni. The exact definition of “sensing” will
model of coupled nonlinear oscillators, a famous problem Rf discussed shortly. The characteristics of the vision sensor

Consider a group ofV agents on a plane. Each agent is

mathematical physics [16], [31]. limits the size of the neighborhood. We therefore assume
that there is a predetermined radids which determines
Il. GRAPH THEORY PRELIMINARIES the neighborhood relationship. The location of agert =

In this section we introduce some standard graph theoretic .., N) in the world coordinates is given ky:;, y;) and it's
notation and terminology. For more information, the intereste@locity isv; = (i, ;). The heading or orientation of agent

reader is referred to [13]. 1 is 6; and is given by:
An (undirected) graplz consists of a vertex se¥, and o
an edge sef, where an edge is an unordered pair of distinct 0; = atanZy;, ;).

vertices inG. If z,y € V, and(z,y) € £, thenz andy are 4 js a5qumed that all agents move with constance speed
said to be adjacent, or neighbors and we denote this by WG, assume a unicycle kinematic model for each agent:
x ~ y. The number of neighbors of each vertex is its valence. '

A path of lengthr from vertexz to vertexy is a sequence T; = wcosb;
of » + 1 distinct vertices starting witlr and ending withy
such that consecutive vertices are adjacent. If there is a path
between any two vertices of a grafh thenG is said to be
connected. If there is such a path on a directed graph ignoringe goal is to design a control input so that the group of
the direction of the edges, then the graph is weakly connectegbbile agents flock in the sense of following definition:

The adjacency matri¥(G) = [a;;] of an (undirected) graph  pefinition 3.1: (Flocking) A group of mobile agents is said
G is a symmetric matrix with rows and columns indexed by (asymptotically) flock, when all agents attain the same
the vertices of, such thati;; = 1 if vertex: and vertexj are  ye|ocity vector and distances between the agents are stabilized.
neighbors and:;; = 0, otherwise. The valence matri®(G) In order to make the model biologically plausible, we
of a graphG is a diagonal matrix with rows and columnsmpose constraints on what each agent can measures;} et
indexed byV), in which the (i,i)-entry is the valence of (pearing) be the relative angle between agentnd j as
vertexi. The (un)directed graph of a (symmetric) matrix isneasured in the local coordinate of agerifo formally define
a graph whose adjacency matrix is constructed by replacifg sensing, we assume that each agerstn measure:

a"Tnhoenie:r?rr?QttrrifZicr)mf Hllgr mmzttr:; Végrf]inlé d as: « [i; or the relative bearing in ageis reference frame
y 9 : » [3;; or "optical flow": the rate of change of bearing
L(G) =D(G) - A(G) « T;; Or "time-to-collision”

¥ = wsinb;
0, = w i=1,...,N (1)



Y How can we generate a distributed control law based on
measured quantities? A simple calculation indicates that when
; two agents are aligned, the resulting optical flow is zero. This
; 11___ suggests that perhaps the sum of optical flows between each
agent and its neighbors is a plausible choice. Unfortunately,

having the sum of optical flows between each node and its

b nearest neighbors equal to zero is necessary for alignment,
v but is not sufficient. This is where the knowledge of time to
8. Y 8 collision becomes useful.
d Consider any pair of agentsand any of its neighborg.
| wOE—— By differentiating (2) we get
X, 1 jij AT 92 — 9]‘ 91 - Hj
Ty by Ly sin(T ) eos(By +75) - (4)
Fig. 1. Configuration of 2 agents. and by differentiating (3) we obtain
: 2 0; — 0, 0; — 0,
61']' + w; = 7[7(0 Sin( J ) Sil'l(ﬂij =+ B) J ) (5)

for any agentj in the set of its neighborsV;. Note that i
measurement of time-to-collision;; is not equivalent to A straightforward computation, using trigonometry identi-
measurement of the relative distance between agents agigs, shows that the following relation between (4) and (5)
usually the case in visual motion problems. This is due twlds:
the fact that time-to-collision can only recover the distance up 1 ‘ 5o v 0. _ 0 6
to an unknown factor which in our case is different for every 7 cos fyj — (wi + fi) sin By = I sin(6; —6;).  (6)
agent. The .re'ader shpuld also note that only_ one pptlcal .ﬂ%is provides us with an odd function éf — §;. Since this
vector per rigid body is observed. Thus, making it impossible ™ © i . : )

: . equation holds for any agehtind any of its neighborg € N,
to rely on structure from motion algorithms. : .

: : . : .. we can sum (6) over all its neighbors to get
Simple calculation reveals that bearing and relative distance

between agentsand j are given by (see Figure 1): Z L cos fij— Z (wi+Bi;) sin B = Z li sin(6;—0;).
eN; i EN; e
Distance : lfj = (z;— z;)% + (y; — vi)? @) JEN JEN: JEN @)
Bearing : B;; = atandy; —yi,x; —x;) — 0; + 5(3) We will show in section IV that a control law of the form
wi=—Y “sin(6; - 0)) )
It can be shown that the time-to-collision between agents JEN: Lij

¢ andj can behmealsu_red ";‘15 the _rateh of grow’:ch of_the_ imagﬁ" result in flocking according to definition 3.1. Equation (7)
a][ea [20], i.e. the_re atlvelc ang;e In the aﬂ%gho proJZCt'on reveals that the above control law can be exactly computed
of agent; on the image plane of agentin other words using the measured quantities from nearest neighbors. By

A Ly plugging (8) in (7), we get:
Aj ZU Wi = 1 - E BU Sil’l BL] — i COS ﬂU .
_— 1= cp singi; Tij
B. The Distributed Control Law JEN: T GEN;

o . 9)
In order to have a successful distributed control law whigy the next section, we will show that the above distributed

results in heading alignment and flocking, we need to havegntrol strategy will result in flocking even when the set of
measure of misalignment appear as a term in the controliggarest neighbors change in time.

One way for the control input of any agehto be spatially

distributed and result in alignment, is to have the fatm= IV. STABILITY ANALYSIS

—Zj w;;(6; — 6;), where weightsw;; are positive when We now prove that the above chosen control law results in
agent: is a neighbor of agenj, and zero otherwise. Suchflocking of all agents first when the proximity graph is fixed
a distributed control law is effectively the negative of th@end connected, and then when the graph changes with time
weighted Laplacian of the proximity graph, and has bedwut a weaker notion of connectivity is preserved. Note that
analyzed in [2], [15], [21], [22], [26]. However, as wethe heading equation is now exactly the well-known Kuramoto
said before, since there is no communication between neamastdel of coupled nonlinear oscillators, which has been studied
neighbors, the relative heading information is not availablextensively in the mathematical physics literature [31], and its
It turns out however, that we do not need to haye- §; stability properties was analyzed recently in [16], [22], [26].
explicitly in the controller. Instead, it suffices to have an od@he particular case of all-to-all connected graphs was also
function of 6; — 6;. analyzed in [18].



A. Fixed Graphs From (12) and the fact thain(-) is a bounded function we get:

We first consider the case where the neighboring relatioH¥. 6,4 li; = 0. Thus, the inter-agent distances stabilizes
among agents are represented by a fixed, weighted graph_eventually and the group of mobile agents reaches a formation.

Definition 4.1: The neighboring grapls = {V,£, W} is a We have therefpre proven the follow_ing the_orem: _
weighted graph consisting of: Theorem 4.2:Consider a set of kinematic mobile agents

. . . _described by (1). Assume that each ageris capable of
. a set of verFlceS) indexed by the set of mobile ager,‘ts’measuring the bearing angls,;, the optical flow 3, as
- a ;ert]bof p?lrss. = {eij = wivy) | vivy € Voandi o) g the time-to-collisiorr; ;. If the graphG representing
neignbor ol } . the neighborhood relationship is fixed and connected, then
« a set of positive edge weights;;, for each edge;;.

A bi . ion for the ed tConsid (9) will result in flocking and the consensus state is locally
SSUme an ar itrary onentanon 9” ee gesto onsider asymptotically stable, i.e., all headings will eventually align
the N x e incidence matrixB of this oriented graph(c with

N . & ed Th ite (8) as: and all pair-wise distances will stabilize.
vertices and: edges. Then, we can write (8) as: Note that for all initial conditions that the connectivity

6 =w = —BW sin(BT0) (10) condition holds the result is valid.
whered = [0y, ...,0x]7, andW is the diagonal matrix whose B. Switching Graphs
entries are the edge weights 6t The equation (10) can be In practice, the motion of individual agents will result in
written in a more compact form as: change in topology. This change in topology could be taken
) . into account by using smooth “bump functions” [26], or by
0 =w=-BWB"0, (11) resorting to nonsmooth analysis [32]. To avoid complications
wherelV — diag{%sinc(&i —0,)| (i,5) € €} that occur because of discontinuous change in the set of nearest

neighbors, we will assume that there is always a minimum
time, called adwell timeover which the graph does not change.
This simplifying assumption will avoid infinite switches over a
finite period of time, and can be relaxed by using nonsmooth
analysis [9]. What this means in the present context is that

U =6T6=—0"BWBTO = —6TL,0 <0 each agent is constrained to change its control law only at

- discrete time instances. Each agémtould use a control law

whereL,, = BW BT is the Laplacian of the grapli. Because similar to (8) (which is now hybrid, since the set of neighbors
U is a non-increasing function along the trajectories of th&; changes discontinuously). By assuming a minimum dwell
system { > 0 andU < 0), the set time, the controller would be of the form:

Qe={6;,i=1,....,N|U<c} wil)=— Y %Sin(ei(t)_‘gj(t))
JEN; (tir) t
t € [tig, tar + 1)

~The quantitiesv and [;; are positive and sifé\d) =
sin(2%) js positive when the heading vectéris in the cube
(—7/2, n/2)N. ThereforeW is a valid weight matrix. Now

consider the quadratic Lyapunov functiéh= %GTH. Then,

is positively invariant for the largest value ef such that
Q. C (—7/2,7/2)N. Itis also compact (closed and bounded)
becaused’s are bounded and vary continuously. Hence, awvhere p; is a pre-specified positive number calleddevell
cording toLaSalle’s invariance principl@ny solution starting time and {Zo,#,...} is an infinite time sequence such that
in Q. converges to the largest invariant s&§, contained in  tix+1) — tik = pi, K > 0. In the sequel we will analyze
. controls of this form subject to two simplifying assumptions.

E={6;, i=1,...,N|U=0} First we will assume that alN agents use the same dwell
time which we henceforth denote hy,. Second we assume
the agents are synchronized in the sensetthat ¢;; for all
1,7 €41,2,...,N} and allk > 0.

ast — oo. This largest invariant sefyy, is a set of states that
are solutions ofL,,0 = 0. Therefore, vectop is in the null
space of the weighted Laplacian.

: : Definition 4.3: A collection of graphs
If h Il h f ) :
the \/g;er(z?t%rl(};?lconn%c;teqr,hzz space df,, s the span o {G,,,Gp,,...,G,, }, each with vertex sety is called
R ' jointly connected, if the graplz with vertex sefV and edge
Sp={(61,...,0N) |01 =...= 0N =0} (12) set equaling the union of the edge sets of all of the graphs in

) ) the collection is connected.
which suggests that all agents reach the same heading-as |t js natural to say that thév agents under consideration
©0- . . arelinked togethemcross a time intervat, 7| if the collection

Now we can show that eventually the relative distancesg 9raphs{G, (1), Go(+1); - - - »Go(s) } €Ncountered along the
between agents stabilizes. In order to hdyeequal t0 a interval, is jointly connected. In [15] it was shown that the
constant, we just need to show thah, .. l;; = 0. From proposed nearest neighbor law results in heading alignment
(4) we can show that: and flocking if there is an infinite sequence of non-consecutive,
0. bounded, non-overlapping time intervals over which the agents
J .
+ Bij) are linked together.

tlgg) lij = tli)rgo 2v sin( ) cos( 5




This result was further extended in [21], [22] to the casdecays to zero exponentially fast and therefore all agents align.
where the agents are linked together over infinite time inteébnce the agents’ headings are aligned, the velocity vectors
vals. This means that for any tintg, the collection of graphs become the same, and as befdge,goes to zero and all pair-
over [ty,00) has to be jointly connected. If the uniformitywise distances stabilize to a constant value. [ ]
requirement is removed, only asymptotic convergence of allRemark 4.6:It is shown in [27] that if the measurements
headings is achieved, as opposed to exponential convergenféhe headings from neighboring agents is delayed; bthen
It turns out that the existence of uniformly bounded time idinear stability still holds.
tervals is necessary for exponential alignmenalbheadings

In trying to extend the previous theorem to graphs with

the above mentioned switching regime, we need the foIIowian many flocking instances observed in the nature, such as
lemma, which was proven in [15]. flocking of birds, one of the flock-mates acts as the leader

V. LEADER FOLLOWING

Lemma 4.4:If {G,,,G,,,...,G,, } is a jointly connected of the group a_nd_ others follow the Ie_:ader while staying in
collection of graphs with Laplacians a fo_r_matlon. Similarly, here we consider the case that one
LpsLpy, ..., Ly, , then additional agent, labeled, acts as the group’s leader. Agent

m 0 moves with the constant velocity (same as others) and a
m kernel L, = span {1}. (13) fixed headingdy. Other agents in the group may or may not

have the leader as a neighbor. Here we find a control law that
results in a stable formation of the group while following the
The above lemma states that the intersection of the nldhder, so that in the end all agents reach the desired heading
space of the Laplacian of a set of jointly connected grapHs.
is only the vector of ones. In other words, even though the Consider the input of each agent in the leaderless case that
graphs might be disconnected, and as a result their Laplaciamiven by (8). We can separate the leader from other agents
have a larger kernel, the intersection is only the vector of onesd write:
We can now state the following theorem: . U v,
Theorem 4.5:Let the initial heading vectof, be fixed and 0i = - Z Lij sin(0; — 0;) — ‘o sin(0; =), (15)
let o : {0,1,2,...} — P be a switching signal mapping the ]E_N" )
integers to a finite set of indices corresponding to all graph¥herec; = 1if agenti and the leader are neighbors and- 0
over N vertices for which there exists an infinite sequenc@herwise. .
of contiguous, non-empty, bounded, time-intervialst,. 1), To show that all the headings become equaldto we
i >0, starting att, = 0, with the property that across eachconsider the error term; = 6; — 6. Sinceé; = 6;, we can
such interval, theV-agent group is linked together. Then ~ Write (15) as follows:
lim 6(t) = 0,1 (14) & = — Z lﬁ sin(e; — e;) — cll sin e;.
t—oo JEN, ' 10
for some valud,,, i.e., all agents will asymptotically flock.
Proof: We use the same Lyapunov functiéh:= %HTH

=1

Similar to calculations of section IV, the error dynamics

_ : becomes:
as before. Using the same notation, we now have
U =676 = —07 B,(yW,() () BL 0 = 6" L,,,0 <0 ¢ = —BWEB'e—We
- - o(t)Weol(t) o)V — we > _ —(Lw+VVl)€
whereo is the switching signal, and for eaphe P, L., is the — _He (16)

weighted Laplacian matrix of the corresponding graph. Again,
we note that since the headings are in the dube/2, 7/2)", WwhereW = diag{;>sind0; — 0;) | (i,j) € £} and W, =
the weights are positive, anfl,,, is a positive semidefinite diag{c;;~sind6; — t) | (i,0) € £}. Both W and W, are
matrix. By LaSalle’s invariance principle, over the compadveight matrices with positive entries, because @lne 6y) is
setQ, = {0 | U < ¢} (for the largest value of such that positive forf; € (—m/2,7/2), andv,l;; andc; are all positive
Q. C (7/2,7/2)N), the trajectories converge to the largestoefficients.
invariant set in the séf = 0. Becauser(-) is such that thereis  In order to show that the error is asymptotically stable,
an infinite sequence of jointly connected collection of graphepnsider the Lyapunov functioll = j¢”e.
and because of the previous lemma, the largest invariant sefhe derivative of this along the trajectory of the error system
over the sef/ = 0 is only the span of vectat. Therefore, in can be written ag/ = —e” Hye, where H; = (L., + W;).
the region(—m/2,7/2)N there is an exponential decrease in Next, we will prove thatt; is positive definite, and the error
the value of the Lyapunov function for the component of theill asymptotically decay to zero. Note that both, and W,
heading alongl . are positive semi-definite matrices and soHs We need to

In other words, we can decompose the vedloms the show thatH, is indeed positive definite. To do this, we make
direct sum of two components alon and its orthogonal the following observations:
complement in the subspace'. Since there is no other « H;is anirreducible matrix (because if we replace nonzero
direction in the set/ = 0, the component of along 1+ elements ofL,, with 1 we obtain the adjacency matrix of



Fig. 2. The sphere and its tangent plane. Fig. 3. The polar anglgg;; and the azimuth);; for two agents in 3D.

the neighboring graph that is strictly connected. Adding The notion of a geodesic control law was first introduced
the diagonal matrix?; doesn't change the neighboringin [23], and the inputs
graph, thusH, is irreducible);

« L, is diagonally dominant; Uo. = = Z sin ; sin(6; — ;) (19)
« For at least one of the rows df; the diagonal entry is JEN:
strictly greater than the sum of off-diagonal entries (be-Uy, = — Z sin ¢; cos ¢; — sin @; cos ¢; cos(0; — 0;) (20)
causel; ia a diagonal matrix with nonnegative entries). JEN;

According to Taussky theorenjl4] H; is an irreducibly were derived for the alignment of the velocity vectors of a
diagonally dominanimatrix and is invertible (hence, no zerogroup of kinematics agent. We state the following theorem

eigenvalues). Thud{; is a positive definite matrix. without proof and refer the reader to [23] for more details.
As a result,U < 0 and the error vector asymptotically Theorem 6.1:Consider the system of agents with dynam-
decays to zero; consequently = ¢, for everyi =1,..., N, ics given by (18). If the proximity graph of the agents is fixed

ast — oo. In the case of changing topology, given thaind connected, then the control laws (19) and (20) result in
conditions of Theorem 4.5 hold, and by using Lemma 4fbcking (at least locally) in the sense of definition (3.1), i.e.,
we can show that leader following is achieved (the analysistise consensus state is locally asymptotically stable.

dropped due to lack of space).

We now use the geodesic control laws to design control
inputs that are only functions of the measurable quantities of
Consider a group ofV agents in the 3 dimensional Spacebearing, optical flow and time-to-collision. Note that in 3D the

Our goal in this section is to extend the flocking resultearing is expressed by two projection angles v;; (Figure

we obtained for planar motion in section IV to flocking in3), and consequently the optical flow of a neighboring agent
three dimensions. Similar assumptions on the local interactidfgepresented by;;, 1;;, which are the speeds of projections.
among agents hold. Without loss of generality, it is assumedLet/;; denote the distance between two agértad;. Then
that all agents move with a constant spaedhe velocity of Qij = li;¢i; is @ vector inR? connectingi to j, and

VI. EXTENSIONS TO FLOCKING IN3 DIMENSIONS

agenti in 3 dimensions is given by: i sin ay; cos By
cos ; sin ¢; Qij = | lijsint;;sin By | . (21)
v; = | sin6; sin ¢; a7 lij cos i
oS ¢; The optical flow equation for agertis now given by
yvhere@» and 61 are the' attitude qnd heading angles of agent Z Qij - _ Z wi X Qij + Z (v; — ;) (22)
i. The dynamics equation of ageihthen becomes JeN JeN Jen
U = Ui Xig + Uip Xig (18) wherew; € R? is the angular velocity vector of agehty; and

v; are the velocity vectors of agentandj given in the body

where theorthonormalvectors X,;4 and X, are ) o .
o ¢ frame of agent. The summation is over the set of neighbors

—sin 6, cos 0; cos ¢; N; of agenti.
Xig=| cosb; |, X;p = | sinb; cosg; The angular velocity; in terms of the desired inputs (19)
0 — sin ¢; and (20) becomes
and U,y andU,, are the control inputs for ageit Figure 2 —Ujp
shows the tangent space containing the veclgs X4 and wi= Y vixvj=|Uyg |. (23)

the geodesic directiof;;. JEN; 0
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position [m]
n
5
position [m]

| | 1 . I 1 | | 1 . . . . . 1 1
0 5 10 15 20 -0 5 0 5 10 15 20 25 30 35 40
position [m] position [m]

Fig. 4. AtT = 0 (sec) agents form a connected graph. Fi

g.5. AtT =100 (sec) group reaches a stable formation - (Leaderless case)

After plugging in (21) and (23) in the optical flow equation
(22), we can solve for the control inpUt, andU;, in terms of
the measured quantities;;, 1;;, 37, 4;; and ;. It is shown
in the next section that the geodesic control laws can result in st
the alignment of the velocities vectors of a multi-agent system.

position [m]
°

VIl. SIMULATIONS

In this section we numerically show that the distributed
control law (9) can force a group of agents to flock according
to definition (3.1). In our simulations the group consists of

10 agents with dynamics described by (1). The initial position T
and heading of all agents are generated randomly within a _
pre-specified area. The initial location of agents are shown by Fig. 6. All agents are forced to follow the leader.

(¢), and the final location byx). The neighboring radius is
chosen large enough so that agents form a connected graph. o _ . _
The initial states of 10 agents are shown in Figure 4. Figurelt was shown that flocking is possible despite possible
5 shows that agenmoothlyadjust their headings and after &hanges in the topology of the proximity graph representing
reasonable amount of time they converge to a formation, athg neighborhood relationship. Furthermore, we showed that
their relative distances stabilizes. similar results extend to leader-follower formations. A gener-
The effect of a leader in the group is shown in Figures 6 afifzation of the current analysis would be to develop results
7. In the simulations, one of the agents is randomly chosensnilar to [32], [33] for dynamic models, by using artificial
be the leader of the group, and its heading is constant. With@@tential functions similar to [10] while avoiding explicit use
knowing which one of them is the leader, all other agent adjus relative headings.
their headings to follow him so that the formation remains An important question that we need to answer is how to
stable. Even if the leader's motion has dynamics, agents gRforce the connectivity condition of the proximity graph. This

the group will follow him, as it is shown in Figure 7. idea is known as topology control in the mathematics and
Figure 8 shows how the geodesic control laws (19) and (20§tworking community. A starting point could be to follow
result in flocking of agents in three dimensions. the work of [37] as a primary result in topology control for

planar graphs.
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