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Abstract— This paper presents an integrated approach to
exploration, mapping, and localization. Our algorithm uses a
highly efficient Rao-Blackwellized particle filter to represent the
posterior about maps and poses. It applies a decision-theoretic
framework which simultaneously considers the uncertainty in
the map and in the pose of the vehicle to evaluate potential
actions. Thereby, it trades off the cost of executing an action with
the expected information gain and takes into account possible
sensor measurements gathered along the path taken by the
robot. We furthermore describe how to utilize the properties
of the Rao-Blackwellization to efficiently compute the expected
information gain. We present experimental results obtained in
the real world and in simulation to demonstrate the effectiveness
of our approach.

I. INTRODUCTION

Robots that are able to acquire an accurate model of their
environment are regarded as fulfilling a major precondition of
truly autonomous mobile vehicles. To learn an environmental
model, three problems need to be addressed simultaneously,
namely exploration, mapping, and localization.

Recently, Rao-Blackwellized particle filters (RBPF) have
been introduced as an effective means for solving the si-
multaneous localization and mapping (SLAM) problem with
occupancy grid maps [4], [19]. The key idea of this technique
is to use a particle filter in which each particle represents a
potential trajectory. Each particle furthermore carries its own
map which is computed based on the associated trajectory.

Whereas a Rao-Blackwellized particle filter for mapping
maintains a posterior about the robot’s trajectory and the map
of the environment, it does not provide information on how
to steer the robot through the environment to acquire useful
sensor data. As demonstrated in the past [1], [24], the quality
of the resulting map constructed by a mabile robot depends
on its trajectory during data acquisition. In practice, the major
sources of uncertainty about the state of the world are the
uncertainty in the robot’s pose and the uncertainty resulting
from the limited accuracy of the sensor the robot uses to
perceive its environment. Therefore, a robot performing an
autonomous exploration task should take the uncertainty in the
map as well as in its path into account to select an appropriate
action.

As a motivating example consider Figure 1. The left image
shows a robot that has almost closed a loop. Suppose the
vehicle has a high pose uncertainty and has to decide where
to go next. Three potential actions are plotted on the map.
Action 1 leads the robot to unknown terrain, whereas action 2

Fig. 1. Suppose the robot has a high pose uncertainty and has to decide where
to go next. Shown are three opportunities in the left image. Our map and pose
entropy-driven exploration system chooses action 3 (as depicted in the right
image) since it provides the highest expected utility (see also Figure 7).

performs a loop closure without observing unknown areas.
Action 3 does both: after closing the loop it guides the robot
to unknown terrain.

Classical exploration approaches, which seek to reduce the
amount of unseen area or which only consider the uncertainty
in the posterior about the map [2], [14], [23], [26], [27], [29],
would choose action 1, since this action guides the robot to
the closest location from which information about unknown
terrain can be obtained. Active localization approaches, which
only estimate the uncertainty in the robots pose [11], would
choose either action 2 or 3 to re-localize the vehicle. Our
previous loop-closing approach [24] would select action 2 to
reduce the entropy in the posterior about potential trajectories.
However, the best action to reduce the uncertainty in the
posterior about maps and trajectories is action 3. Executing
this action yields new sensor information to make the correct
data association and close the loop accurately. Additionally,
it provides information about terrain so far unknown. As this
example shows, exploration approaches should consider both
sources of uncertainty to efficiently build accurate maps.

The contribution of this paper is an integrated technique that
combines simultaneous localization, mapping, and exploration.
In contrast to our previous work [24], in which a heuristic
was used to re-traverse loops, the approach presented in this
paper is entirely decision-theoretic. Based on the expected
uncertainty reduction in the posterior about the trajectory of
the robot as well as in the posterior about possible maps, we
select the action with the highest expected utility. Thereby, we
take into account the sensor information, which is expected
to be obtained along the path when carrying out an action,
as well as the cost introduced by this action. Real world
and simulation experiments show the effectiveness of our



technique.

This paper is organized as follows. After the discussion of
related work, we give a brief overview on Rao-Blackwellized
mapping in Section I1l. Section IV and V present our decision-
theoretic exploration technique and explain how to compute
the expected change in entropy. Section VI describes how
the set of possible actions is generated. Finally, Section VII
contains experimental results carried out on real robots as well
as in simulation.

Il. RELATED WORK

In the context of exploration, most of the techniques pre-
sented so far focus on generating motion commands that
minimize the time needed to cover the whole terrain [2], [14],
[26], [29]. Most of these techniques, however, assume that an
accurate position estimate is given during exploration. Whaite
and Ferrie [27] present an approach that uses the entropy to
measure the uncertainty in the geometric structure of objects
that are scanned with a laser range sensor. In contrast to the
work described here, they use a parametric representation of
the objects to be scanned and do not consider the uncertainty in
the pose of the sensor. Similar techniques have been applied
to mobile robots [23], but such approaches still assume the
correct knowledge about the pose of the vehicle. None of the
approaches mentioned above take the pose uncertainty into
account when selecting the next vantage point. However, there
are exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [5], [13], [15].

In the area of SLAM, the vast majority of papers have
focused on the aspect of state estimation as well as belief
representation and update [3], [4], [6], [8], [9], [10], [17],
[19], [25]. These techniques, however, are passive and only
process incoming sensor data without explicitly generating
control commands.

Recently new techniques have been proposed which actively
control the robot during SLAM. For example, Makarenko et
al. [16] as well as Bourgault et al. [1] extract landmarks out
of laser range scans and use an Extended Kalman Filter (EKF)
to solve the SLAM problem. They furthermore introduce
an utility function which trades-off the cost of exploring
new terrain with the potential reduction of uncertainty by
measuring at selected positions. A similar technique has been
applied by Sim et al. [22], who consider actions to guide
the robot back to a known place in order reduce the pose
uncertainty of the vehicle. These three techniques differ from
the approach presented in this paper in that they rely on the fact
that the environment contains landmarks that can be uniquely
determined during mapping. In contrast to this, our approach
makes no assumptions about distinguishable landmarks and
uses raw laser range scans to compute accurate occupancy
grid maps.

One disadvantage of feature-based exploration systems is
that the underlying environmental models typically do not
provide any means to distinguish between known an unknown
areas. Therefore, an additional map representation needs to be
maintained (like, e.g., an occupancy grid in [1], [16] or a visual

map in [22]) to efficiently guide the vehicle. Approaches which
do not maintain an additional model to identify unknown
areas typically apply strategies in which the robot follows
the contours of obstacles [28] or performs wall following
combined with random choices at decision points [7].

Duckett et al. [5] use relaxation to solve the SLAM prob-
lem in their exploration approach. They condense local grid
maps into graph nodes and select goal points based on that
graph structure, but do not consider the expected change of
uncertainty when choosing possible target locations.

There are planning techniques that can compute optimal
plans, e.g., by maintaining a belief over possible states of
the world and by computing the strategy that is optimal in
expectation with respect to that belief. One solution to this is
the Partially Observable Markov Decision Process, also known
as POMDP [12]. The major disadvantage of the POMDP is
its extensive computational cost and most solutions are not
applicable to scenarios with more than around one thousand
states [20]. Since we reason about a high-dimensional state
estimation problem, we have to be content with approximative
solutions that rely on strong assumptions. Essentially, our
approach can be regarded as an approximation of the POMDP
with a one step look-ahead.

Compared to the approaches discussed above, the novelty of
the work reported here is that our algorithm for acquiring grid
maps simultaneously considers the trajectory and map uncer-
tainty when selecting an appropriate action. We furthermore
approximate the information gathered by the robot when it
executes an action. Our approach also considers different types
of actions, namely so-called exploration actions, which guide
the robot to unknown areas and place re-visiting actions, which
allow the robot to reliably close loops and this way reduce its
pose uncertainty.

I1l. RAO-BLACKWELLIZED MAPPING

According to Murphy [19], the key idea of solving the
SLAM problem with a Rao-Blackwellized particle filter is
to estimate a posterior p(z1.; | 21.4,u0¢—1) about potential
trajectories xq.; of the robot, given its observations z;.; and
its odometry measurements wug.;_1. This distribution is then
used to compute a posterior over maps and trajectories:

P(xlzt,m \ Zl:t7u0:t71) =

P(m | Jfl:t,Zl:f,)p(Il:t | Zl:t;UO:t—l) (1)

This equation can be solved efficiently since the quantity
p(m | x1.4,21.) can be computed analytically once zi.
and z;.; are known. To estimate p(z1.+ | 21.t,uo.t—1) OVer
the potential trajectories, Rao-Blackwellized mapping uses a
particle filter in which an individual map is associated to
each sample. Each of those maps is constructed given the
observations zy.; and the trajectory x.; represented by the
corresponding particle. During resampling, the weight w of
each particle is proportional to the likelihood p(z; | m, ;) of
the most recent observation z; given the map m associated to
this particle and its pose x;.



IV. THE UNCERTAINTY OF A RAO-BLACKWELLIZED
PARTICLE FILTER FOR MAPPING

The goal of an exploration task is to minimize the uncer-
tainty in the posterior of the robot. The uncertainty can be
determined by the entropy H. The entropy of a posterior about
two random variables = and y holds

H(p(z,y))
- Em,y [_ IOg p(xa y)] (2)
= E,y[—logp(z) —logp(y | z))] (€))
E,y[—logp(x)] 4+ By y[—logp(y | 2)] 4
— Hp@)+ [ ~ple)logply ) dody. ©)

The integral in Eq. (5) can be transformed as follows:

/ —p(z,y)logp(y | x) dx dy
aj?y

- / —p(y | D)p(z)logp(y | z) drdy  (6)

[#@) [ vl | D1ospty ] @) dyar @)
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Eg. (5) and Eg. (8) can be combined to

H(p(x)) + / (@) H(p(y | x)) dz. (9)

x

H(p(z,y)) =

Based on Eq. (9), we can efficiently compute the entropy of
a Rao-Blackwellized particle filter for mapping. For a better
readability we use d; instead of zy.;, ug.s—1:

H(p(x14,m | dy)) = H(p(w1, | dy))
+ / p(ave | d)H(p(m | 20e,de)) drve (10)

Considering that our posterior is represented by a set of
weighted particles, we can transform the integral into a sum:

H(p(m,z14 | di)) =~ H(p(z1e|di))

#particles

+ Y Wl HEm | 2, d,) (11)
=1

Here wk] is the weight of the i-th particle at time step ¢.

Eq. (11) shows that according to the Rao-Blackwellization,
the entropy of the whole system can be divided into two
components. Whereas the first term represents the entropy of
the posterior about the trajectories of the robot, the second
term corresponds to the uncertainty about the map weighted
by the likelihood of the corresponding trajectory. Thus, to
minimize the robot’s overall uncertainty, one needs to reduce
the map uncertainty of the individual particles as well as the
trajectory uncertainty. In this section, we will describe how
we determine both terms in our approach.

Throughout this work, we use occupancy grid maps [18]
to model the environment. Note that our technique is not

restricted to this kind of representation, it only requires a way
to compute the uncertainty for the used map representation.
Using occupancy grids, the computation of the map entropy
is straightforward. According to the common independence
assumption about the cells of such a grid, the entropy of a
map m is the sum over the entropy values of all cells. Since
each grid cell ¢ is represented by a binary random variable the
entropy of m is computed as

H(m) =
— Y " p(e)logp(c) + (1 — p(e))log(1 — p(c)). (12)

cem

Note that the overall entropy calculated for a grid map is not
independent from the resolution of the grid. One potential
solution to this problem is to weight the entropy of each cell
with its size. This approach results in a more or less constant
entropy value when refining the grid resolution.

Unfortunately, it is more difficult to compute the uncertainty
H(p(x1.¢|d:)) of the posterior about the trajectory of the robot,
since each pose x; on the trajectory depends on the previous
locations z1.;_1. In the context of EKF-based approaches, the
pose uncertainty is often calculated by considering only the
last pose of the robot, which corresponds to the approximation
of H(p(x1.4|d;)) by H(p(z¢|d;)). It is also possible to average
over the uncertainty of the different poses along the path as
done by Roy et al. [21]:

t
1
H(p(wre | d)) = 5D Hplre |d)) (1)
t'=1
Instead one can approximate the posterior about the trajectory
by a high-dimensional (length of the trajectory times the
dimension of the state vector x;) Gaussian distribution. The
entropy of a n dimensional Gaussian G(u,>) is computed as

H(G(n,%)) = log((2me) ™/ |Z)), (14)

Since a finite number of particles is used, the RBPF represen-
tation often generates a sparse trajectory posterior for points
in time lying further back in the history. Unfortunately, this
can lead to a reduced rank of %, so that || becomes zero and
the entropy H(G(u, X)) approaches minus infinity.

Alternatively, one could consider the individual trajectories
represented by the samples as vectors in a high-dimensional
state space and compute the entropy of the posterior based
on a grid-based discretization. Since the particles typically are
extremely sparse, this quantity is in most cases equivalent to or
slightly smaller than the logarithm of the number of particles,
which is the upper bound for the entropy computed in this
way.

Instead we use an approach that is similar to the one
proposed by Roy et al. [21], who computed the entropy over
the trajectory posterior as the average entropy of the pose
posteriors over time (see Eq. (13)). To reduce the influence
of the dependency between the entropies when the robot gets
back to a particular place, we average over the places covered
by the vehicle. An example on how the trajectory entropy
evolves over time is depicted in the left image of Figure 2.
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Fig. 2. The trajectory entropy of a robot during a real world experiment.

The numbers in the right image illustrate the time step when the robot was
at the corresponding location.

V. THE EXPECTED INFORMATION GAIN

To evaluate an action, that guides the robot from its current
location to a goal location, we compute the expected infor-
mation gain, which is the expected change of entropy of our
Rao-Blackwellized particle filter when we execute that action.
In the last section, we described how to compute the entropy
of the robot’s world model, whereas in this section we want to
estimate the expected entropy after an action has been carried
out.

An action a; generated at time step ¢ is represented by a
sequence of relative movements a; = ;.71 which the robot
has to carry out starting from its current pose x.. During
the execution of a;, it is assumed that the robot obtains a
sequence of observations Z;1.7 at the positions &;,1.7. In the
following, all variables labeled with “** correspond to values
which occur during the execution of an action a,. For a better
readability we replace ;1.7 by & and 2,y 1.7 by 2.

To compute the information gain of an action, we have to
calculate the change of entropy caused by the integration of
%, a; into the robot’s world model

I(i’,at) =
H(p(m, x4 | dy)) —

Since in general we do not know which measurements the
robot will obtain along its path while executing action a;, we
have to integrate over all possible measurement sequences 2
to compute the expected information gain

/p(é | a,dy) - I(2,a) d2.

In the following, we will explain how to approximate p(Z |
at, d;) to reason about possible observation sequences 2. The
posterior p(Z | at,d;) can be transformed into

p(2 | at, dy)
= / p( |at7m7x1:t7dt)
m,o1.¢

H(p(m,xu,i‘ | dt7at72))' (15)

Ell(a:)] = (16)

cp(m, x4 | di) dmdzyy an
= / p(é | atamv:rl:hdt)
m,Ti:¢
'P(ﬁ:t | dt)p(m | $1:t7dt) dmdzy. (18)

Eg. (18) is obtained from Eq. (17) by using Eg. (1). If we again
assume that our posterior is represented by a set of particles

we can rewrite Eq. (18) as follows:

#particles ‘
pEland) ~ Y p(la,ml? ol dy)
=1
cwoplp(ml? |2 d)  (19)

Based on Eq. (19) we can compute 2 for a given action a;.
The factor p(ml | ffmdt) in Eq. (19) is assumed to be
computed analytically due to the assumptions made in the Rao-
Blackwellization (see Eg. (1)), namely that we can compute
the map ml analytically given the positions =, as well as
the data d;. We can also approximate the term p(Z | a¢,d;)
of that equation. This can be achieved by performing a ray-
casting operation in the map ml? of the i-th particle to
estimate possible observations Z. In other words, the (discrete)
posterior about possible observations obtained along the path
when executing the action a, can be computed by ray-casting
operations performed in the map of each particle weighted by
the likelihood of that particle.

In cases where the ray-casting operation reaches an un-
known cell in the map, we have to treat the beam differently.
Touching an unknown cell means that we cannot say anything
about the beam except that its length will be at least as long as
the distance between robot pose and the unknown cell (with
a high probability). Since such beams typically have a serious
influence on the map uncertainty, we computed statistics about
the average change of map entropy introduced by integrating
a beam which reaches an unknown cell in the map. Note
that in this situation, the change of entropy is approximative
proportional to the number of unknown cells covered by that
beam. In this way, the system also accounts for unknown areas
which are visible from a planned path to any other destination.

This approximation dramatically reduces the amount of
potential observations compared to the amount of possible
proximity measurements a laser range finder can generate. As
we figured out in several experiments, it seems to be a good
approximation for robots equipped with a laser range finder.

Despite this approximation, computing the expected in-
formation gain based on Eq. (16) is possible but requires
a large amount of computational resources. Therefore, we
furthermore approximate the posterior in this equation about
possible sensory data, by drawing a particle v from the
particle set, where each particle is drawn with a probability
proportional to its weight. We then use the map associated
to v to generate the measurements % along the path. This
reduces the computational complexity and allows us to run
the exploration system on a real robot. Under this simplifying
assumption we can rewrite the expected information gain in
Eq. (16) by

Ell(ay)] ~ 1(2(v),ar). (20)

The observation sequence Z(v) is generated by a ray-casting
operation in the map of ». Note that if more computational
resources are available this approximation can easily be im-
proved by drawing more (all) particles. This computation can
even be parallelized, since there is no interference between the



integration of measurement sequences into different copies of
the RBPF.

Now all necessary equations have been introduced to com-
pute the expected information gain E[I(a;)] for an action
a;. To summarize, E[I(a;)] describes the expected change
of entropy in the Rao-Blackwellized particle filter when ex-
ecuting a;. To reason about possible observations the robot
will obtain along the path, we draw a particle according to its
likelihood and perform a ray-casting operation in its map. The
expected measurements are then integrated into the filter and
the entropies before and after the integration are subtracted.

The complexity of the computation of E[I(a:)] depends
on two quantities. First, the filter needs to be copied to save
its current state. This introduces a linear complexity linear in
the size of the filter (which in turn depends on the number
of particles). The second quantity is the length I(a;) of the
planned path from the current pose of the robot to the desired
goal location, because the expected observations along the path
are taken into account. The integration of an observation is
linear in the number of particles V. This leads to an overall
complexity of O(I(a;) - N) to evaluate an action a;.

Besides the expected entropy reduction, there is a second
quantity the robot should consider when selecting an action.
This is the cost to reach the target location. The cost of an
action is computed based on the (convolved) occupancy grid
map of the most likely particle. Traversing a cell introduces a
cost proportional to its occupancy probability.

The expected utility F[U(a:)] of an action a; in our
exploration system is defined as

ElU(at)] = FE[(at)] — a- cost(at). (21)

Here « is a weighting factor which trades off the cost with
the entropy. This free parameter can be used to trigger the
exploration process by adapting the influence of the traveling
cost. In our work, we determined « experimentally.

After computing the expected utility for each action under
consideration, we select the action a; with the highest ex-
pected utility

ay = argmax E[U(a4)].

at

(22)

Every time the robot has to make the decision where to
go next, it uses Eq. (22) to determine the action a; with
the highest expected utility and executes it. As soon as no
reachable unknown areas are left, the robot seeks to minimize
its pose uncertainty, since the map uncertainty is minimal
in that situation. As soon as no action provides an expected
improvement in the pose uncertainty, the exploration task is
completed.

VI. COMPUTING THE SET OF ACTIONS

Above we left open how potential actions are generated.
One attempt might be to generate a vantage point for each
reachable grid cell in the map. Since we reason about ob-
servations received along the path, we need to consider all
possible trajectories to all reachable grid cells in the map. The

number of possible trajectories, however, is huge which makes
it intractable to evaluate all of them.

To find appropriate actions to guide a vehicle through the
environment, we consider two types of actions, so called
exploration actions and place re-visiting actions. Exploration
actions are designed to acquire information about unknown
terrain to reduce the map uncertainty. To generate exploration
actions, we apply the frontier approach introduced by Ya-
mauchi [29]. For each frontier between known and unknown
areas, we generate an action leading the robot from its current
pose along the shortest path to that frontier.

Compared to the actions generated from frontiers, the place
re-visiting actions do not focus on new terrain acquisition.
They guide the robot back to an already known location or
perform an active loop-closure. The goal of these actions is to
improve the localization of the vehicle, which means to reduce
its trajectory uncertainty. In our current implementation, place
re-visiting actions are generated based on the trajectory of the
robot. Such an action can simply turn the robot around and
move it back along its previously taken path. Additionally,
we also generate so called loop-closing actions. To determine
whether there exists a possibility to close a loop, we would
like to refer the reader to a previous work [24] in which we
describe how a mobile robot can robustly detect opportunities
to actively close a loop.

Given this classification, the actions 1 and 3 depicted in
Figure 1 are exploration actions, whereas action 2 is a place
re-visiting action performing an active loop-closure.

VII.

Our approach has been implemented and tested in real
world and simulation experiments. The experiments described
here are designed to illustrate the benefit of our exploration
technique which takes into account the map as well as the
trajectory uncertainty to evaluate possible actions.

Our current exploration system uses a highly optimized
variant of the original algorithm for mapping with Rao-
Blackwellized particle filters, which can handle trajectories
with a length of more than one mile. An efficient implemen-
tation is necessary due to the online requirement needed for
autonomous exploration. Further details can be found in [8].

EXPERIMENTS

A. Real World Application

The first experiment is a real world experiment carried out at
building 106 at the University of Freiburg using an ActivMedia
Pioneer 2 robot equipped with a SICK laser range finder. The
exploration run was fully autonomous. The robot started in the
lower left room (see Figure 3 (a)). The robot moved through
the neighboring room and entered the corridor. After reaching
its target location in the horizontal corridor (Figure 3 (b)),
the robot decided to move back to in the lower left room
to improve its pose estimate (Figure 3 (c)). The robot then
explored the neighboring room and afterward returned to the
corridor (Figure 3 (d)). It then approached the lower horizontal
corridor and moved around the loop (Figure 3 (e)). In the
end, the robot returned to the lower left room and finished the



Fig. 3. Six different stages of an autonomous exploration run on the second
floor of building 106 at the University of Freiburg. The map was acquired
fully autonomously by our integrated approach.

exploration task. As can be seen from this experiment, as soon
as the robot gets too uncertain about its pose, it performs place
re-visiting actions or chooses exploration actions which also
reduce its pose uncertainty due to the information gathered
along the path.

B. Decision Process

The next experiment is designed to show how the robot
chooses actions to reduce its pose uncertainty as well as
its map uncertainty. Figure 4 depicts parts of a simulated
exploration task performed in a map acquired at Sieg Hall,
University of Washington. Each row depicts a decision step
of the robot during autonomous exploration. In the first step,
shown in the first row, the robot has almost closed the loop. It
had to decide if it is better to move through the loop again or
to focus on exploring the horizontal corridor. In this situation,
the robot moved to target point 1 and actively closed the loop,
since this provided the highest expected utility (see right plot
in the first row of Figure 4). Target location 1 had the highest
expected utility because the robot expected a chance to re-
localize itself by closing the loop and to observe parts of the
unknown areas close to the planned trajectory. Therefore, this
actions provided an expected reduction of map and trajectory
uncertainty. In the second decision, the robot focused on
acquiring new terrain and approached the horizontal corridor,
since target location 6 had the highest expected utility. The
same happened in the third decision step, shown in the last row
of this figure. Moving back through the known areas of the
loop provided less expected entropy reduction and therefore

the robot continued exploring the horizontal corridor (target
location 5).

Figure 5 shows the map after reaching target location 5 from
the last decision step. To visualize the change of entropy over
time, the right plot shows the evolution of the map as well
as the pose uncertainty. The labels in the left image show
the time steps in which the robot was at the corresponding
location. As can be seen, the entropy stayed more or less
constant in the beginning, since the map uncertainty decreased,
whereas the pose uncertainty increased. After closing the loop
at around time step 45, the pose uncertainty dropped so that the
overall uncertainty was also reduced. Moving through known
areas between time step 50 and 90 did not provide a lot of
new information and did not change the entropy that much.
As soon as the robot entered especially the wide part of the
horizontal corridor, the overall uncertainty dropped again due
to the serious reduction of map uncertainty compared to the
moderate increase of pose uncertainty.

C. Comparison to Previous Approaches

The third experiment addresses the decision problem of the
motivating example presented in the introduction of this paper.
It shows how our approach chooses the actions which lead to
the highest uncertainty reduction in the posterior about poses
and maps compared to previous techniques. As can be seen in
Figure 7, the robot has almost closed the loop. Suppose the
robot has a high pose uncertainty and considers three potential
actions to approach different target locations (see left image of
Figure 7). Action 1 is a new terrain acquisition action, whereas
action 2 performs a loop closure. Action 3 leads the robot to
unknown terrain while simultaneously closing the loop. Since
action 3 combines a loop-closure with new terrain acquisition,
it provides the highest expected utility (see right image of
Figure 7). Therefore, our approach chooses this target point.
This is an advantage compared to other approaches which
seek to actively close loops in an heuristic way [24]. Such a
technique would choose action 2 to reduce the pose uncertainty
of the vehicle. Classical exploration approaches, which only
take into account the map uncertainty or guide the robot to the
closest unknown area [2], [14], [23], [26], [27], [29] would
select action 1. Even an active localization technique which
seeks to reduce the pose uncertainty of the vehicle [11] would
choose either action 2 or 3 (with a 50% chance each).

D. Corridor Exploration

The last experiment was performed at building 79 at the
University of Freiburg and is depicted in Figure 6. The envi-
ronment has a long corridor and contains no loop. According
to a very short sensor range used in this experiment, it was hard
for the robot keep track of its own position. As can be seen,
our approach leads to an interesting intuitive behavior. Due
to the large uncertainty in the pose of the vehicle, the robot
chooses several times actions which guide it back to a well-
known place (which is the starting location in this experiment)
to reduce its pose uncertainty.
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Fig. 4. Three points in time in which the robot had to decide where to move next. The left images depict the trajectory of the robot up the corresponding
point in time. The middle images illustrate the best maps and possible actions to be evaluated. The plots on the right-hand side show the expected utility of
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Fig. 5. This figure illustrates the evolution of the entropy during the experiment shown in Figure 4. The marker in the left image correspond to the different
points in time when the robot was at the corresponding location. The right plot depicts the entropy during the data acquisition phase. It depicts the map
entropy, the pose uncertainty, and the overall (combined) entropy over time.
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Fig. 6. The exploration of a long corridor. Due to the high pose uncertainty, the exploration system chooses actions which guide the robot on a path close
to the starting location in order to re-localize.
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Fig. 7. Deciding where to go next. Shown in the left image are three potential
actions and the corresponding expected utilities in the right image.

VI1Il. CONCLUSION

In this paper, we presented an integrated approach which
simultaneously addresses mapping, localization, and explo-
ration. We use a decision-theoretic framework for mobile robot
exploration in combination with a Rao-Blackwellized particle
filter to build accurate grid maps. Our approach considers
different types of actions, namely exploration actions forcing
terrain acquisition as well as place re-visiting and active loop-
closing actions that reduce the robot’s pose uncertainty. By
estimating the expected entropy of the particle filter after
carrying out an action, we are able to determine the action
which promises the highest expected uncertainty reduction.
Thereby, we take potential measurements gathered along the
path into account. The approach has been implemented and
tested on real robots and in simulation. As a result, we obtain
a robust decision-theoretic exploration algorithm that produces
highly accurate grid maps. Practical experiments showed the
effectiveness of our action selection technique in comparison
to previous approaches.
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