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Abstract— We develop decentralized cooperative controllers,
which are based on local navigation functions and yield (almost)
global asymptotic stability of a group of mobile agents to a
desired formation and simultaneous collision avoidance. The
formation could be achieved anywhere in the free space; there
are no pre-specified final positions for the agents and is rendered
stable both in terms of shape and in terms of orientation.
Shape and orientation stabilization is possible because the agents
regulate relative positions rather than distances with respect to
their network neighbors. Asymptotic stability is provable and
guaranteed, once the parameters in the local navigation functions
are tuned based on the geometry of the environment and the
degree of the interconnection network. Feedback controllers
steer the agents away from stationary point-obstacles and into
the desired formation using information that can be obtained
within their sensing neighborhood and through communication
with their network neighbors. The methodology is tested in
simulation where groups of three and four mobile agents come
into formations of triangles and diamonds, navigating amongst
obstacles.

I. I NTRODUCTION

In this paper we solve the problem of decentralized forma-
tion stabilization with collision avoidance, in a way that the
resulting formation shape and orientation can be engineered
and regulated. The closed loop multi-agent behaviors can
be designed, and arbitrary formation arrangements can be
achieved with each agent using information that can either
measure locally using its sensors or obtain through communi-
cation from alimited set of network neighbors. Our approach
is based on navigation functions [1], which are special types
of artificial potential field functions [2] that can be designed
to have no local minima and steer the system to a desired
destination from almost all initial conditions (except fora set
of measure zero). We show that we can tune the parameters of
any agent’s potential field based on the geometric parameters
of the workspace, the graph properties of the communication
network, and the sensing characteristics of the agents so
that the desired inter-agent relative position configurations are
globally asymptotically stable.

This problem has been solved in a centralized formulation:
Beard et al. [3] have coordinated formation satellites intro-
ducing the concept of the virtual structure. In [4] Tanner et
al. have used a navigation function to steer a group of mobile
manipulators in an environment with obstacles. Egerstedt [5]
introduced the notion offormation feedbackas a means to
regulate agent motion so that global formation constraints

are respected. The problem with centralized approaches is
that they are not robust in real implementation, but most im-
portantly centralization involves computational and analytical
complexity that does not allow the control architecture to scale
with the size of the multi-agent group.

Thus, decentralized solutions are sought. One of the most
popular ideas for decentralized cooperative control are be-
havioral (or reactive) models [6]. These are easily imple-
mentable [7], [8] but generally fail to yield any formal
guarantees of convergence. The “emerging” formation con-
figurations depend primarily on initial conditions. This isalso
the case in flocking cooperative control schemes [9], [10], [11]
although the asymptotic synchronization of agents velocities is
formally proven. In most schemes that use nearest interaction
rules[12], [13], [14] the resulting relative positions or the
final rendezvous point are unpredictable. Other decentralized
approaches rely on ideas based on Internet protocols [15].
Voronoi diagram-based, decentralized nonsmooth cooperative
control techniques [16] have shown to globally optimize
certain objective functions, yet still, the final arrangement of
agents cannot be foretold. A decentralized cooperative control
methodology that does guarantee the convergence of agents in
particular relative positions while navigating amongst sphere-
like obstacles is [17]. However, the approach to decentraliza-
tion is similar to that of [18]: each agent essentially carries
a copy of some centralized coordination scheme, thus still
requiring full knowledge of the system and environment state.

As observed in [19], [20], navigation functions,V (q), that
solve the problem for static case, are actually Lyapunov
functions. The traditional control inputu = −∇V is not the
only input capable of renderinġV < 0; in fact there exist
many such input vectors. Any control scheme which makes
V̇ = −∇V · q̇ < 0 also solves the problem. Our paper is
a step forward in the same direction and provides a control
input for each agent that decreases the global navigation
function and stabilizes a group of mobile agents into a desired
formation. In this paper we construct a decentralized version
of the navigation-function-based cooperative control algorithm
introduced recently in [21] and achieveglobal formation stabi-
lization with collision avoidance using only local information.

The next sections of the paper are organized as follows. In
Section II we present the problem statement, using the concept
of formation graph. In Section III we present the local potential
function and its components. Section IV we show that the



direction of local potential function is a direction along which
some common Lyapunov function decreases monotonically. In
Section V we present our simulation results. Section VI, closes
the paper with some conclusions and ideas for further work.

II. PROBLEM FORMULATION

We consider a homogeneous group ofN mobile agents,
each with dynamics given by

q̇i = ui, qi ∈ R
n, i = 1, . . . , N (1)

where qi and ui are the state and control input of agenti,
respectively. In the remaining,q and u will denote the stack
vectors ofqi and ui. The agents are treated as autonomous
point-robots.

The objective here is to construct local potential fields that
will enable theNagents to stabilize with respect to their group-
mates in configurations that make a particular formation, while
avoiding collisions between themselves and with obstaclesin
the environment. The desired formation is specified in terms
of a labeled directed graphs.

Definition II.1 (Formation graph) The formation graph,
G = {V , E ,L}, is a directed labeled graph consisting of:

• a set of vertices (nodes),V = {v1, . . . , vN}, indexed by
the mobile agents in the group,

• a set of edges,E = {(vi, vj) ∈ V × V}, containing
ordered pairs of nodes that represent inter-agent position
specifications, and

• a set of labels,L = {γij | γij = ‖qi − qj − cij‖2
, cij ∈

R
n, (vi, vj) ∈ E}, indexed by the edges inE .

All the nodes that are (network) adjacent to nodei belong
to the neighborhood set of agenti, Ni. The orientation of the
graph is merely used to define the relative position specifica-
tionsqi−qj −cij and is not meant to denote information flow.
The latter is considered bidirectional between two nodes that
are adjacent.

Throughout the paper, the use of the Euclidean norm is im-
plied, i.e.‖·‖ ≡ ‖·‖2. Specifying the formation specifications
as edge labels in the form

‖qi − qj − cij‖2
= 0, ∀(vi, vj) ∈ E ,

not only specifies inter-agent distances, but also theirrelative
orientation. The workspace,

W = {q | ‖q‖ ≤ R} ⊂ R
n,

common for all agents, is assumed to be populated by a set
of pointspj , j = 1, . . . , s that represent obstacles.

The objective is to construct an artificial potential function
ϕi, that depends only on information that is available to
agenti and can steer the latter into a desired relative position
with respect to a specific subset of agents with which it can
communicate. This local potential function will generate the
agent’s input as follows:

ui = −K
∂ϕi

∂qi

= −K∇iϕi.

What we want to achieve is to have the closed loop
system of all agents generate trajectories that converge to
configurations in the free space where the desired formation
is reached. These trajectories should have arbitrary initial
conditions (except for points in a set of measure zero) and
be collision free.

III. L OCAL NAVIGATION FUNCTIONS

The main idea in our approach is to built individual
navigation functions that drive the agents along trajectories
that decrease a common Lyapunov function. This common
Lyapunov function could be in the form of a centralized
navigation function. A centralized, navigation-function-based
approach that recently appeared in literature [21] is our starting
point. We then investigate ways to break it up into local
components, each associated with an agent in the group,
serving as local navigation functions for each of the agents.

In [21] it was shown that centralized formation global
stabilization with obstacle avoidance is possible using the
following navigation function, defined on a compact connected
analytic manifold with boundary,F ⊂ R

nN :

ϕ(q) ,
γd(q)

eβ(q)1/k
, (2)

where:

- γd(q) : F → R+ is a positive semi-definite scalar
function, vanishing only when the agents are in the
desired formation configuration,

- β(q) : F → [0, 1] function that vanishes only when agents
are in contact with the obstacles or with one another.

- k is a (positive) tuning parameter.

The “goal function”,γd(q) is defined as:

γd(q) ,
∑

γij(qi, qj), ∀(i, j) ∈ E (3)

and it is essentially the sum of all edge label (specification)
functions. It attains the value of zero only when all the
formation specifications are met (i.e., all label functionsare
zero).

The “obstacle function” is given by

β(q) ,
∏

i,k

βik

∏

i,j

bij , i, j ∈ {1, . . . , N}, k = 0, . . . , s.

in which eachβit is a function that models the proximity of
a mobile agent with a stationary (point) obstacle, defined as:

βit ,

(

1 − λ
(‖qi − pt‖2 − d2)2

(‖qi − pt‖2 − d2)2 + 1

) sign(d−‖qi−pt‖)+1

2

,

(4)
whereλ is a tuning parameter andd expresses the “sensing”
radius of the agents. The boundary of the workspace is
represented by the functionβi0 (for index t = 0). The
(discontinuous) exponent in these functions has the effectof
“flattening” the functions beyond a certain ranged. In this way,
the effect of obstacles is local: an obstacle atpt will only affect
the value ofϕ if an agent approaches it close enough.
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Fig. 1. The form of the obstacle functionsβit. Being constant beyond a
distanced, they have a local effect on the navigation function.

By appropriately tuning the parameterλ the functionβit

becomes differentiable atd,

λ =
1 + d4

d4
. (5)

so that the gradient ofϕ remains continuous everywhere.
The assumption that both the robots as well as the obstacles

are represented by points is not as restrictive as it may seem,
since it has been shown [4] that a large class of shapes can be
mapped to single points through a series of transformations;
this “point-world” topology can be regarded as a degenerate
case of the “sphere-world” topology of [22].

Functionsbij model inter-agent proximity. Their structure
is similar to that ofβit:

bij ,

(

1 − λ
(‖qi − qj‖2 − d2)2

(‖qi − qj‖2 − d2)2 + 1

) sign(d−‖qi−qj‖)+1

2

. (6)

In the remaining of this section we will describe how one
can construct local potential functions such that if the agents
move in the direction of the negated gradient of their respective
local potential functions than the cost of the centralized
potential functionϕ decreases monotonically.

We propose a local potential function for theith agent has
the following form

ϕi ,
γdi

eβi
1/k

(7)

where:

- γdi : F → R+ is a positive semi-definite scalar function,
assuming the value of zero only when all formation
specifications related to agenti, γij , j ∈ Ni are zero
(Section III-A).

- βi : F → [0, 1] function that vanishes when agenti comes
into contact with any of thes obstacles in the workspace
or with another agentj ∈ {1, . . . , N}, j 6= i (Section
III-B).

- k is a (positive) tuning parameter.

A. Agentith goal function:γdi

Functionγdi : F → R+ encodes the control objective of
the ith agent, which is to minimize the label functions of all

edges adjacent to agenti.

γdi ,
∑

l∈Ni

γil. (8)

When γdi is minimized with respect toqi, then agenti
“would have done his part” with respect to reaching the desired
formation. Ideally, if all formation specifications related to
agenti are met,γdi becomes zero.

B. Agentith obstacle function:βi

Similar to the case of centralized navigation function in [21],
βi is made up as a product of several “obstacle functions.”
Collisions can occur not only between an agent and an
obstacle, but also between agents as well. For all obstacles
k ∈ {1, . . . , s} within a ball of radiusd centered atqi we
define a functionβik, as in (4); similarly, for all other agents
j ∈ {1, . . . , N} \ {i} in the same neighborhood, we consider
a functionbij as in (6). Then the obstacle function for agent
i is defined as

βi ,
∏

k

βik

∏

j

bij . (9)

IV. L OCAL MOTION FORGLOBAL CONVERGENCE

In this section we will show that the negated gradient of
the local potential function constructed in Section III, under
certain conditions, is a direction along which the centralized
navigation function (2). In the subsections that follow, we
evaluate several terms that are central into showing that local
controllers can decrease (2).

A. Gradient ofϕi with respect toqi: ∇iϕi

Agent i will be steered to a direction aligned with the
negated gradient of the local navigation functionϕi, with
respect to its own coordinates,qi. This gradient is given by

∇iϕi =
1

eβ
1/k
i

[

∇iγdi −
γdi

k
β

( 1
k−1)

i ∇iβi

]

, (10)

One can easily verify thatγd and γdi , are related in the
following way:

γd(q) =
1

2

N∑

i=1

γdi , (11)

∇iγd = ∇iγdi

B. Gradient ofϕ with respect toqi: ∇iϕ

Naturally, the centralized navigation function (2) depends
on the coordinates of agenti. A component of the gradient
vector ofϕ contains the partial derivative ofϕ with respect to
qi. This component is given by:

∇iϕ =
1

eβ1/k

[

∇iγd − γd

k
β( 1

k−1)∇iβ
]

Note now that the coordinates ofqi do not appear in the
edge label functions of agents that are not linked toi in the
formation graph. Thus,

∇iϕ =
1

eβ1/k

[

∇iγdi −
γd

k
β( 1

k−1)∇iβ
]

(12)



In the following sections we bound one by one the com-
ponents of the gradients of the centralized and decentralized
navigation functions in order to investigate how the gradient
vectors align.

C. The gradient of local goal functions is bounded

The next lemma provides a lower bound for the goal
function of agenti, if it has not completely satisfied any of its
formation specifications. If this is the case, then all edge label
functions associated with this agent will be bounded away
from zero by some constantδ2. The bound obtained depends
on this constant,δ, the size of the workspace in which the
agents move and the maximum degree of the formation graph.

Lemma IV.1 If agent ith edge label functions are bounded
away from zero, i.e.{γil | γil > δ2, ∀ l ∈ Ni}, then the
gradient ofγdi with respect toqi satisfies

‖∇iγdi‖ ≥ niδ
2

R ,

whereR is the radius of the workspaceF (the radius of the
largest ball containingF ).

Proof: The ith agent goal function is given by

γdi =
∑

l∈Ni

‖qi − ql − cil‖2 =
∑

l∈Ni

γil.

Based on the above, the gradient ofγdi with respect toqi is
found to be

∇iγdi = 2
∑

l∈Ni

(qi − ql − cil) (13)

Now, since all edge label functionsγil are lower bounded, we
can defineδ to be so thatδ2 = min {γil : l ∈ Ni}

Therefore, in the region ofqi we are considering,
min {γdi} , δi = niδ

2, whereni , |Ni|, in other words
ni is thedegreeof nodei.

From its definition, it follows thatγdi(qi), is a differentiable
convex function ofqi. Therefore for allx, y ∈ domain of
γdi(qi), we have the following inequality

γdi(x) > γdi(y) + ∇γdi(y)T (x − y),

which can be written in the form

∇γdi(y)T (y − x) > γdi(y) − γdi(x).

If ‘ x’ is the optimal solution, thenγdi(y) − γdi(x) > 0, and
the above yields:

‖∇γdi(y)‖ ‖(y − x)‖ > ∇γdi(y)T (y − x) > γdi(y) − γdi(x)

Combining the left and right hand sides, we have:

‖∇γdi(y)‖ >
γdi(y) − γdi(x)

‖(y − x)‖
With x being the (globally) optimal argument, we have that

γdi(x) = 0, which means that

‖∇γdi(y)‖ >
γdi(y)

‖(y − x)‖ ,

and minimizing the right hand side, we have:

‖∇γdi(y)‖ ≥ min

{
γdi(y)

‖(y − x)‖

}

=
niδ

2

R (14)

D. The gradient of local obstacle functions is bounded

The next Lemma provides a bound on the norm of the
gradient of the obstacle functions that model the proximity
of agents to obstacles. The bound suggested by the Lemma
depends on the radiusd of the region around each of the
agents in which they can identify obstacles and other agents.

Lemma IV.2 The norm of the gradient ofβit with respect to
qi i.e., ‖∇iβit‖ is upper bounded by

8

3
√

3

(1 + d4)

d7
.

Proof: First consider βit as a function of zit ,
‖qi − pt‖2 − d2: βit(qi) = βit(zit(qi)). Using the chain rule,

∇iβit =
−2λzit

(1 + z2
it)

2
∇q(zit), (15)

and thus,

‖∇iβit‖ =
−4λzit

(1 + z2
it)

2

√

zit + d2. (16)

Obviously, one has‖∇iβit‖ ≤ (1 + z2
it)

2 ‖∇iβit‖ , and
consequently,

max {‖∇iβit‖} 6 max {(1 + z2
it)

2 ‖∇iβit‖}. (17)

Define the function

F (zit) , {(1 + z2
it)

2} ‖∇iβit‖ .

Interestingly, while‖∇iβit‖ is difficult to bound directly,
function F (zit) can be maximized easily:max {F (zit)}
is obtained for zit = − 2

3d2, (Figure 2) and therefore

max {F (zit)} = 8λ

3
√

3d3
= 8

3
√

3

(1+d4)
d7 and due to (17),

max {‖∇iβit‖} ≤ 8

3
√

3

(1 + d4)

d7
(18)
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Fig. 2. The gradient ofF has a unique maximum.



Let si be the total number of obstacles within the sensor
radius ofith agent. Nowβi as defined in (9) can be compactly
written as

βi =

si∏

t=0

βit = βit · β̄it

where β̄it is the “omitted product” ofβit [22]. Note that
obstacles outside this region correspond to functions thatare
identically equal to1; thus, generally

∏si

t=0 βit =
∏s

t=0 βit.
Then we can write:

∇iβi = ∇i

{
s∏

t=0

βit

}

= ∇i{β̄ijβij} =

s∑

j=0

{β̄ij(∇iβij)}. (19)

Thus, maximizing the left and right hand sides:

max {‖∇iβi‖} = max

∥
∥
∥
∥
∥
∥

s∑

j=0

{β̄ij(∇iβij)}

∥
∥
∥
∥
∥
∥

= (s + 1)

{
8

3
√

3

(1 + d4)

d7

}

(20)

sincemax β̄it = 1.
The same bound can be used for the obstacle function of the

centralized navigation function,β. The function can similarly
be expressed in terms of the omitted product ofi asβ = β̄iβi

so that its gradient is written

∇iβ = βi∇iβ̄i + β̄i∇iβi

and becausēβi does not depend onqi,

∇iβ = β̄i∇iβi = β̄i





s∑

j=0

{β̄ij(∇iβij)}



 .

Maximizing the left and right hand sides,

max {‖∇iβ‖} = max

∥
∥
∥
∥
∥
∥

β̄i





s∑

j=0

{β̄ij(∇iβij)}





∥
∥
∥
∥
∥
∥

= (s + 1)

{
8

3
√

3

(1 + d4)

d7

}

(21)

Our main result is captured in the following Proposition.
It states that an appropriate value of the parameterk in the
local navigation functions can ensure that the local gradients
are roughly aligned with the components of the gradient
of the centralized navigation function. This implies that the
centralized navigation functionϕ will be decreasing along the
trajectories ofẋi = −K∇iϕi.

Proposition IV.3 There exists a sufficiently large value for
k so that the trajectories of the systemqi = −K∇iϕi

monotonically decrease the navigation function in(2).

Proof: To determine whether the components of∇ϕ

are aligned to the corresponding∇iϕi, we are considering
their inner product. If the inner product can be made (strictly)
positive, then the centralized function will be monotonically
decreasing, implying that the system will eventually reachits

desired configuration. The inner product< ∇iϕ,∇iϕi >, is
given by the expression

[

∇iγdi − γd

k
β( 1

k −1)∇iβ
]T [

∇iγdi −
γdi

k
β

( 1
k−1)

i ∇iβi

]

e(β1/k+β
1/k
i )

Now define the functionsxi, ai andbi as follows:

xi = ∇iγdi ,

ai = γdβ
( 1

k−1)∇iβ,

bi = γdiβ
( 1

k−1)
i ∇iβi.

Substituting, we have

< ∇iϕ,∇iϕi > =
(

xi −
ai

k

)T
(

xi −
bi

k

)

= xT
i xi −

1

k
xT

i (ai + bi) −
1

k2
aT

i bi.

In order to show that the inner product is positive it is sufficient
to show that

‖xi‖2
>

1

k
[xT

i (ai + bi) −
1

k
(aT

i bi)
︸ ︷︷ ︸

{A}

]. (22)

ExpressionA can be bounded as follows:

{A} <

[

(‖xi‖2 + ‖ai + bi‖2)

2
− 1

k
(aT

i bi)

]

=
1

2

[

‖xi‖2
+ ‖ai‖2

+ ‖bi‖2
+ 2

(k − 1)

k
aT

i bi

]

︸ ︷︷ ︸

{B}

Assumingk > 1
2 , {B} < 1

2 [‖xi‖2
+ (‖ai‖ + ‖bi‖)2]

Hence for the inner product to be positive, we have the
following condition

‖xi‖2
>

1

2k
[‖xi‖2

+ (‖ai‖ + ‖bi‖)2]

which provides us with a condition onk,

k >
1

2

[

1 +
(‖ai‖ + ‖bi‖)2

‖xi‖2

]

In view of (11), (20) and (21), one can write that

‖ai‖ ≤ γd ‖∇iβ‖ ≤ N

2
max{γdi} ‖∇iβ‖ ,

‖bi‖ ≤ γdi ‖∇iβi‖ ≤ N

2
max{γdi} ‖∇iβ‖ .

Thus, it is sufficient to have

k >
1

2
+

N2 max{γdi}2 ‖∇iβ‖2

2 ‖xi‖2

and using (21) and (14),

k >
1

2
+

2N2R4(s + 1)2{ 8
3
√

3

(1+d4)
d7 }

n2
i δ

4
(23)



If (23) holds then

ϕ̇ =

N∑

i=1

(∇iϕ)T q̇ = −K

N∑

i=1

〈 ∂ϕ

∂qi

,
∂ϕi

∂qi

〉 < 0

V. SIMULATION RESULTS

In this section, we present simulation studies in which a
team of three agents form a triangle, and a team of four agents
form a diamond amidst obstacles arranged in aΠ formation.
In all the simulation cases presented here the sensor radius
of all the agents isd = 0.2. An obstacle is not visible to a
particular agent if it is outside its sensor radius.

In Figures 3, 5 and 7, the solid (double) arrows connecting
the agents’ final positions indicate the formation graph edges.
Dotted lines denote inter-agent distances which are not taken
into account explicitly in the agents goal functions.

A. Three agent formation

In this case, we coordinate a team of three agents into
forming an equilateral triangle, pointing “north”. The agents
start at initial configurations denoted by1′, 2′, and3′ and reach
their final configuration denoted by1, 2, and3 in Figure 3. The
corresponding inter-agent distance is plotted in Figure 4,in
which we can verify the obstacle avoidance capabilities of the
agents. Note that due to the finite sensing radius, agents come
close before engaging into collision avoidance maneuvers.

In Figure 4, it can be seen that agent 2 comes close to agent
3, although still no collision occurs. We increase the collision
avoidance properties of the fields by decreasing the value of
the tuning parameter,k from 2 to 1.2, thus making the effect
of proximity functions (β or b) stronger. In the simulation run
depicted in Figure 5, we clearly see that under the influence of
the new field, agent 2 performs a collision avoidance maneuver
as soon as it starts coming close to agent 3. The corresponding
inter-agent distance plot Figure 6 confirms this statement.

B. Four agent formation

In these simulation scenarios, the size of the group is
increased to four. The objective here is to coordinate the team
into forming a diamond, with agent 1 pointing “north.” The
agents start at initial configurations denoted by1′, 2′, 3′, and
4′ and reach their final configuration denoted by1, 2, 3, and
4 in Figure 7. In this case the initial conditions are chosen so
that the agents start the motion in the neighborhood of aΠ
formation of point-obstacles. The agent trajectories depicted
in Figure 7 demonstrate the ability of the group to stabilizeto
the desired formation configuration while avoiding collisions
with nearby obstacles. The corresponding inter-agent distances
are plotted in Figure 8, verifying that although the paths of
the agents cross during maneuvering, their distances remain
always bounded away from zero.
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Fig. 3. Inter-agent collision avoidance and convergence todesired formation
with k = 2.
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VI. CONCLUSION

A decentralized cooperative control scheme is presented that
allows a team of mobile agents to asymptotically converge
to a desired formation of particular shape and orientation
from almost any initial conditions. Collision avoidance, both
among agents and between agents and environment obstacles,
is guaranteed. The formation can be reached at any position in
the free workspace, because the technique does not “tie” the
formation to a particular point in space. Agent controllersuse
state information from a limited set of specific neighboring
agents and have access to environment data within a certain
region around their location. Although the controllers are
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Fig. 6. Inter-agent distances with k = 1.2.

completely decentralized, global convergence is still achieved
because we can theoretically adjust the local potential fields
that generate the agents’ control inputs to align with the
gradient directions of a common Lyapunov function.

Future work includes investigation of the performance of
the decentralized formation stabilization scheme in termsof
network parameters, topology and information flow, and quan-
tification of the performance deterioration compared to “ideal”
centralized alternative control architectures. Another area in
which we would like to focus our attention is in determining
a generalized structure for the parametercij , which is critical
for determining the final shape of the formation.
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Fig. 7. Collision avoidance during a 4-agent formation stabilization maneuver
in an environment with stationary point-obstacles.
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