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Abstract—When interacting with a new environment, a robot exploration with latent structure. We also provide an algorithm
can improve its online performance by efficiently exploring that is provably efficient in the context of the formal model.
the effects of its actions. The efficiency of exploration can be gaction IV details our implementation of several exploration

expanded significantly by modeling and using latent structure to lqorith . imol bil bot d in to allow for direct
generalize experiences. We provide a theoretical development of 29ONthms in a simpleé mobiie robot domain 1o allow Tor direc

the problem of exploration with latent structure, analyze several comparison and to illustrate feasibility.
algorithms and prove matching lower bounds. We demonstrate

our algorithmic ideas on a simple robot car repeatedly traversing  |I. PROBABLY APPROXIMATELY OPTIMAL EXPLORATION
a path with two different surface properties. In this section, we describe two well-studied formal models
of exploration, define a mathematical concept of computational
efficiency of learning in these models, and summarize known
In many successful applications of mobile robotics such &ssults of exploration algorithms for the models.
home vacuuming, scientific planetary exploration, and map- ]
ping, a robot has the opportunity to repeatedly visit a set 6§ Bandit problems
locations and thereby improve the efficacy of its actions in Bandit problems (Berry and Fristedt 1985) can be defined as
these locations. Learning effective behavior requires carefollows. A learner is faced witlk actions, or “arms”. On each
balancing of exploration and exploitation (Thrun 1992)—thef a sequence of discrete time steéps 1, . .., the learner must
decision maker needs to try new actions to evaluate thelioose an action to execuie, After executing its action, the
effectiveness, but at the same time, take advantage of wlegirner observes a payoff in the range) to B. Payoffs are
it knows to perform its task adequately. drawn from a stationary distribution that is a function of the
There has been substantial progress over the past few yesigcted action wherg; is the expected payoff from action
on developing provably efficient algorithms for balancing. The learner attempts to select actions to maximize its total
exploration and exploitation in the context of several formadayoff.
mathematical models. Two notable concrete examples of sucthlthough algorithms have been defined that can achieve op-
formal problems are bandit problems (Berry and Fristedt 198&al payoff in some types of bandit problems (Gittins 1989),
and learning in Markov decision processes (MDPs) (Sutt¢tong (1995) advocated a weaker objective for learning. In
and Barto 1998). We summarize in Section Il a notion of effprobably approximately optimglPAO) learning, the learner’s
cient exploration and describe what is known about algorithrbehavior is parameterized by two values;> 0 and§ > 0.
for achieving efficiency in these two models. The learner must identify an actianthat is probably (with
A significant difficulty in applying the known algorithms probability at leasti — §) approximatelyoptimal (u; > p* —e,
to problems in robotics or other real-life instantiations iwhere* = max; u;). For an algorithm for bandit problems
that they fail to exploit commonality of structure within theto be consideredfficient the PAO property must be achieved
domain, which is absolutely critical to generalization and rap#fter m timesteps, wheren is polynomial ink, B, 1/¢ and
learning. As a motivating example, consider a robot learning 19/6.
traverse an office hallway looking for an unlocked door. Each Fong (1995) showed that several algorithms are efficient.
location contains either a door or a wall. A sensible robot wilfhe simplest, which he called “n&”, computes a number
not check to see if every segment of wall is “unlocked”—m, polynomial in the required quantities (Section IlI-C), then
once it can distinguish walls and doors, it only needs texecutes each actiom/k times. Them trials are used to
check the doors. Said another way, the learner can establisimpute the maximum likelihood estimate of eagHjust the
an unobserved, or latent, variable that indicates whetherempirical average of the payoffs for actiehand the action
location includes a door and this additional information cawith the highest estimate is PAO. Even-Daral. (2002) also
constrain exploration and model building resulting in fastgresented an analysis forima; as well as for an improvement
learning. Existing efficient exploration algorithms do not havihey called “median elimination”.
the capability of generalizing their experience in this way.  The interval estimation (IE) algorithm (Kaelbling 1993) uses
In Section Ill, we present a formal model that can serhe available experience to pa% confidence intervals on the
as a first step to understanding the problem of efficieestimated payoffs of each action. It then chooses the action

I. INTRODUCTION



with the highest upper confidence, resulting in the choice of RMAX (Brafman and Tennenholtz 2002) is a simpler algo-
either a high-payoff action, or one that results in a substanti#thm that combines exploration and exploitation into a single
reduction of the size of a confidence interval. Fong (1998gcision by assigning underexplored states an artificially high
showed how to comput@ to create an efficient algorithm. payoff value in the empirical model. Strehl and Littman (2004)
In greedy exploration, the empirical average payoffs fgroint out that RMAX for MDPs is analogous to ina” for
each action are computed. The action with the highest estimbgndit problems in that it distinguishes underexplored actions
is chosen. This approach it PAO because an unlucky trialfrom sufficiently explored actions on the basis of the number
for a high-payoff action can result in it getting an artificiallyof times they have been executed and always prefers under-
low estimate and then forever be starved of experience éwplored actions when they exist.
favor of a lower payoff choice. A simple variatiop,greedy Model-based interval estimation (MBIE) (Strehl and
exploration, mitigates the likelihood of this premature convekittman 2004) is the analog of IE for MDPs. It creates high-
gence by selecting the greedy action with probabilitye and confidence payoff bounds on rewards based on interaction
choosing a uniform random action with the remaining prolexperience and chooses actions that correspond to the upper
ability. By settinge appropriately (Strehl and Littman 2004),confidence interval. Several other authors have described algo-
an e-greedy learner can sample actions often enough to aveithms based on similar ideas (Deardstral. 1999; Even-Dar
premature convergence and achieve efficient learning. et al. 2003; Wiering and Schmidhuber 1998), but only MBIE
Of the various algorithms we have evaluated in detail, IFas been proven efficient.
seems best at identifying high payoff actions quickly while
avoiding premature convergence, whileveais the simplest 1ll. EFFICIENT EXPLORATION WITH LATENT STRUCTURE
to analyze. In this paper, we build on the analysis ofvea”

although we believe more effective exploration techniques will Provably efficient exploration algorithms for bandit prob-
prove superior in future work. lems and MDPs have been implemented and several of these

algorithms result in practical learning rates in small problems.
As mentioned in the introduction, scaling to real-life problems
requires understanding how to retain theoretical assurances
In a Markov decision process (MDP) (Puterman 1994), while taking advantage of the structure these problems offer
learner again chooses a series of actions and receives a séoiegeneralization.
of payoffs. In an MDP, however, the payoff process has aln this section, we introduce a simple formal model that
notion of state that influences the expected payoff of theepresents a small step in this direction. In particular, we
actions. In particular, before each action choice, the learm@opose a model that includes latent structure and provide an
is informed of its current state from a setiopossible states. algorithm that exploits this structure to generalize and learn
The payoff at timef is sampled from a stationary distributionmore efficiently than is possible by an algorithm that does
that is a function of the state at tinieand the learner’s choice not generalize. The result is strong in the sense that we can
of action at timet. prove lower bounds on the experience needed to achieve PAO
The exploration problem in MDPs, studied in thdearning as well as algorithms that meet these bounds (to
reinforcement-learning literature (Sutton and Barto 1998), Within constant factors).
complicated by the fact that the state evolves according toBefore introducing the model, we briefly mention another
a stationary transition function that is also a function ddttempt at using structure to improve exploration. In a dy-
the most recent state and action. This means that the meamic Bayes network representation of an MDP, each state
straightforward extension of n&—try each action in eachis described by a set of features and, for each action, the
statem times—is unimplementable because the learner hesnditional independence of features is explicitly represented.
only limited ability to reach any specific state. Furthermor&actored E (Kearns and Koller 1999) learns efficiently by
extensions of algorithms like-greedy run into problems modeling payoffs and transitions in terms of these conditional
as well—randomly chosen actions can result in inopportuitelependence relations. Note that the algorithm requires that
transitions to low-payoff states. the conditional independence relations be known in advance.
Fiechter (1994) described a set of PAO conditions for MDPEhus, while factored £ demonstrates that structure can be
and showed that they reduce to the same concépfiKEarns leveraged to speed up exploration, the structure is provided
and Singh 2002) (for “explicit explore exploit”) was the firstexplicitly as part of the problem description and is faient
algorithm to achieve efficient learning in MDPs. It keeps tracks is the case in most naturally occurring problems. Learning
of the number of times each action was executed in each stiite structureand exploiting it is the goal of this paper.
to determine when the estimates associated with the state ar€he idea of modeling latent structure in a learning problem
sufficiently accurate. The resulting empirical model is used was also explored by Sherstov and Stone (2005). The learning
calculate the expected payoff for behaving greedily and tilsetting in that work was an MDP, a more general model than
expected cost in time for reaching an underexplored part @fnsidered here. Their goal was not to speed up learning
the state space. The algorithm chooses its behavior basetona single domain but to facilitate the transfer of learning
a comparison of these two strategies. to similar domains. Our use of abstraction across states is

B. Markov decision processes



We restrict the payoffs to the randgeto B, which we
take as a constant, and translate outcomes to rewards using
the deterministic function?(w). We write p$(w) to be the
probability of outcomev € W resulting from the selection of
B actions in a location of class. Thus,u§ = 3", R(w) x p§(w).
., (AP We make an additionaleparability assumptioriVe define
the L1 distance between outcome distributions for two classes
c1 andcy under the same actionto be

165 = P52l = 165 (w) — pi* (w)].
w

Fig. 1. A schematic view of the robotic testbed used in our experiments.

The separability assumption states that there exists a constant
A > 0 such that, for all actiong and classes,, cs (¢1 # ¢2),

ﬂtpfl —p2|l1 > A. That is, outcome distributions for different
classes are well separated.

A. A simple learning problem with latent structure The two critical pieces of missing information in the model

To study problems with latent structure, we created jHSt descripeq are the class—location assignmﬂgtgnd the
physical testbed. It consists of a simple robot car that CgHtcome Q|str|butlop$§(w). Although we are most interested
move forward at any of seven different power settings. On e 2 Iearn!ng aIgonthm for t.he' case in which b.Oth of the;e
course depicted in Figure 1, the car moves from Location 1 peCes Of_ information are missing, the ne_xt seqtlon_s_ examine
Location 17, recording its speed at each location using de § Iearnl_ng pr_oblems resulting from various simplifications.
reckoning. Due to the gear structure of the robot, moment € _relauonshlps_b(_atween these problems help put the ful
has no influence on velocity across locations. Since the ijgrnmg problem in its proper context.
sensor is limited to its speed, its objective is to retain a constait Known assignment, known outcomes

goal speedy, with per-step reward decreasing with the square \nhen both 4 and p are known, the optimal choice of

of the deviation from this speed. The ideal policy for the robQ{stion is simply to compute¢ = . R(w) x p¢(w) for each

is to choose a power setting at each location that maximizgsion i in each class:. Thén, wh%n occupyling locatiop,

its reward. _ __choosei* = argmax ., that is, the action* that has the
Notice that each of_the locations on the course fall '”tﬂighest expected reward for the class locatjobelongs to.

one of wo classes, either flat or sloped. An algorithm th@, |eaming is needed and the optimization, which we refer

accounts for this latent structure will be able to use its d as “known-known” (known assignment, known outcomes)
to generalize its behavior well and thereby solve the Ieam"ilgquite simple.

task more efficiently than if this structure were neglected.

More formally, our example problem lies between bandf- Known assignment, unknown outcomes
problems and MDPs in complexity. The environment can be Next, let's consider the problem that results from the assign-
expressed as a set bfocations (states), numberédhrough ment functionA being known, but the outcome distributions
[. The locations are arranged in a repeating loop; after ea@maining unknown. The learner always knows the class of the
action, the process transitions from its current locagida the current location, but it initially does not know the appropriate
next location in the loof;j+1) mod [, regardless of the action action to take in the class. The classes don’'t provide any
chosen. Like MDPs, the combination of the action and locatidgnformation about one another, so the learner actually faces
result in a probability distribution over outcomes (speed, anseparate bandit problems, one for each class, which we can
our robot), and outcomes are associated with rewards. In tbislve independently.
paper, we examine outcome distributions over a finitel8et  The nave method can be applied to this problem by treating
of a := |W| possibilities. A parallel theory can be developedach class as a separate bandit problem. We call this algorithm
for continuous outcome distributions such as Gaussians. Al$mown-nave”, since the assignments are known and the
similar to the MDP case, the learner is informed of the identitynknown outcomes are learned usingvea By the analysis
of the current location before each action decision. of Fong (1995), it suffices to try each actioin a fixed class

The latent structure in this problem can be described as)(4 In (Z£)) times. After this exploration phase, known-
follows. There is a set of << [ classes that mediate betweemaive estimates the average rewgidby the sample mean for
the locations and the outcome distributions. That is, eaelch action, and chooses the one that appears to achieve the
location is assigned a class and each class is associated wigihemtest reward;* = argmax_, /i¢. Fong (1995) has shown
stationary outcome distribution. We use the notatibnto be that:i* will be ane-optimal arm with probability at least— %
the class assignment for locatigrand i to be the expected The algorithm then proceeds by sampling each action in each
payoff for actioni in classc (averaged over all outcomes).class as described.
Thus, selecting action in location j results in a payoff of  For simplicity of presentation, we use the notat'(é(l-) to
MZ.A’, on average. represeniO(-) wheree, 4, B, anda are taken as constants.

similar to techniques studied in hierarchical reinforceme
learning (Barto and Mahadevan 2003).



We also definé)(-) similarly. These definitions emphasize the If we sete := % and substitute‘lE for ¢ in Equation 2,

dependence of the bounds on the number of locafiarilasses we can compute the number of samples for each location to
n, and actiong. Known-nave has a total learning complexityensure that with probability at leakt-§ we will determine the
O(nk In(nk)) as it samples each action in locations represererrect mapping from location to class. Once this is complete,
ing each class. It is guaranteed to findeaoptimal action for we can immediately implement the optimal policy, since for
each class (thus for each location) with probability at leasaich class we can compute the action with highest expected
1 — 4, which follows from the union bound over all classeseward.
and actions. Using the above analysis, we discover that our goal can
Section VI shows thaf)(nkIn(n)) samples are needed tobe accomplished using(/1n!) samples. Note that the depen-
achieve the PAO condition for this problem. Thus, knowrdence on the number of actiohglisappears because only one
nave includes an unnecessary factorlofk) in the bound. action needs to be sampled to reliably identify the class. Once
Even-Daret al. (2002) provides an algorithm called “mediaragain, Section VI argues that this result matches the lower
elimination” that removes the dependencelofk). Thus, the bound for this problem.
“known-median” algorithm matches the lower bound.
In our robot task we used known-na because it's simpler
and since the number of actions is small making the removallf both assignments and outcome distributions are unknown,

E. Unknown assignment, unknown outcomes

of k from the logarithmic factor unnecessary. one approach that can be taken is to treat each location as
_ an independent bandit problem. This “unmappeokeiailgo-
D. Unknown assignment, known outcomes rithm, which ignores the class assignments entirely, achieves

This case represents the inverse of the learning probléypound ofO(lk In(1k)). The analogous “‘unmapped-median”
from the previous section. We taketo be known andi to be algorithm usesO(lk1n(l)) samples and achieves the lower
unknown. That is, although we know how each class behavBgund for the structure-free case.

we don't know which locations correspond to which classes. An approach that exploits the latent structure of the problem
Note that after selecting actionm times in classe, the should be able to achieve a smaller bound. The problem

in which both assignments and outcome distributions are
unknown is at least as hard as the problem considered in Sec-
tions III-C and I1I-D. This suggests that we would be fortunate

if we could learn a PAO policy usin@(IInl+nkInn) steps

of experience—the maximum of the lower bounds derived for

learner can estimate a vector of length ¢, where 5¢(w)
is the number of times we have taken actibrin classc
and observed outcome, divided bym. From the results of
Weissmaret al. (2003), we have that

2

Pr(|[pf — 5|1 =€) < 2% 7. (1) the two previous problems. In fact, we can achieve this bound,
as described below. Since << [ (far fewer classes than
Setting Equation 1 to be less tharyields locations), this algorithm is exploiting the latent structure in a
9 1 manner that improves learning time.
m > (6—2> [aln(?) +1In <5>} . 2 A direct approach to the problem is to learn the unknown

assignments and the unknown outcome distributions in two
Because of the separability assumption, to determine the weparate phases. In the first phase, locations are grouped by
known assignment, we only need to sample, at each locatitime similarity of their outcome distributions, building on the in-
from one actiort. Since the outcome distributiopsare known sights from Section IlI-D. Since the true outcome distributions
in this case, accurately estimating the outcome distribution fare unknown, we cannot use the nearest-neighbor approach,
an action reveals its class. and instead must cluster based only on the relative distances
We can choose the action arbitrarily, and one reasonabltthe empirical distributions. Once an assignment of locations
choice is the action that maximizes expected return, givémclass is complete, we can use the known-median approach
some prior over the set of classes. If we gather enough samgfesn Section 1lI-C to learn the outcome distributions with
at any given position to assure that the difference between ghficient accuracy to make near-optimal decisions.
empirical outcome distribution and the true outcome distribu- First, let's consider the clustering step. For any fixed action,
tion is less than%, then by our separability assumption, wave seek to build an estimate of its outcome distribution for
can assign a position to the class whose distribution is closesch location. If alll estimates are accurate to within an L1
in L1 distance to the empirical distribution, which is typicallydistance ok, we know that the distributions from two locations
called a nearest neighbor approach. We call this algoritHimat are part of the same class cannot be more than an L1
“NN-known” as it uses the nearest-neighbor approach thstance of2e apart (by the triangle inequality). On the other
identify the class of each location and then uses its knowledg@nd, two locations that are part of separate classes will have
of the distributions to select actions. estimates that are at ma&t—2¢ apart in L1 distance, since the
underlying distributions must b& apart in L1 distance by the
Iweaker assumptions can also be made that still lead to efficient algori_thrg%parabi"ty assumption. We want to use a value eb that
However, completely eliminating the separability assumption makes it no _, L . .
easier, in a)(-) sense, to solve the problem than if there were no structuld€ Il be able to distinguish locations that belong to the same
at all. class from those that do nak — 2e > 2¢, ore < A/4. Using



Equation 1 and the union bound, we find tiia¢/In/) steps and then fed to the known-na algorithm to record the
of experience will suffice to get accurate estimates with highutcomes and decide on a policy. Estimates for the outcome
probability. Specifically, we require that the failure probabilityglistributions were compiled using a single traversal, which is
the chance that some empirical distribution differs in L&ufficiently long to sample each power level in each class and
distance from its true distribution by more thanis less than produced near-optimal behavior.
é For the “unknown assignment, known outcomes” case (Sec-
After these distributions have been estimated, they can tien IlI-D), we evaluated two different algorithms. A strategy
used to create a distance matrix and clustered by, for example, call “POMDP-known” used knowledge of the outcome
single-link hierarchical clustering. If the clustering is stoppedistributions to build a Partially Observable Markov Decision
when distances exceefi/2 or whenn clusters have been Process (POMDP) for choosing power levels at a location
formed, the resulting clustering is correct with probability agiven a 50-50 prior over the two classes. The procedure
least1 — % Thus, each location is assigned to “the rightemployed Tony Cassandra’s implementation of incremental
class—one that matches the other locations that are in tireining (Cassandrat al. 1997) to calculate a policy for
same true class. choosing actions for each timestep to maximize the overall
Next, we can directly apply the known-median approackxpected reward over a large finite horizon. Although this
given that we have correctly reconstructed the assignmentaddorithm can require exponential time, it ran quickly and
classes to locations. Again, on@(nk Inn) steps of experi- produced a simple policy consisting of an initial intermediate
ence are necessary (Section 1lI-C), so combining the learnipgwer level followed by a high or low power depending on
from the two phases, a total afr)(l Inl + nklnn) learning the speed observed the first time the location was visited.
samples are needed, matching our desired result. Again, wdhe second algorithm we applied in this case was the
require the failure probability be less th%n Thus, using a NN-known procedure. The true distributions of outcomes
union bound, the probability of a failure in either one of thevere mined from the same data used to solve the “known
two phases is less thah Hence, for each location, ast assignments, known outcomes” case. Three traversals were
optimal policy will be found with probability at least — 6, then performed at a single power level to record empirical
and the sample complexity will not exceed a polynomial inutcome distributions. NN-known was then used to compare
the relevant quantities. the two distributions and map the locations associated with
It should be noted that the constants absorbed indbe} each outcome triple to the appropriate class. Having discerned
notation are larger for this combined approach then for solvitige classes, the robot executed the optimal action, as computed
the two problems of Sections IlI-C and IlI-D independentlyirom the data given to it.
This is due to the fact that, in the first step, we require eachFinally, we implemented three algorithms for the “unknown
empirical distribution to be Within% of the true distribution, assignment, unknown outcomes” case (Section IlI-E). The
in L1 distance, rather tha@, as in the case where the agent ifirst, unmapped-ngé, simply ignored the latent structure
aware of the true distributions. It is also due to the fact that we the problem and ran each action in each location once,
must divideé by two in each of two stages of the algorithmthereafter choosing the action that had the best performance
However, ignoring constants, the result is the same. In diar each location. After one traversal per action, the resulting
experiments, we call this algorithm, “cluster-median”, agaistimates were good enough to achieve apparently optimal
noting that, do to its simplicity, we evaluated “clustemve” performance.
(with single-link clustering) in our experiments. The second algorithm we considered used Expectation-
Maximization (EM) (Dempsteet al. 1977) as the basis for
classifying locations. While there are some variations of EM
This section presents a physical implementation and evafar which formal guarantees have been proven, we used EM
ation of the algorithms and testbed previously described. in this study as anad hoc method for estimating latent
i structure. Our EM implementation classified each of the 17
A. Algorithms Tested locations into one of the two classes given three samples of the
We experimented with different algorithms for solving eacbutcome distributions for each location using a constant action
of the four classes of problems outlined in Section IIl. Notthroughout the trials. At this point, learning proceeded as in the
that while it is possible to use the separability assumptidRknown assignment, unknown outcomes” setting (Section IlI-
to compute near-optimal sample sizes, in our experiments @¢, resulting in the algorithm “EM-naive”.
chose sample sizes empirically. Finally, we evaluated the performance of the clustering
In the “known assignment, known outcomes” case (Sealgorithm, cluster-n@e. Data was collected in a series of three
tion 111-B), 14 traversals were performed “offline” to estimateraversals, just as in the EM implementation.
model parameters. Locations were labeled with classes by
hand based on their slope, and these class labels were verifRed=XPerimental setup
against the known outcomes. To compare the algorithms in a physical setting, we built a
Next, for the “known assignment, unknown outcomes” casebot to traverse our two-slope test course. The robot was con-
(Section 11I-C), location classes were again labeled by hasttucted using parts from a Lego Mindstorm kit, specifically

IV. EXPLORATION EXPERIMENTS
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Fig. 2. The robotic vehicle used in our experiments.
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an RCX 2.0 block, one rotation sensor, one motor with seven
power levels, four wheels, and various connecting pieces. The

course was made up of three two-by-two boards supported by, -

plywood in the pattern shown in Figure 1. The robot’s software
was built in the the 1eJOS programming language. The robot ss
itself is shown in Figure 2.

Each algorithm was run for two epochs, consisting of 12 °°
traversals each. The interval between locations was defined as
100 rotation clicks as registered by the robot'’s rotation sensor.”

The reward for a traversal was calculated using the following ,, |

formula:

900

1000 — Z(round(%) - t9)2 3

880
whereround and division by 100 are used to discretize the seo
outcomest, is the goal time elapsed between points as derived
from the goal speed, t; is the time we reach locatiohand

the subtraction from 1000 is used to map cost to reward. Fig. 4.

Since the RCX 2.0 does not possess adequate memeise:
to perform the calculations needed for the aforementioned
algorithms, the robot simply stored the observed speeds during
each traversal. At the end of the course, the collected data
was transmitted to a laptop, which processed the data and
calculated the power levels to use for each location in the
next traversal as per the algorithm being evaluated.

Evaluating algorithms in the real world invites a host of
noise factors that one would not consider in a pure simulation.
One such factor in our implementation was the substantial
effect battery power had on the robot's performance. As
the batteries drained, the effect of the power commands on
the movement of the robot changed. Although the learning
algorithms were able to adapt to different battery powers, the
large variability of the action effects threatened to make com-

Policy Reward
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Reward for each traversal for algorithms that were provided some
prior knowledge of the domain.
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parisons unreasonable. To compensate, brand new disposable __

batteries were used for each algorithm studied. Thereafter,

any decline in battery power appeared consistent across fadl 5.

algorithms.
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Average reward obtained by the learned policy for each algorithm.
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V. CONCLUSION
Unmapped-Naive

7r 1 Learning in real-life scenarios is very difficult because of
the complexity of natural environments. Successful learners
must be prepared to extract and exploit latent structure in their

st 1 environments to learn efficiently. To study this issue, we have

EM-Naive Cluster-Naive presented a particular learning scenario with latent structure.
i | We showed that this structure can be exploited to improve the
st i rate of learning and demonstrated this fact with (i) algorithms

with improved bounds, (ii) matching lower bounds that show
the fundamental complexity of the problem, and (iii) empirical

Learning Time (in number of traversals)

Known-Naive NN-Known

WL i demonstration on an implemented robot with improved rates
of learning.
° 1 2 s s 5 A specific technical contribution of the paper is our two-
Fig. 6. Traversals needed to learn a near-optimal policy. phase procedure for solving the learning problem we posed. It

makes productive use of unsupervised clustering to reveal the
latent structure, then exploits the structure to learn efficiently.
We showed that the cluster-median version of this approach

C. Results matches the lower bound for the problem, showing that it
exploits the latent structure to the maximum degree possible
for this problem class.

Figure 3 and Figure 4 show the total reward each algorithmNatural extensions of our work include learning with an
accrued in each traversal of the first epoch. The graphs toxknown number of classes, developing algorithms for related
the second epoch were omitted because they did not diffepblems like learning the conditional independences in the
significantly from Epoch 1. Each algorithm learns for someynamic Bayes network setting or learning an abstract model
number of traversals, then identifies a final policy that it use$ an MDP, combining the two learning phases so that the
for the remainder of the epoch. The small variations noticealpeoblem as a whole may be explored efficiently and jointly,
after learning are due only to noise. and weakening the separability assumption so that it need not

As expected, the known-known strategy performed well ,?Pld for all actions.
every traversal since no learning was required. Along the VI. APPENDIX. ALGORITHM ANALYSIS

same lines, all partial-knowledge algorithms learned a goodyhe first problem we consider is solving independent

policy sooner than any of the “unknown assignment, unknownaction bandit problems. Unfortunately, copies of a PAO

outcomes” algorithms. When comparing the three"unknowjynit aigorithm that fails with probability will fail with
assignment, unknown outcome” algorithms, the ENvaaind probability 1 — (1 — §)", making it no longer PAO.

cluster-naje algorithms decided on a policy in almost half the gy en-Daret al. (2002) showed that in the PAO model

time of the unmapped-mz algorithm. The convergence timeE;\len ¢, 8, any algorithm that finds an-optimal policy with

for these three algorithms is displayed with greater granular obability at leastl — & will require at leastO(%£ 1In (;2)

in Figure 6. Notice that the learned policies have rough amples. Thus, any PAO algorithm requires at le@at (63)

the same values, except POMDP-known. In fact, the EMymples for some constadt, where we have takek, the

nave and cluster-ngé implementations converged to the exagl,mper of actions, and as parameters folded inid, since

same policies. The poor performance of POMDP-known fﬁey have no relevance on our analysis.

attributable to the model of the environment it built internally, Now, suppose we have separate bandit sub-problems to

which was inconsistent with the models used by the remainiggje Each sub-problesthas an associated failure probability

algorithms. Figure 5 compares the average reward for gll the goal of the overall algorithm is to find aroptimal

resulting behaviors. solution for each of the subproblems and then bound the event
Surprisingly, the known-known strategy does not perforihat any of the subproblems fails By Thus, it will require at

the best. This is because the assumption that only two clask@st

exist in the world (uphill and flat) is not entirely true. In n 1

actuality, each position was slightly different, and certain C> In (5—> 4)

locations were really transitions between the flat and sloped =1 '

surfaces and needed to be handled differently. So, even thoggmples. We will bound Equation 4 from below, under the

the algorithms that exploit the latent structure quickly discovéenstraint that the probability that some sub-problem fails is

which positions belong to which classes, they fail to achiewsjual to the overall failure bound:

maximum reward. The unmappedw@approach was able to n

represent and exploit theifferencesbetween the locations, §=1-— H (1—4;). (5)

resulting in slower learning but larger reward after learning. i=1
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