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Abstract— When interacting with a new environment, a robot
can improve its online performance by efficiently exploring
the effects of its actions. The efficiency of exploration can be
expanded significantly by modeling and using latent structure to
generalize experiences. We provide a theoretical development of
the problem of exploration with latent structure, analyze several
algorithms and prove matching lower bounds. We demonstrate
our algorithmic ideas on a simple robot car repeatedly traversing
a path with two different surface properties.

I. I NTRODUCTION

In many successful applications of mobile robotics such as
home vacuuming, scientific planetary exploration, and map-
ping, a robot has the opportunity to repeatedly visit a set of
locations and thereby improve the efficacy of its actions in
these locations. Learning effective behavior requires careful
balancing of exploration and exploitation (Thrun 1992)—the
decision maker needs to try new actions to evaluate their
effectiveness, but at the same time, take advantage of what
it knows to perform its task adequately.

There has been substantial progress over the past few years
on developing provably efficient algorithms for balancing
exploration and exploitation in the context of several formal
mathematical models. Two notable concrete examples of such
formal problems are bandit problems (Berry and Fristedt 1985)
and learning in Markov decision processes (MDPs) (Sutton
and Barto 1998). We summarize in Section II a notion of effi-
cient exploration and describe what is known about algorithms
for achieving efficiency in these two models.

A significant difficulty in applying the known algorithms
to problems in robotics or other real-life instantiations is
that they fail to exploit commonality of structure within the
domain, which is absolutely critical to generalization and rapid
learning. As a motivating example, consider a robot learning to
traverse an office hallway looking for an unlocked door. Each
location contains either a door or a wall. A sensible robot will
not check to see if every segment of wall is “unlocked”—
once it can distinguish walls and doors, it only needs to
check the doors. Said another way, the learner can establish
an unobserved, or latent, variable that indicates whether a
location includes a door and this additional information can
constrain exploration and model building resulting in faster
learning. Existing efficient exploration algorithms do not have
the capability of generalizing their experience in this way.

In Section III, we present a formal model that can serve
as a first step to understanding the problem of efficient

exploration with latent structure. We also provide an algorithm
that is provably efficient in the context of the formal model.
Section IV details our implementation of several exploration
algorithms in a simple mobile robot domain to allow for direct
comparison and to illustrate feasibility.

II. PROBABLY APPROXIMATELY OPTIMAL EXPLORATION

In this section, we describe two well-studied formal models
of exploration, define a mathematical concept of computational
efficiency of learning in these models, and summarize known
results of exploration algorithms for the models.

A. Bandit problems

Bandit problems (Berry and Fristedt 1985) can be defined as
follows. A learner is faced withk actions, or “arms”. On each
of a sequence of discrete time stepst = 1, . . . , the learner must
choose an action to execute,it. After executing its action, the
learner observes a payoffrt in the range0 to B. Payoffs are
drawn from a stationary distribution that is a function of the
selected action whereµi is the expected payoff from action
i. The learner attempts to select actions to maximize its total
payoff.

Although algorithms have been defined that can achieve op-
timal payoff in some types of bandit problems (Gittins 1989),
Fong (1995) advocated a weaker objective for learning. In
probably approximately optimal(PAO) learning, the learner’s
behavior is parameterized by two values,ε > 0 and δ > 0.
The learner must identify an action̂ı that is probably (with
probability at least1−δ) approximatelyoptimal (µı̂ ≥ µ∗− ε,
whereµ∗ = maxi µi). For an algorithm for bandit problems
to be consideredefficient, the PAO property must be achieved
after m timesteps, wherem is polynomial ink, B, 1/ε and
1/δ.

Fong (1995) showed that several algorithms are efficient.
The simplest, which he called “na¨ıve”, computes a number
m, polynomial in the required quantities (Section III-C), then
executes each actionm/k times. Them trials are used to
compute the maximum likelihood estimate of eachµi (just the
empirical average of the payoffs for actioni) and the action
with the highest estimate is PAO. Even-Daret al. (2002) also
presented an analysis for na¨ıve, as well as for an improvement
they called “median elimination”.

The interval estimation (IE) algorithm (Kaelbling 1993) uses
the available experience to putβ% confidence intervals on the
estimated payoffs of each action. It then chooses the action



with the highest upper confidence, resulting in the choice of
either a high-payoff action, or one that results in a substantial
reduction of the size of a confidence interval. Fong (1995)
showed how to computeβ to create an efficient algorithm.

In greedy exploration, the empirical average payoffs for
each action are computed. The action with the highest estimate
is chosen. This approach isnot PAO because an unlucky trial
for a high-payoff action can result in it getting an artificially
low estimate and then forever be starved of experience in
favor of a lower payoff choice. A simple variation,ε-greedy
exploration, mitigates the likelihood of this premature conver-
gence by selecting the greedy action with probability1−ε and
choosing a uniform random action with the remaining prob-
ability. By settingε appropriately (Strehl and Littman 2004),
an ε-greedy learner can sample actions often enough to avoid
premature convergence and achieve efficient learning.

Of the various algorithms we have evaluated in detail, IE
seems best at identifying high payoff actions quickly while
avoiding premature convergence, while na¨ıve is the simplest
to analyze. In this paper, we build on the analysis of na¨ıve,
although we believe more effective exploration techniques will
prove superior in future work.

B. Markov decision processes

In a Markov decision process (MDP) (Puterman 1994), a
learner again chooses a series of actions and receives a series
of payoffs. In an MDP, however, the payoff process has a
notion of state that influences the expected payoff of the
actions. In particular, before each action choice, the learner
is informed of its current state from a set ofl possible states.
The payoff at timet is sampled from a stationary distribution
that is a function of the state at timet and the learner’s choice
of action at timet.

The exploration problem in MDPs, studied in the
reinforcement-learning literature (Sutton and Barto 1998), is
complicated by the fact that the state evolves according to
a stationary transition function that is also a function of
the most recent state and action. This means that the most
straightforward extension of na¨ıve—try each action in each
statem times—is unimplementable because the learner has
only limited ability to reach any specific state. Furthermore,
extensions of algorithms likeε-greedy run into problems
as well—randomly chosen actions can result in inopportune
transitions to low-payoff states.

Fiechter (1994) described a set of PAO conditions for MDPs
and showed that they reduce to the same concept. E3 (Kearns
and Singh 2002) (for “explicit explore exploit”) was the first
algorithm to achieve efficient learning in MDPs. It keeps track
of the number of times each action was executed in each state
to determine when the estimates associated with the state are
sufficiently accurate. The resulting empirical model is used to
calculate the expected payoff for behaving greedily and the
expected cost in time for reaching an underexplored part of
the state space. The algorithm chooses its behavior based on
a comparison of these two strategies.

RMAX (Brafman and Tennenholtz 2002) is a simpler algo-
rithm that combines exploration and exploitation into a single
decision by assigning underexplored states an artificially high
payoff value in the empirical model. Strehl and Littman (2004)
point out that RMAX for MDPs is analogous to na¨ıve for
bandit problems in that it distinguishes underexplored actions
from sufficiently explored actions on the basis of the number
of times they have been executed and always prefers under-
explored actions when they exist.

Model-based interval estimation (MBIE) (Strehl and
Littman 2004) is the analog of IE for MDPs. It creates high-
confidence payoff bounds on rewards based on interaction
experience and chooses actions that correspond to the upper
confidence interval. Several other authors have described algo-
rithms based on similar ideas (Deardenet al. 1999; Even-Dar
et al. 2003; Wiering and Schmidhuber 1998), but only MBIE
has been proven efficient.

III. E FFICIENT EXPLORATION WITH LATENT STRUCTURE

Provably efficient exploration algorithms for bandit prob-
lems and MDPs have been implemented and several of these
algorithms result in practical learning rates in small problems.
As mentioned in the introduction, scaling to real-life problems
requires understanding how to retain theoretical assurances
while taking advantage of the structure these problems offer
for generalization.

In this section, we introduce a simple formal model that
represents a small step in this direction. In particular, we
propose a model that includes latent structure and provide an
algorithm that exploits this structure to generalize and learn
more efficiently than is possible by an algorithm that does
not generalize. The result is strong in the sense that we can
prove lower bounds on the experience needed to achieve PAO
learning as well as algorithms that meet these bounds (to
within constant factors).

Before introducing the model, we briefly mention another
attempt at using structure to improve exploration. In a dy-
namic Bayes network representation of an MDP, each state
is described by a set of features and, for each action, the
conditional independence of features is explicitly represented.
Factored E3 (Kearns and Koller 1999) learns efficiently by
modeling payoffs and transitions in terms of these conditional
independence relations. Note that the algorithm requires that
the conditional independence relations be known in advance.
Thus, while factored E3 demonstrates that structure can be
leveraged to speed up exploration, the structure is provided
explicitly as part of the problem description and is notlatent,
as is the case in most naturally occurring problems. Learning
the structureand exploiting it is the goal of this paper.

The idea of modeling latent structure in a learning problem
was also explored by Sherstov and Stone (2005). The learning
setting in that work was an MDP, a more general model than
considered here. Their goal was not to speed up learning
on a single domain but to facilitate the transfer of learning
to similar domains. Our use of abstraction across states is



Fig. 1. A schematic view of the robotic testbed used in our experiments.

similar to techniques studied in hierarchical reinforcement
learning (Barto and Mahadevan 2003).

A. A simple learning problem with latent structure

To study problems with latent structure, we created a
physical testbed. It consists of a simple robot car that can
move forward at any of seven different power settings. On the
course depicted in Figure 1, the car moves from Location 1 to
Location 17, recording its speed at each location using dead
reckoning. Due to the gear structure of the robot, momentum
has no influence on velocity across locations. Since the car’s
sensor is limited to its speed, its objective is to retain a constant
goal speedg, with per-step reward decreasing with the square
of the deviation from this speed. The ideal policy for the robot
is to choose a power setting at each location that maximizes
its reward.

Notice that each of the locations on the course fall into
one of two classes, either flat or sloped. An algorithm that
accounts for this latent structure will be able to use its data
to generalize its behavior well and thereby solve the learning
task more efficiently than if this structure were neglected.

More formally, our example problem lies between bandit
problems and MDPs in complexity. The environment can be
expressed as a set ofl locations (states), numbered1 through
l. The locations are arranged in a repeating loop; after each
action, the process transitions from its current locationj to the
next location in the loop(j+1) mod l, regardless of the action
chosen. Like MDPs, the combination of the action and location
result in a probability distribution over outcomes (speed, on
our robot), and outcomes are associated with rewards. In this
paper, we examine outcome distributions over a finite setW
of a := |W | possibilities. A parallel theory can be developed
for continuous outcome distributions such as Gaussians. Also
similar to the MDP case, the learner is informed of the identity
of the current location before each action decision.

The latent structure in this problem can be described as
follows. There is a set ofn << l classes that mediate between
the locations and the outcome distributions. That is, each
location is assigned a class and each class is associated with a
stationary outcome distribution. We use the notationAj to be
the class assignment for locationj andµc

i to be the expected
payoff for actioni in classc (averaged over all outcomes).
Thus, selecting actioni in location j results in a payoff of
µ

Aj

i , on average.

We restrict the payoffs to the range0 to B, which we
take as a constant, and translate outcomes to rewards using
the deterministic functionR(w). We write ρc

i (w) to be the
probability of outcomew ∈ W resulting from the selection of
actioni in a location of classc. Thus,µc

i =
∑

w R(w)×ρc
i (w).

We make an additionalseparability assumption. We define
the L1 distance between outcome distributions for two classes
c1 andc2 under the same actioni to be

||ρc1
i − ρc2

i ||1 =
∑
w

|ρc1
i (w) − ρc2

i (w)|.

The separability assumption states that there exists a constant
∆ > 0 such that, for all actionsi, and classesc1, c2 (c1 6= c2),
||ρc1

i −ρc2
i ||1 > ∆. That is, outcome distributions for different

classes are well separated.
The two critical pieces of missing information in the model

just described are the class–location assignmentsAj and the
outcome distributionsρc

i(w). Although we are most interested
in a learning algorithm for the case in which both of these
pieces of information are missing, the next sections examine
the learning problems resulting from various simplifications.
The relationships between these problems help put the full
learning problem in its proper context.

B. Known assignment, known outcomes

When bothA and ρ are known, the optimal choice of
action is simply to computeµc

i =
∑

w R(w)×ρc
i (w) for each

action i in each classc. Then, when occupying locationj,
choosei∗ = argmaxi µ

Aj

i , that is, the actioni∗ that has the
highest expected reward for the class locationj belongs to.
No learning is needed and the optimization, which we refer
to as “known-known” (known assignment, known outcomes),
is quite simple.

C. Known assignment, unknown outcomes

Next, let’s consider the problem that results from the assign-
ment functionA being known, but the outcome distributionsρ
remaining unknown. The learner always knows the class of the
current location, but it initially does not know the appropriate
action to take in the class. The classes don’t provide any
information about one another, so the learner actually faces
n separate bandit problems, one for each class, which we can
solve independently.

The na¨ıve method can be applied to this problem by treating
each class as a separate bandit problem. We call this algorithm
“known-naı̈ve”, since the assignments are known and the
unknown outcomes are learned using na¨ıve. By the analysis
of Fong (1995), it suffices to try each actioni in a fixed class
c O( 1

ε2 ln
(

nk
δ

)
) times. After this exploration phase, known-

naı̈ve estimates the average rewardµ̂c
i by the sample mean for

each actioni, and chooses the one that appears to achieve the
greatest reward,i∗ = argmaxki=1 µ̂c

i . Fong (1995) has shown
thati∗ will be anε-optimal arm with probability at least1− δ

n .
The algorithm then proceeds by sampling each action in each
class as described.

For simplicity of presentation, we use the notationÔ(·) to
representO(·) where ε, δ, B, and a are taken as constants.



We also definêΩ(·) similarly. These definitions emphasize the
dependence of the bounds on the number of locationsl, classes
n, and actionsk. Known-na¨ıve has a total learning complexity
Ô(nk ln(nk)) as it samples each action in locations represent-
ing each class. It is guaranteed to find anε-optimal action for
each class (thus for each location) with probability at least
1 − δ, which follows from the union bound over all classes
and actions.

Section VI shows that̂Ω(nk ln(n)) samples are needed to
achieve the PAO condition for this problem. Thus, known-
naı̈ve includes an unnecessary factor ofln(k) in the bound.
Even-Daret al. (2002) provides an algorithm called “median
elimination” that removes the dependence onln(k). Thus, the
“known-median” algorithm matches the lower bound.

In our robot task we used known-na¨ıve because it’s simpler
and since the number of actions is small making the removal
of k from the logarithmic factor unnecessary.

D. Unknown assignment, known outcomes

This case represents the inverse of the learning problem
from the previous section. We takeρ to be known andA to be
unknown. That is, although we know how each class behaves,
we don’t know which locations correspond to which classes.

Note that after selecting actioni m times in classc, the
learner can estimate a vector of lengtha, ρ̂c

i , where ρ̂c
i (w)

is the number of times we have taken actioni in class c
and observed outcomew, divided bym. From the results of
Weissmanet al. (2003), we have that

Pr(||ρc
i − ρ̂c

i ||1 ≥ ε) ≤ 2ae
−mε2

2 . (1)

Setting Equation 1 to be less thanδ yields

m ≥
(

2
ε2

) [
a ln(2) + ln

(
1
δ

)]
. (2)

Because of the separability assumption, to determine the un-
known assignment, we only need to sample, at each location,
from one action.1 Since the outcome distributionsρ are known
in this case, accurately estimating the outcome distribution for
an action reveals its class.

We can choose the action arbitrarily, and one reasonable
choice is the action that maximizes expected return, given
some prior over the set of classes. If we gather enough samples
at any given position to assure that the difference between the
empirical outcome distribution and the true outcome distribu-
tion is less than∆

2 , then by our separability assumption, we
can assign a position to the class whose distribution is closest
in L1 distance to the empirical distribution, which is typically
called a nearest neighbor approach. We call this algorithm
“NN-known” as it uses the nearest-neighbor approach to
identify the class of each location and then uses its knowledge
of the distributions to select actions.

1Weaker assumptions can also be made that still lead to efficient algorithms.
However, completely eliminating the separability assumption makes it no
easier, in aÔ(·) sense, to solve the problem than if there were no structure
at all.

If we set ε := ∆
2 and substituteδ

l for δ in Equation 2,
we can compute the number of samples for each location to
ensure that with probability at least1−δ we will determine the
correct mapping from location to class. Once this is complete,
we can immediately implement the optimal policy, since for
each class we can compute the action with highest expected
reward.

Using the above analysis, we discover that our goal can
be accomplished usinĝO(l ln l) samples. Note that the depen-
dence on the number of actionsk disappears because only one
action needs to be sampled to reliably identify the class. Once
again, Section VI argues that this result matches the lower
bound for this problem.

E. Unknown assignment, unknown outcomes

If both assignments and outcome distributions are unknown,
one approach that can be taken is to treat each location as
an independent bandit problem. This “unmapped-na¨ıve” algo-
rithm, which ignores the class assignments entirely, achieves
a bound ofÔ(lk ln(lk)). The analogous “unmapped-median”
algorithm usesÔ(lk ln(l)) samples and achieves the lower
bound for the structure-free case.

An approach that exploits the latent structure of the problem
should be able to achieve a smaller bound. The problem
in which both assignments and outcome distributions are
unknown is at least as hard as the problem considered in Sec-
tions III-C and III-D. This suggests that we would be fortunate
if we could learn a PAO policy usinĝO(l ln l +nk ln n) steps
of experience—the maximum of the lower bounds derived for
the two previous problems. In fact, we can achieve this bound,
as described below. Sincen << l (far fewer classes than
locations), this algorithm is exploiting the latent structure in a
manner that improves learning time.

A direct approach to the problem is to learn the unknown
assignments and the unknown outcome distributions in two
separate phases. In the first phase, locations are grouped by
the similarity of their outcome distributions, building on the in-
sights from Section III-D. Since the true outcome distributions
are unknown, we cannot use the nearest-neighbor approach,
and instead must cluster based only on the relative distances
of the empirical distributions. Once an assignment of locations
to class is complete, we can use the known-median approach
from Section III-C to learn the outcome distributions with
sufficient accuracy to make near-optimal decisions.

First, let’s consider the clustering step. For any fixed action,
we seek to build an estimate of its outcome distribution for
each location. If alll estimates are accurate to within an L1
distance ofε, we know that the distributions from two locations
that are part of the same class cannot be more than an L1
distance of2ε apart (by the triangle inequality). On the other
hand, two locations that are part of separate classes will have
estimates that are at most∆−2ε apart in L1 distance, since the
underlying distributions must be∆ apart in L1 distance by the
separability assumption. We want to use a value ofε so that
we’ll be able to distinguish locations that belong to the same
class from those that do not:∆−2ε > 2ε, or ε < ∆/4. Using



Equation 1 and the union bound, we find thatÔ(l ln l) steps
of experience will suffice to get accurate estimates with high
probability. Specifically, we require that the failure probability,
the chance that some empirical distribution differs in L1
distance from its true distribution by more thanε, is less than
δ
2 .

After these distributions have been estimated, they can be
used to create a distance matrix and clustered by, for example,
single-link hierarchical clustering. If the clustering is stopped
when distances exceed∆/2 or when n clusters have been
formed, the resulting clustering is correct with probability at
least 1 − δ

2 . Thus, each location is assigned to “the right”
class—one that matches the other locations that are in the
same true class.

Next, we can directly apply the known-median approach,
given that we have correctly reconstructed the assignment of
classes to locations. Again, onlŷO(nk ln n) steps of experi-
ence are necessary (Section III-C), so combining the learning
from the two phases, a total of̂O(l ln l + nk ln n) learning
samples are needed, matching our desired result. Again, we
require the failure probability be less thanδ2 . Thus, using a
union bound, the probability of a failure in either one of the
two phases is less thanδ. Hence, for each location, anε-
optimal policy will be found with probability at least1 − δ,
and the sample complexity will not exceed a polynomial in
the relevant quantities.

It should be noted that the constants absorbed in theÔ(·)
notation are larger for this combined approach then for solving
the two problems of Sections III-C and III-D independently.
This is due to the fact that, in the first step, we require each
empirical distribution to be within∆4 of the true distribution,
in L1 distance, rather than∆2 , as in the case where the agent is
aware of the true distributions. It is also due to the fact that we
must divideδ by two in each of two stages of the algorithm.
However, ignoring constants, the result is the same. In our
experiments, we call this algorithm, “cluster-median”, again
noting that, do to its simplicity, we evaluated “cluster-na¨ıve”
(with single-link clustering) in our experiments.

IV. EXPLORATION EXPERIMENTS

This section presents a physical implementation and evalu-
ation of the algorithms and testbed previously described.

A. Algorithms Tested

We experimented with different algorithms for solving each
of the four classes of problems outlined in Section III. Note
that while it is possible to use the separability assumption
to compute near-optimal sample sizes, in our experiments we
chose sample sizes empirically.

In the “known assignment, known outcomes” case (Sec-
tion III-B), 14 traversals were performed “offline” to estimate
model parameters. Locations were labeled with classes by
hand based on their slope, and these class labels were verified
against the known outcomes.

Next, for the “known assignment, unknown outcomes” case
(Section III-C), location classes were again labeled by hand

and then fed to the known-na¨ıve algorithm to record the
outcomes and decide on a policy. Estimates for the outcome
distributions were compiled using a single traversal, which is
sufficiently long to sample each power level in each class and
produced near-optimal behavior.

For the “unknown assignment, known outcomes” case (Sec-
tion III-D), we evaluated two different algorithms. A strategy
we call “POMDP-known” used knowledge of the outcome
distributions to build a Partially Observable Markov Decision
Process (POMDP) for choosing power levels at a location
given a 50-50 prior over the two classes. The procedure
employed Tony Cassandra’s implementation of incremental
pruning (Cassandraet al. 1997) to calculate a policy for
choosing actions for each timestep to maximize the overall
expected reward over a large finite horizon. Although this
algorithm can require exponential time, it ran quickly and
produced a simple policy consisting of an initial intermediate
power level followed by a high or low power depending on
the speed observed the first time the location was visited.

The second algorithm we applied in this case was the
NN-known procedure. The true distributions of outcomes
were mined from the same data used to solve the “known
assignments, known outcomes” case. Three traversals were
then performed at a single power level to record empirical
outcome distributions. NN-known was then used to compare
the two distributions and map the locations associated with
each outcome triple to the appropriate class. Having discerned
the classes, the robot executed the optimal action, as computed
from the data given to it.

Finally, we implemented three algorithms for the “unknown
assignment, unknown outcomes” case (Section III-E). The
first, unmapped-na¨ıve, simply ignored the latent structure
in the problem and ran each action in each location once,
thereafter choosing the action that had the best performance
for each location. After one traversal per action, the resulting
estimates were good enough to achieve apparently optimal
performance.

The second algorithm we considered used Expectation-
Maximization (EM) (Dempsteret al. 1977) as the basis for
classifying locations. While there are some variations of EM
for which formal guarantees have been proven, we used EM
in this study as anad hoc method for estimating latent
structure. Our EM implementation classified each of the 17
locations into one of the two classes given three samples of the
outcome distributions for each location using a constant action
throughout the trials. At this point, learning proceeded as in the
“known assignment, unknown outcomes” setting (Section III-
C), resulting in the algorithm “EM-naive”.

Finally, we evaluated the performance of the clustering
algorithm, cluster-na¨ıve. Data was collected in a series of three
traversals, just as in the EM implementation.

B. Experimental setup

To compare the algorithms in a physical setting, we built a
robot to traverse our two-slope test course. The robot was con-
structed using parts from a Lego Mindstorm kit, specifically



Fig. 2. The robotic vehicle used in our experiments.

an RCX 2.0 block, one rotation sensor, one motor with seven
power levels, four wheels, and various connecting pieces. The
course was made up of three two-by-two boards supported by
plywood in the pattern shown in Figure 1. The robot’s software
was built in the the leJOS programming language. The robot
itself is shown in Figure 2.

Each algorithm was run for two epochs, consisting of 12
traversals each. The interval between locations was defined as
100 rotation clicks as registered by the robot’s rotation sensor.
The reward for a traversal was calculated using the following
formula:

1000 −
∑

l

(round(
tl − tl−1

100
) − tg)2 (3)

whereround and division by 100 are used to discretize the
outcomes,tg is the goal time elapsed between points as derived
from the goal speedg, tl is the time we reach locationl and
the subtraction from 1000 is used to map cost to reward.

Since the RCX 2.0 does not possess adequate memory
to perform the calculations needed for the aforementioned
algorithms, the robot simply stored the observed speeds during
each traversal. At the end of the course, the collected data
was transmitted to a laptop, which processed the data and
calculated the power levels to use for each location in the
next traversal as per the algorithm being evaluated.

Evaluating algorithms in the real world invites a host of
noise factors that one would not consider in a pure simulation.
One such factor in our implementation was the substantial
effect battery power had on the robot’s performance. As
the batteries drained, the effect of the power commands on
the movement of the robot changed. Although the learning
algorithms were able to adapt to different battery powers, the
large variability of the action effects threatened to make com-
parisons unreasonable. To compensate, brand new disposable
batteries were used for each algorithm studied. Thereafter,
any decline in battery power appeared consistent across all
algorithms.
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C. Results

Figure 3 and Figure 4 show the total reward each algorithm
accrued in each traversal of the first epoch. The graphs for
the second epoch were omitted because they did not differ
significantly from Epoch 1. Each algorithm learns for some
number of traversals, then identifies a final policy that it uses
for the remainder of the epoch. The small variations noticeable
after learning are due only to noise.

As expected, the known-known strategy performed well in
every traversal since no learning was required. Along the
same lines, all partial-knowledge algorithms learned a good
policy sooner than any of the “unknown assignment, unknown
outcomes” algorithms. When comparing the three“unknown
assignment, unknown outcome” algorithms, the EM-na¨ıve and
cluster-na¨ıve algorithms decided on a policy in almost half the
time of the unmapped-na¨ıve algorithm. The convergence times
for these three algorithms is displayed with greater granularity
in Figure 6. Notice that the learned policies have roughly
the same values, except POMDP-known. In fact, the EM-
naı̈ve and cluster-na¨ıve implementations converged to the exact
same policies. The poor performance of POMDP-known is
attributable to the model of the environment it built internally,
which was inconsistent with the models used by the remaining
algorithms. Figure 5 compares the average reward for all
resulting behaviors.

Surprisingly, the known-known strategy does not perform
the best. This is because the assumption that only two classes
exist in the world (uphill and flat) is not entirely true. In
actuality, each position was slightly different, and certain
locations were really transitions between the flat and sloped
surfaces and needed to be handled differently. So, even though
the algorithms that exploit the latent structure quickly discover
which positions belong to which classes, they fail to achieve
maximum reward. The unmapped-na¨ıve approach was able to
represent and exploit thedifferencesbetween the locations,
resulting in slower learning but larger reward after learning.

V. CONCLUSION

Learning in real-life scenarios is very difficult because of
the complexity of natural environments. Successful learners
must be prepared to extract and exploit latent structure in their
environments to learn efficiently. To study this issue, we have
presented a particular learning scenario with latent structure.
We showed that this structure can be exploited to improve the
rate of learning and demonstrated this fact with (i) algorithms
with improved bounds, (ii) matching lower bounds that show
the fundamental complexity of the problem, and (iii) empirical
demonstration on an implemented robot with improved rates
of learning.

A specific technical contribution of the paper is our two-
phase procedure for solving the learning problem we posed. It
makes productive use of unsupervised clustering to reveal the
latent structure, then exploits the structure to learn efficiently.
We showed that the cluster-median version of this approach
matches the lower bound for the problem, showing that it
exploits the latent structure to the maximum degree possible
for this problem class.

Natural extensions of our work include learning with an
unknown number of classes, developing algorithms for related
problems like learning the conditional independences in the
dynamic Bayes network setting or learning an abstract model
of an MDP, combining the two learning phases so that the
problem as a whole may be explored efficiently and jointly,
and weakening the separability assumption so that it need not
hold for all actions.

VI. A PPENDIX: ALGORITHM ANALYSIS

The first problem we consider is solvingn independent
k-action bandit problems. Unfortunately,n copies of a PAO
bandit algorithm that fails with probabilityδ will fail with
probability1 − (1 − δ)n, making it no longer PAO.

Even-Dar et al. (2002) showed that in the PAO model,
given ε, δ, any algorithm that finds anε-optimal policy with
probability at least1 − δ will require at leastO( k

ε2 ln
(

1
δ

)
)

samples. Thus, any PAO algorithm requires at leastC ln
(

1
δ

)
samples for some constantC, where we have takenk, the
number of actions, andε as parameters folded intoC, since
they have no relevance on our analysis.

Now, suppose we haven separate bandit sub-problems to
solve. Each sub-problemi has an associated failure probability
δi. The goal of the overall algorithm is to find anε-optimal
solution for each of the subproblems and then bound the event
that any of the subproblems fails byδ. Thus, it will require at
least

C

n∑
i=1

ln
(

1
δi

)
(4)

samples. We will bound Equation 4 from below, under the
constraint that the probability that some sub-problem fails is
equal to the overall failure bound:

δ = 1 −
n∏

i=1

(1 − δi). (5)



First, we sketch an argument that Equation 4 is minimized
with all δi values equal to

δ1 = 1 − (1 − δ)(1/n).

This choice is justified by the fact that, ifδi and δj differ,
setting them equal to1 − √

(1 − δi)(1 − δj) satisfies Equa-
tion 5 and reduces the value of Equation 4. The latter follows
from a close examination of the contribution ofδi and δj to
the function and showing that the minimum value is achieved
whenδi = δj .

We can then show that the definition ofδi leads to the
desired bound. Define

S1 = n · ln
(

1
1 − (1 − δ)(1/n)

)

and
S2 = n · ln

(n

δ

)
.

S1 is the bound that comes from Equation 4.S2 is the desired
lower bound. With several applications of l’Hospital’s rule, it
can be shown that

lim
n→∞

S1

S2
= 1.

Thus, the number of samples needed to solven independent
bandit problems in the PAO framework has a lower bound of
Ω(nln

(
n
δ

)
), once again ignoringε andk.

Even-Daret al. (2002) provide another useful bound, which
we use to prove a lower bound for the problem considered in
Section III-D. The bound involves thecoin-bias problemin
which a weighted coin has a probability of heads of either
0.5 + ε or 0.5 − ε. The task is to determine the coin’s bias
with probability at least1− δ given0 < ε < 1 and0 < δ < 1
as input.

The number of samples required by any algorithm that
solves the coin-bias problem (Mannor and Tsitsiklis 2004) is

Ω
(

1
ε2

ln
(

1
δ

))
. (6)

The coin-bias problem is a special case of the unknown as-
signment problem, specifically where there is a single location
and two classes with distributions identical to the distributions
that govern the behavior of the two weighted coins. Thus, the
lower bound in Equation 6 applies to the location-assignment
problem.

Using the argument from the beginning of this section, solv-
ing l copies of the coin-bias problem, one for each location,
leads to an overall lower bound ofΩ( l

ε2 ln
(

l
δ

)
). Ignoring

constants and takinga (the number of possible outcomes) to be
constant, the algorithm NN-known from Section III-D achieves
this lower bound (see Equation 2).
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