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Abstract—We develop decentralized cooperative controllers, are respected. The problem with centralized approaches is
which are based on local navigation functions and yield (almst) that they are not robust in real implementation, but most im-
global asymptotic stability of a group of mobile agents t0 a ,qtantly centralization involves computational and gtieél

desired formation and simultaneous collision avoidance. fAe . .
formation could be achieved anywhere in the free space; ther complexity that does not allow the control architecturedals

are no pre-specified final positions for the agents and is rereted  With the size of the multi-agent group.
stable both in terms of shape and in terms of orientation.  Thus, decentralized solutions are sought. One of the most

Shape and orientation stabilization is possible because ¢éhagents popular ideas for decentralized cooperative control are be
regulate relative positions rather than distances with repect to havioral (or reactive) models [6]. These are easily imple-

their network neighbors. Asymptotic stability is provable and . .
guaranteed, once the parameters in the local navigation fustions mentable [7], [8] but generally fail to yield any formal

are tuned based on the geometry of the environment and the guarantees of convergence. The “emerging” formation con-
degree of the interconnection network. Feedback controlis figurations depend primarily on initial conditions. Thisalso

steer the agents away from stationary point-obstacles andito  the case in flocking cooperative control schemes [9], [101] [
the desired formation using information that can be obtainel although the asymptotic synchronization of agents veksis

within their sensing neighborhood and through communicaton . .
with their network neighbors. The methodology is tested in formally proven. In most schemes that use nearest interacti

simulation where groups of three and four mobile agents come rules[12], [13], [14] the resulting relative positions dret
into formations of triangles and diamonds, navigating amogst final rendezvous point are unpredictable. Other decenémli

obstacles. approaches rely on ideas based on Internet protocols [15].
Voronoi diagram-based, decentralized nonsmooth codperat
control techniques [16] have shown to globally optimize
In this paper we solve the problem of decentralized formaertain objective functions, yet still, the final arrangernef
tion stabilization with collision avoidance, in a way thaet agents cannot be foretold. A decentralized cooperativeaon
resulting formation shape and orientation can be engideeraethodology that does guarantee the convergence of agents i
and regulated. The closed loop multi-agent behaviors cparticular relative positions while navigating amongstese-
be designed, and arbitrary formation arrangements can lii@ obstacles is [17]. However, the approach to deceatali
achieved with each agent using information that can eithéon is similar to that of [18]: each agent essentially azsri
measure locally using its sensors or obtain through comimuai copy of some centralized coordination scheme, thus still
cation from alimited set of network neighbar®ur approach requiring full knowledge of the system and environmentestat
is based on navigation functions [1], which are special $ype As observed in [19], [20], navigation functiong(q), that
of artificial potential field functions [2] that can be deségh solve the problem for static case, are actually Lyapunov
to have no local minima and steer the system to a desirthctions. The traditional control input = —VV is not the
destination from almost all initial conditions (except fiset only input capable of renderiny < 0; in fact there exist
of measure zero). We show that we can tune the parametersnainy such input vectors. Any control scheme which makes
any agent’s potential field based on the geometric parametétr = —VV - ¢ < 0 also solves the problem. Our paper is
of the workspace, the graph properties of the communicatianstep forward in the same direction and provides a control
network, and the sensing characteristics of the agents isput for each agent that decreases the global navigation
that the desired inter-agent relative position configoretiare function and stabilizes a group of mobile agents into a ddsir
globally asymptotically stable. formation. In this paper we construct a decentralized wversi
This problem has been solved in a centralized formulatioof the navigation-function-based cooperative controbetgm
Beard et al. [3] have coordinated formation satellitesontr introduced recently in [21] and achiegibal formation stabi-
ducing the concept of the virtual structure. In [4] Tanner dization with collision avoidance using only local infortian.
al. have used a navigation function to steer a group of mobileThe next sections of the paper are organized as follows. In
manipulators in an environment with obstacles. Egerstedt [Section Il we present the problem statement, using the gdnce
introduced the notion oformation feedbaclas a means to of formation graph. In Section Il we present the local paitn
regulate agent motion so that global formation constrainfisnction and its components. Section IV we show that the
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direction of local potential function is a direction alondpiah What we want to achieve is to have the closed loop
some common Lyapunov function decreases monotonically.dpstem of all agents generate trajectories that converge to
Section V we present our simulation results. Section Viseto configurations in the free space where the desired formation
the paper with some conclusions and ideas for further works reached. These trajectories should have arbitraryalniti

conditions (except for points in a set of measure zero) and
Il. PROBLEM FORMULATION .
be collision free.

We consider a homogeneous group 8f mobile agents,
each with dynamics given by I1l. L ocAL NAVIGATION FUNCTIONS

N 1 The main idea in our approach is to built individual
navigation functions that drive the agents along trajeetor

where ¢; and u; are the state and control input of agent that decrease a common Lyapunov function. This common
respectively. In the remaining, and v will denote the stack Lyapunov function could be in the form of a centralized
vectors ofg; andu;. The agents are treated as autonomowugwigation function. A centralized, navigation-functibased
point-robots. approach that recently appeared in literature [21] is cantisiy

The objective here is to construct local potential fields thaoint. We then investigate ways to break it up into local
will enable theNagents to stabilize with respect to their groupcomponents, each associated with an agent in the group,
mates in configurations that make a particular formatiorilevh serving as local navigation functions for each of the agents
avoiding collisions between themselves and with obstadles |n [21] it was shown that centralized formation global
the environment. The desired formation is specified in termagabilization with obstacle avoidance is possible using th
of a labeled directed graphs. following navigation function, defined on a compact conadct

analytic manifold with boundary” ¢ R™V:
Definition 1l.1 (Formation graph) The formation graph,

qi = Uy;, qiERn,izl,...

G ={V,&, L}, is a directed labeled graph consisting of: ©(q) = L‘fzw 2)

« a set of vertices (nodes), = {v1,...,vn}, indexed by el @
the mobile agents in the group, where:

« a set of edgesf = {(v;,v;) € V x V}, containing - va(q) : F — R4 is a positive semi-definite scalar
ordered pairs of nodes that represent inter-agent position  function, vanishing only when the agents are in the
specifications, and desired formation configuration,

o asetof labelsf = {vi; | vij = ll¢i — q; — cij||2, cij € - B(q) : F — [0, 1] function that vanishes only when agents
R", (v;,v;) € £}, indexed by the edges & are in contact with the obstacles or with one another.

- k is a (positive) tuning parameter.

All the nodes that are (network) adjacent to nadeelong The “goal function” va(q) is defined as:
yd .

to the neighborhood set of agent\;. The orientation of the
graph is merely useo_i to define the relative position _speelflca va(q) 2 Z%’j(qi’ ), V(i.j) €€ 3)
tionsg; — g; — c;; and is not meant to denote information flow. o _ o
The latter is considered bidirectional between two nodas trand it is essentially the sum of all edge label (specification

are adjacent. functions. It attains the value of zero only when all the
Throughout the paper, the use of the Euclidean norm is ifgrmation specifications are met (i.e., all label functiare
plied, i.e.||-|| = ||||,- Specifying the formation specificationszero).
as edge labels in the form The “obstacle function” is given by
2 .o
llai —q; —cil|” =0, V(vi,vj) €E, ﬁ(q)éHBikHbij, i,7e{l,...,N}, k=0,...,s.
not only specifies inter-agent distances, but also tiedative bk ”
orientation The workspace, in which eachg;; is a function that models the proximity of

" a mobile agent with a stationary (point) obstacle, defined as
W ={ql 4l <R} CR",

sign(d—||g; —p¢|)+1
2

3

common for all agents, is assumed to be populated by a Setﬂ- sy (Ilgi —pt||2 —d?)?
of pointsp;, j = 1,...,s that represent obstacles. it = (lgs — pel|? — d2)2 + 1
The objective is to construct an artificial potential fuocti ’ (4)

@4, that depends only on information that is available t@nere) is a tuning parameter andexpresses the “sensing”
agent; and can steer the latter into a desired relative positi9ggius of the agents. The boundary of the workspace is
with respect to a specific subset of agents with which it C3Bpresented by the functiof, (for index t = 0). The
communicate. This local potential function will generate t (giscontinuous) exponent in these functions has the effect
agents input as follows: “flattening” the functions beyond a certain rangién this way,

0p; the effect of obstacles is local: an obstacleatill only affect

Ui = _Ka—qi = —KVipi. the value ofy if an agent approaches it close enough.



edges adjacent to agent

Yo 2 Y v (8)

IENi

When ~4, is minimized with respect tagy;, then agent
“would have done his part” with respect to reaching the @ekir
formation. Ideally, if all formation specifications reldt¢o
agent: are met,y;, becomes zero.

B. Agenti*" obstacle function;

Similar to the case of centralized navigation function ifa][2
Fig. 1. The form of the obstacle function;. Being constant beyond a 3; iS made up as a product of several “obstacle functions.”

distanced, they have a local effect on the navigation function. Collisions can occur not 0n|y between an agent and an
obstacle, but also between agents as well. For all obstacles
k € {1,...,s} within a ball of radiusd centered ay; we

By appropriately tuning the parametarthe functions;,

) ) define a functiong,x, as in (4); similarly, for all other agents
becomes differentiable at,

je€{l,...,N}\ {i} in the same neighborhood, we consider

14 g4 a functiond;; as in (6). Then the obstacle function for agent
A= A (3) iis defined as
A : g
so that the gradient ap remains continuous everywhere. P = I;Iﬂ““ Hb”' ©)
J

The assumption that both the robots as well as the obstacles
are represented by points is not as restrictive as it may seem V. LOCAL MOTION FORGLOBAL CONVERGENCE
since it has been shown [4] that a large class of shapes can b this section we will show that the negated gradient of
mapped to single points through a series of transformatioise local potential function constructed in Section Ill,den
this “point-world” topology can be regarded as a degeneratertain conditions, is a direction along which the centeadi

case of the “sphere-world” topology of [22]. navigation function (2). In the subsections that follow, we
Functionsb;; model inter-agent proximity. Their structureevaluate several terms that are central into showing treat lo
is similar to that ofg3;;: controllers can decrease (2).
" iy sten(d—lai—gj[D+1 A. Gradient ofp; with respect tog;: V;;
bij & (1 A1 q'72 — . (6) Agent i will be steered to a direction aligned with the
(lgi = gjlI” = d?) +1 negated gradient of the local navigation functigm, with

In the remaining of this section we will describe how on&esPect to its own coordinateg, This gradient is given by
can construct local potential functions such that if thendge 1 Vd; H(L-1) 10
move in the direction of the negated gradient of their retpec Vigpi = NG [v”di - Tﬁi Viﬁl} ' (10)

. . . e
local potential functions than the cost of the centralized One can easilv verify th and are related in the
potential functiony decreases monotonically. y y thatq Vs

We propose a local potential function for tif¢ agent has following way:

the following form 1
©i A AT 7 va(q) B ;% (11)
where: Viva = Viva,

- 74, + F — R, is a positive semi-definite scalar functionB. Gradient ofp with respect tag;: V¢
assuming the value of zero only when all formation Naturally,
specifications related to agent~;;, j € N; are zero
(Section IlI-A).

- 0B; : F —[0,1] function that vanishes when agémomes
into contact with any of the obstacles in the workspace

the centralized navigation function (2) depend
on the coordinates of agent A component of the gradient
vector of p contains the partial derivative of with respect to
¢;- This component is given by:

or with another agenf € {1,..., N}, j # i (Section Vip = % [Vm _ ﬂﬁ(%—l)vzﬂ]
111-B). e k
- k is a (positive) tuning parameter. Note now that the coordinates gf do not appear in the
" _ edge label functions of agents that are not linked to the
A. Agenti** goal function:~g, formation graph. Thus,

Functionv,, : F — R, encodes the control objective of 1 Vd p(2-1)
the i*" agent, which is to minimize the label functions of all Vip = T {Vﬂdi - ?ﬁ g Vzﬂ} 12)



In the following sections we bound one by one the conand minimizing the right hand side, we have:
ponents of the gradients of the centralized and decerdrhliz 52
navigation functions in order to investigate how the gratie Ve, (y)]] > min{ Va;(Y) } =M (14)
vectors align. 1y =)l R

C. The gradient of local goal functions is bounded "

The next lemma provides a lower bound for the go&. The gradient of local obstacle functions is bounded

function of agent, if it has not completely satisfied any of its  The next Lemma provides a bound on the norm of the
formation specifications. If this is the case, then all edd®l gradient of the obstacle functions that model the proximity
functions associated with this agent will be bounded aWQ)y agents to obstacles. The bound Suggested by the Lemma
from zero by some constait. The bound obtained dependsdepends on the radiug of the region around each of the

on this constanty, the size of the workspace in which theagents in which they can identify obstacles and other agents
agents move and the maximum degree of the formation graph.

th ) Lemma IV.2 The norm of the gradient of;; with respect to
Lemma IV.1 If agent " edge label functions are bounded

i i.e., ||V:0it|| is upper bounded b
away from zero, i.e{vy | va > 62,V [ € N;}, then the 1 IViBu PP y

gradient of~,, with respect tog; satisfies 8 (1+4d")
1V > Wi
R Proof: First considerB;; as a function ofz; =

whereR is the radius of the workspacg (the radius of the ||g; —ptHQ —d?: Bit(q;) = Bit(zit(qi)). Using the chain rule,
largest ball containingF’). 9)\z
- 1t

ViBit = ——5 Vq(Zit)s (15)

Proof: Thei*" agent goal function is given by (1+22)2 1

Vd; = Z lgi — i — call* = Z Vil and thus,

LEN; IEN; VBl = u‘jﬁ%\/% +d2. (16)
Based on the above, the gradientyf with respect tog; is “it
found to be Obviously, one hag|V.;8:| < (1 + 22)?|ViBx|, and
consequently,
Viva: =2 > (@i — @ — ca) (13) auenty
i~ max {[Vifie|[} < max {(1+22)?|ViBul}. (A7)

Now, since all edge label functiong, are lower bounded, we

can defines to be so that? = min {~; : | € N;} Define the function

Therefore, in the region ofg; we are considering, F(zi) 2 {(1 4 22)*} VBt -
min {v4,} £ & = n;0%, wheren; £ ||, in other words _ _ o _

n; is the degreeof nodei. Interestingly, while ||V;3;|| is difficult to bound directly,
From its definition, it follows thatyy, (¢;), is a differentiable function F(z;) can be rr;aélmlzgd easilymax {F'(zi¢)}
convex function ofg;. Therefore for allz,y € domain of IS obtained forz;, = —zd°, SF|gure 2) and therefore

v4; (¢:), we have the following inequality max { F(zy)} = 3\%13 = % “}d ) and due to (17),
v (%) = 7a, (y) + Ve, ()" (@ = y), 8 (1+d!
| o max [V, |} < —= LD 18)
which can be written in the form 3v3 d
[ |
Vra (W) (Y = ) = va: (y) = va, ().
If “ 2" is the optimal solution, theny, (y) — 74, () > 0, and °
the above yields: 4
IV DIy = ) = Ve, )" (v — @) = 74, (y) — 74, (@) 5
Combining the left and right hand sides, we have: 5
/Yd:(y) B /Yd:(x)
Ve, Wl 2 —5——=7— 1
A o
With z being the (globally) optimal argument, we have that S0.08  -0.06  -0.04  -0.02

v4; () = 0, which means that

Ya, (y) Fig. 2. The gradient of" has a unique maximum.

Ve, ()| = ma



Let s; be the total number of obstacles within the sensalesired configuration. The inner productV,p, V,p; >, is
radius ofi*" agent. Nows; as defined in (9) can be compactlygiven by the expression
written as v ) T (1)
d _ N 2a (-1, _
Bi = Hﬁz‘t = Byt - Bt Viya = F 0% Vzﬁ} {vﬁd w0V ﬁz}

=0 e(BY/E4+1%)

where 3;; is the “omitted product” of3;; [22]. Note that Now define the functions;, a; andb; as follows:
obstacles outside this region correspond to functionsahat

identically equal tol; thus, generaly[[;" , Bit = [1;_, Bit- T = Viva,,
Then we can write: a; = 74B8F DV, 8,
s _ S o (x-Dy g,
ViBi =V, {H @'t} = Vi{Bi;Bi;} = Z{ﬁij(viﬁij)}- (19) bi =na.fi" Vil
t=0 J=0 Substituting, we have
Thus, maximizing the left and right hand sides: aT b
<Vip,Vip; > = (wi - —l) T — =
k k
max {|ViGi[l} = max| ) {5;(Vifi) 1
Z J J = xzrxi k Z; (al + b; ) k2 ?b

8 (1 d4 i i iefi
(s + 1){ + (20) In order to show that the inner product is positive it is sigft

3v/3 d7 to show that
i 3. 1 1
sincemax [y, = L. | lzal* > —[a] (@i + bi) = - (af b)), (22)
The same bound can be used for the obstacle function of the k k
centralized navigation functiori. The function can similarly {A}

be expressed in terms of the omitted product a3 = ;3;

) C o . Expression4 can be bounded as follows:
so that its gradient is written

2 2
V.8 = BV + BV Ulzill” + llas + b:fI") 1 7,
V=AY AT (4 < l L L (Th)
and becaus@; does not depend od, 1 (k—1)
g = ot g + 28T
ViB =BiViBi = Bi |>_{Bi;(ViBij)}
=0 5
Maximizing the left and right hand sides, Assumingk > 1, {B} < 3[llz:|* + (lla:]l + [1b:]))?]

Hence for the inner product to be positive, we have the
following condition

max {|[ViBll} = max||Fi | {5 (Viby)} X
. il > g Uil + Qlasll + 10:0)7)

8 (14d)
= (s+1) {3\/— a7 } (1) which provides us with a condition of,

Our main result is captured in the following Proposition. . 1
> j—
Ak

It states that an appropriate value of the paramkter the 2
local navigation functions can ensure that the local gradie _ _
are roughly aligned with the components of the gradientIn view of (11), (20) and (21), one can write that

1+

of the centralized navigation function. This implies thhe t N
centralized navigation functiop will be decreasing along the laill < va [IViB]l < 5 max{va. } Vil
trajectories ofi; = —KV;p;.

N
61l < 5 max{ra, Vs

Thus, it is sufficient to have

Proposition IV.3 There exists a sufficiently large value for
k so that the trajectories of the syste;p = —KV,p;

monotonically decrease the navigation function(2). . 1 N N2 max{yg, }? | Vi8>

Proof: To determine whether the components 6 2 2”“71“2
are aligned to the corresponding;p;, we are considering and using (21) and (14),
their inner product. If the inner product can be made (dyict . 8 1+d (tdt)
positive, then the centralized function will be monototiica 1 2N?RY(s+1)? { }

decreasing, implying that the system will eventually reésh k> 2 + n2é4 3




If (23) hOIdS then Case | - Three Agents: k=2,e=0.3,d=0.2,K= 10"

1

N

al Op  0p;
- = V’L T':—K —’_,L O 0.5+
¢ i:1( ®)d ;(aqi 2 <

0.4r

V. SIMULATION RESULTS

In this section, we present simulation studies in which o2
team of three agents form a triangle, and a team of four age
form a diamond amidst obstacles arranged i &rmation. 01l
In all the simulation cases presented here the sensor rac
of all the agents isi = 0.2. An obstacle is not visible to a
particular agent if it is outside its sensor radius.

In Figures 3, 5 and 7, the solid (double) arrows connectit
the agents’ final positions indicate the formation graphesdg o4 05 o6 o7 08 09
Dotted lines denote inter-agent distances which are neintak
into account explicitly in the agents goal functions.

Fig. 3. Inter-agent collision avoidance and convergenadetired formation
with k = 2.
A. Three agent formation

Case | - Three Agents: k=2,e=0.3,d=0.2, K= 10

In this case, we coordinate a team of three agents ir w w w w w w
forming an equilateral triangle, pointing “north”. The age
start at initial configurations denoted by 2/, and3’ and reach  os
their final configuration denoted Ry 2, and3 in Figure 3. The
corresponding inter-agent distance is plotted in Figurén4, s
which we can verify the obstacle avoidance capabilitiehef t
agents. Note that due to the finite sensing radius, agents cc &
close before engaging into collision avoidance maneuvers. :

In Figure 4, it can be seen that agent 2 comes close to ag
3, although still no collision occurs. We increase the sah
avoidance properties of the fields by decreasing the value
the tuning parametek; from 2 to 1.2, thus making the effect %2 J i
of proximity functions (3 or b) stronger. In the simulation run .
depicted in Figure 5, we clearly see that under the influefice o1+ S .
the new field, agent 2 performs a collision avoidance marneu ;
as soon as it starts coming close to agent 3. The corresgpnc L \ \ \ \ \ \

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

inter-agent distance plot Figure 6 confirms this statement. Time

0.4

istan

0.3 / E

Inter—agent di

B. Four agent formation Fig. 4. Inter-agent distances with k = 2.

In these simulation scenarios, the size of the group is
increased to four. The objective here is to coordinate tamte
into forming a diamond, with agent 1 pointing “north.” The
agents start at initial configurations denoted1by2’, 3’, and A decentralized cooperative control scheme is presentgd th
4’ and reach their final configuration denoted hy2, 3, and allows a team of mobile agents to asymptotically converge
4 in Figure 7. In this case the initial conditions are chosen $0 a desired formation of particular shape and orientation
that the agents start the motion in the neighborhood &f afrom almost any initial conditions. Collision avoidancegti
formation of point-obstacles. The agent trajectories cepgi among agents and between agents and environment obstacles,
in Figure 7 demonstrate the ability of the group to stabitize is guaranteed. The formation can be reached at any position i
the desired formation configuration while avoiding cotliss the free workspace, because the technique does not “tie” the
with nearby obstacles. The corresponding inter-agerdniigts formation to a particular point in space. Agent controllese
are plotted in Figure 8, verifying that although the paths aftate information from a limited set of specific neighboring
the agents cross during maneuvering, their distances remagents and have access to environment data within a certain
always bounded away from zero. region around their location. Although the controllers are

VI. CONCLUSION



Case | - Three Agents: k=1.2,e=0.3,d=0.2,K= 107

Case Il - Four Agents: k=2.0,e=0.3,d=0.2, K= 107
T T T

T T T 1 T T T T T
05 ] 06 8
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0.3 b
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> > X
0.2 - o
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X X
Fig. 5. Inter-agent Collision avoidance and convergenagegired formation Fig. 7. Collision avoidance during a 4-agent formation itetiion maneuver
with k = 1.2. in an environment with stationary point-obstacles.
7 Case Il - Four Agents: k=2.0,e=0.3,d=0.2, K= 10"
Case | - Three Agents: k=1.2,e=0.3,d =0.2, K = 10' . . . ; ; .
dia L _ N o
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Time
Fig. 6. Inter-agent distances with k = 1.2. Fig. 8. Inter-agent distances during the diamond formastabilization

completely decentralized, global convergence is stiliecd

because we can theoretically adjust the local potentiaddiel

maneuver.
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