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Abstract—We consider the efficient computation of sequences task on a given part or collection of parts. Over the past
of push actions that simultaneously orient two different poly- years researchers have explored the suitability of sequences
gons. Our motivation for studying this problem comes from of actions such as pushing [1], [2], [4], [5], [7], [10], [16],

the observation that appropriately oriented parts admit simple -
sensorless sorting. We study the sorting of two polygonal parts [23], [25], [27], [30], [31], [45] squeezing [11], [15], [19],

by first putting them in properly selected orientations. We [34], [32], [33], [35], toppling [24], [46], pulling [6], tapping
give an O(n?logn)-time algorithm to enumerate all pairs of [21], dropping [20], [22], [29] wobbling [17], rolling [26],
orientations_ for the two parts that can be _realized by a sequence gnd vibrating [8], [9], [37] by simple hardware elements to
of push actions and admit sensorless sorting. We then propose anaccomplish a common task like feeding (or orienting) parts.

O(n*log? n)-time algorithm for finding the shortest sequence of . . - .
push actions establishing a given realizable pair of orientations CONSiderable attention has also been given to the design

for the two parts. These results generalize to the sorting ok Of modular fixtures [12], [38], [39], [40], [43], [41], [42],
polygonal parts. [47] which hold parts using simple reuable elements whose

placements are constrained to a grid of holes. Much less
has been done on some of the other challenges listed in the

Designers of robotic manipulators for factory environmen{saper by Canny and Goldberg [14]. In this paper we study
have long been inspired by human arms and hands. The wisbir open problem concerning the existence of a polynomial-
for a level of flexibility comparable to that of a human armime algorithm for sorting parts with a frictionless parallel-jaw
and hand led to robotic manipulators that were often fOUI’giipper capable of performing push and squeeze actions [18].
to be too complex to have a chance to stand up in a realwe consider the following completely sensorless sorting
industrial environment [18]. In the late 80s and early 90scenario for convex polygonal parts of two different typges
Whitney [44] and others argued that effective factory robotsnd( that can be in any orientation. We have a conveyor belt
need far less flexibility than human beings. As more flexibilityhat forks into two smaller sub-belts, as in Figure 1, and we
incurs an increase of design and maintenance costs, riskneint to employ push actions by a single jaw of the parallel-
failure, and complexity of control, it is justified to be cautiousaw gripper to establish that parts of tyfge continue on one
about excess flexibility. Inspired by Whitney’s recommensub-belt at the split while those of typ@ continue on the
dations that industrial robots should have simple actuatasther sub-belt. Which sub-belt a part goes depends on the
and sensors Canny and Goldberg [13], [14] proposed thesition of its center of mass with respect to the line through
Reduced Intricacy in Sensing and Control (RISC) paradigfie split and parallel to the sides of (the wide part of) the
for the design of manipulation systems. The paradigm favdselt. As a result, our sorting scenario is successful if we can
easily-reconfigurable simple hardware elements performifigd a sequence of push actions, mush plan that—at the
simple actions over overly flexible general-purpose hardwakame time—puts the center of mass of parts of typen
and prefers simple or no sensors. The authors argued thaé side of a horizontal line and of parts of tyfeon the
such systems are cheaper, more reliable and better suiteddigier side. (We assume that the parts are sufficiently far apart
automated planning. when they travel down the belt, so that the orientations are not

RISC implies a shift of the complexity of system desigwisturbed by any collisions.) We will concentrate on push plans
to computer science, as the fundamental question becorfieg additionally bring parts of the same type into the same
algorithmic in nature: configure, or plan, a sequence of simpigientation. Our goal is therefore to find the shortest push plan
physical actions that accomplishes a higher level manipulatigiat simultaneously put® and@ into given orientations and

Part of this research has been funded by the Dutch BSIK/BRICKé‘rESpeCtlver’ for our appllcatlon, the o”en.tatlomsandw
project. Mark de Berg and Xavier Goaoc were supported by the Netherlan ould be such that the distances from the jaw to the centers
Organisation for Scientific Research (NWO) under project no. 639.023.300f mass ofP and @ are different. Once”? and @ are in their
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respective orientations, a single push by the jaw suffices geometric queries that are solved efficiently using geometric
put P and @ onto the belt, after which the split will take caredata structures [3].
of the sorting. Non-convex parts traveling with a cavity facing Our work is closest in spirit to two papers by Rao and
the split may get stuck at the joint corner of the sub-belt&oldberg [32], [36]. In [32] these authors considered the
We can easily identify the orientations in which a part caproblem of recognizing a part from a given set of parts, by
get stuck beforehand and eliminate those from consideratioreans of a sequence of width measurements by a squeezing
in the planning phase. instrumented parallel jaw gripper. Rao and Goldberg proposed
an O(n*2")-time algorithm for computing the shortest se-
quence of measurements, and @2 log n)-time algorithm
for computing a sub-optimal sequence, wherés the total
number of stable diameters, which is upper bounded by the
total number of edges of all parts. This sorting scenario differs
from ours in several aspects. Besides that we use push instead
of squeeze actions, we have replaced the instrumentation of
the gripper (facilitating the width measurements) by a forking
conveyor belt. This replacement of sensing functionality by an
additional piece of hardware opens the way to a polynomial-
time algorithm for finding the shortest sequence of actions.
Still, we could apply our algorithm to the instrumented parallel
Fig. 1. A conveyor belt forking into two sub-belts and two parts that wiljaw gripper of Rao and Goldberg. If we choose the final
be sorted. orientations to be such that a squeeze action of the gripper
leads to different width measurements for the two parts, then
Goldberg [19] showed that a single polygonal part with our algorithm computes irO(n*log®n) time the shortest
vertices can be oriented, i.e., brought into any priorly specifisgquence of push actions followed by a squeeze that orients
orientation, by a push plan; he also showed that the shortest sorts the parts.
such plan can be computed @(n?) time. Chen and lerardi In [36], Rao and Goldberg studied the registration mark
[15] proved that the length of the shortest plan(4n). problem. Given a single polygon with vertices and a set of
Although a concatenation of separate plans for p&tand k& possible poses of that polygon, it asks to locate a mark on
() puts both parts into a known orientation, these resultise polygon that maximizes the minimum separation between
do not provide a way of finding thehortestsequence of the placements of the mark in the poses. The computed
push actions that simultaneously putsand ) into specified location will provide maximum insensitivity to sensor noise
orientations¢ and . In fact, one of the first results in thiswhen distinguishing the poses with a computer vision system.
paper shows that it is not always possible to gaitand The registration mark problem is in a way almost dual to
Q@ in any desired combination of orientations. For polygonsur problem. Whereas the registration mark problem asks to
P and @ with at mostn vertices, we therefore present ardetermine the optimal distinguishing aspect, the mark, of a
O(n%logn)-time algorithm to determine all combinations ofgiven set of poses, our problem is to determine the poses (and
orientations for polygong® and Q that can be realized by the actions that lead to these poses) that optimize the ability to
applying an oblivious push plan to both. If none of thesdistinguish on the basis of a given aspect, the center of mass.
combinations separates the centers of mass then no push @&nourse another crucial difference is that we are dealing with
exists that sorts the parts. The main result of our paper is o (or more) parts, whereas the work of Rao and Goldberg
algorithm that finds the shortest push plan that fatand@ deals with a single part.
in a given realizable paif¢, v') of orientations. The algorithm
runs inO(n*log® n), so we have a polynomial-time algorithm
for sorting using a pushing jaw and a forking conveyor belt. In this section we briefly review pushing of a single polygon
The availability of all realizable pairs of orientations offers” by a jaw of a parallel-jaw gripper. We assume zero friction
the practical advantage of being able to choose the pair tha&tween the part and the jaw. Lete the center-of-mass of
maximizes the separation between the centers of mass, as dcl\s a jaw always touches the part at its convex hull we
a pair is likely to be less sensitive to control errors and pamssume that” is convex. For the sake of simplicity of our
imprecision. analysis, we add the weak assumption that no line through a
The algorithms for determining all realizable combinationgertexv of P is perpendicular to the two edges incidentto
of orientations and for computing the shortest plan for a givélrhis prevents so-called meta-stable edges.
realizable combination generalizeitgarts. The running times  We assume that a fixed coordinate frame is attachef.to
of these generalizations ar@(n* logn) and O(n?*1log?* n) Directions are expressed relative to this frame. Toatact
respectively. All of our algorithms use a multi-dimensionatlirection of a tangent! of P is uniquely defined as the
generalization of a simplified version of the push functiodirection of the vector perpendicular foand pointing into
(see e.g. [19], [34]). The problems at hand are translated inffo(see Figure 2 for a tangent with contact directiah As in
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Mason [27], we define theadius functionp : [0,27) — R,  a shap rounding. The length of the translation is the pushing
of P with center of mass; p maps a directionp onto the angle and the rounding brings the translated point to the stable
distance from the to the tangent of? with contact direction equilibrium of the interval that contains it. Figure 2 shows
¢. The radius function is continuous. It determines the pusim example of a radius function and the corresponding push
function, which, in turn, determines the final orientation of &nction.
part that is being pushed.

Throughout this paper, parts are pushed by a single jaw
that moves in a direction perpendicular to itself. Brost [11]
was the first to model parallel-jaw gripper motions in this
manner. Thepush directionof a single jaw is the direction of
its motion. The push direction of a jaw pushing a part equals
the contact direction of the jaw. In most cases, parts will start
to rotate when pushed. If pushing in a certain direction does
not cause the part to rotate, then we refer to the corresponding
direction as anequilibrium (push) directionor orientation
Equilibrium orientations play a key role throughout this paper.

If pushing does change the orientation, then this rotation
changes the orientation of the pushing jaw with respect to

the frame attached to the part. We assume a push action to be !
a reorientation of the jaw followed by an actual push on the |
object that continues until the part stops rotating and settles
in a stable equilibrium pose.

The push functionp : [0,27) — [0,27) links every
orientationg to the orientatiop(¢) in which the partP settles
after being pushed by a jaw with push directiorfrelative to
the frame attached t®). The final orientation(¢) of the part
is the contact direction of the jaw after the part has settled. T
The equilibrium push directions are the fixed points of the ()
push functionp.

The push functiorp for a polygonal part consist dfteps
which are open intervald C [0,27) on which p(¢) is
constant, and isolated fixed points. Each step of the push Tt
function intersects the diagonal line through the origin at the
equilibrium orientation corresponding to the step. The steps of
the push function are easily constructed [19] from the radius
functionp, using its local extrema,; the orientations correspond-
ing to local extrema are the equilibrium push orientations. If !
the part is pushed in a direction that is not a local extremum ‘ 1
of the radius function then the part will rotate in the direction
in which the radius decreases until it finally settles in an
orientation corresponding to a local minimum of the radius
function. As a result, all points in the open intervabounded
by two consecutive local maxima of the radius functipmap
onto the orientatiory € I corresponding to the unique local
minimum of p on I. (Note thatyp itself maps ontap because it Fig. 2. A part, its radius function, the corresponding push function and
. . . the simplified push diagram. The vector emanating from the center-of+nass
is a local extrema.) The fixed points of the steps aresthble ;s the zero contact direction for supporting lines.
equilibrium orientations. Besides the steps and ramps there
are isolated points satisfying(¢) = ¢ in the push function,
corresponding to local maxima of the radius function. The In the rest of this paperP and Q denote two polygonal
isolated fixed points are thanstableequilibrium orientations. shapes, withp and ¢ vertices respectively. To simplify the

Projecting the steps of the push function on the horizontabunds somewhat, we will express them in termsnof=
axis we get theoush diagrama partition of the rangd0, 27r) max(p, ). Observe that after one push any shape is in some
into open intervals by the unstable equilibrium orientatiorstable equilibrium orientation. To simplify the exposition, we
along with a collection of stable equilibriums, one per intervatienote a stable equilibrium orientation of an objecitable
A push action can be visualized in the push diagram kyientationand a pair of stable equilibrium orientations of two
applying to the original orientation of the part a translation arabjects astable pait
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[1l. ENUMERATING REALIZABLE PAIRS OF ORIENTATIONS te oo . t. o e '
We are interested in finding push plans that brid@nd Q RS <
into a fixed stable pair no matter what their initial orientation | * A.{*|* | *| | Bl A I A
is. A stable pair for which this can be done is said to be | ! By
. L] o | ] | 3 o e e | M
realizable (¢,) ! (6,0)
For the purpose of separating shapes some realizable stablé ! :
pairs may be more interesting than others. For example, a pair - .

that maximizes the separation of the centers of mass is more ' ' '

likely to be tolerant to faults or imprecisions. In this sectioff!9: 4. In the generalized push diagrams, a push operation becomes a
. . . translation (possibly involving a wrap around as in the right example) followed

we consider the problem of enumerating all realizable stakﬂ@a snap-rounding.

pairs, which allows finding the best separating pair for simple

criteria.

A. Generalized push diagram in cells intersected by the diagonal throu@h ). The pre-

Let us first introduce the generalized push diagram, iage of a stable pair(¢, 1) is the set of stable pairs that
tool to visualize the effect of a push operation on a paf'® mapped td¢,) by some push; it corresponds in the
of orientations. We partition the séb, 2r) x [0,27) of all GPD to the set of stable pairs contained in the union of the
possible orientations of? and Q by vertical lines at every diagonal lines intersecting the cell 6, ) (the shaded zone
instable equilibrium of? and horizontal lines at every instabldn Figure 5). Since a stable pair may have empty pre-image
equilibrium of Q. Let S be the set of points of0,27) x (&s in Figure 5) it may not be realizable.

[0,27) corresponding to stable pairs. The couglg S) is

the generalized push diagraffGPD) of the two parts” and
Q (see Figure 3 for an example of such a generalized push 3
diagram). There is exactly one point &fin each cell ofZ.

. Q
< p . =

0 Fig. 5. The push diagram of a pair having a non-realizable pair of
0 o P orientations.

Fig. 3. Two parts, their respective push diagrams and the generalized push . . .
diagram of the pair. However, there always exists one realizable pair and such

a pair can be computed in tim@(n?). Indeed, Goldberg
. . . [19] and Chen and lerardi [15] proved that one shape can be
Suppose that a push operation of anglis applied to parts oriented using)(n) push operations that can be computed in

P anq Q, |n|t|ally In respective orientations) and v Thg ﬁ n?) time. Once a part has been brought from any orientation
resulting orientations of the shapes are the stable pair in ﬁ

- . . Into some fixed orientation, any additional push operation
CE.}” containing the p0|n¢¢+ﬂ,¢+ﬁ). Thu_s, a push Oper.at'onleiaves it in some (possibly different) fixed orientation. We
with angle 8 corresponds in the push diagram to a diagona h h pl S d h ol
translatiodt of length 3+/2 followed by a snap-rounding oper—ca.n thus co_mp(l)Jte 2a bus ) phan orlentlﬁ’gar_w a fpuhs pan
ation to the stable pair of the cel.{. Figure 4). Since angles orienting @ in O(n") time; the concatenation of these two

. . push plans brings botF? and(@ into a stable pair irrespective
are represented modubr the diagonal translation may WIaPot their initial orientations, yielding a realizable stable pair.
around, namely whem + 3 > 27 or ¢ + 3 > 2.

C. Enumerating realizable pairs

B. Realizable pairs
In the GPD, the stable pairs reachable by one push from al hetransition graphis the directed graph whose nodes are

specified pair of orientation®, 1) are exactly those containegstable pairs and whose edges connect a node to stable pairs it
can reach by one push action.

Iwhenever we use the terdiagona) we mean the main diagonal direction Lemma 1:Let (¢,v) be a realizable stable pair. A pair

(of slope 1). Thus adiago_nal translationis a tra_ns_lation ir_1 direction of the (¢’7 ¢/) is realizable if and onIy if it is reachable fl’O(Id), ZZJ)
vector (1,1)7, and thediagonal through a pointis the line through that . the t it h
point of slope 1. Notice that a diagonal usually consists of two segmentslrlll € transi 'On_ graph.
the squard0, 27)? due to the wrap around effect. Proof: Omitted. [ |



The enumeration problem thus reduces to computing a
realizable stable pair and performing a breadth-first search
(BFS) in the transition graph. Computing a realizable stable
pair can be done in tim&(n?) as mentioned in Section IlI-

B. The transition graph has sizé(n?) since it hasO(n?)

nodes and each node h@n) out-going edges. Thus, using \\

standard graph techniques it is possible to enumerate all \\\
realizable stable pairs in tim@(n?). Taking advantage of the \\\\
geometry of the problem, we can prune the transition graph \\\\
more efficiently as we perform a BFS. \

Theorem 2:The realizable pairs of orientations of two parts
P and @ can be enumerated i@(n? logn) time andO(n?)
space.

Proof: The basic step in the breadth-first search is this:
given a node (which is in our case a stable pair, that is, a grid
point in the push diagram), report all other nodes to which
there is an out-going edge and that have not been visitdgush plan that brings any shapeor ) into some prescribed
before. The basic idea behind our algorithm is to build a datealizable stable paif¢,+) corresponds, in the antecedent
structure that allows us to quickly retrieve the nodes to whigraph, to a path froml; = {(¢, )} to the setA, of all stable
there is an outgoing edge. This data structure should suppeatrs. Then, an optimal push plan is simply such a path with
deletions so that we can delete a node from it as soon as itrismmimal length. The antecedent graph has or2fer nodes
reached for the first time. Hence, we will always only reposhich make it too large to be computed in practice.
nodes that have not been reached before. The circular ordering on the angles induces a similar order-

Now consider a pain¢,t) of stable orientations or, in ing on the stable orientations of a shape. Leireular interval
other words, a grid point in the push diagram. We have sedanote a set of stable orientations that are consecutive for this
before that there is an edge frofw, ) to (¢',+’) iff the ordering (see Figure 7 for some examples). The product of two
diagonal through(¢,v) intersects the cell ¢§',+’). Hence,
we need a data structure (allowing deletions) for the following 1 2 3 4
gueries: given a query line of slope 1, the diagonal through 0 27
the point(¢, ), report all cells intersected by that line. Since_
the query line always have slope 1, we can project everythipg
orthogonally onto a line with slope -1. The cells how become

intervals, the query line becomes a point, and we wish to _ )
report all intervals containing the query point. This problerﬁ'rCUIar intervals corresponds, in the GPD, to a set of stable

can be solved using an interval tree. An interval tree usB&irs whose cells make up a rectarigleve call a product
linear storage—in our case this @(n2) since we have that of two circular intervals acircular rectangle The reduced

many cells—and deletions take(logn) time. Reporting all antecedent graplis obtained from the antecedent graph by
intervals containing a query point can be don®iflog n+ A) deleting all nodes that are not circular rectangles and their

time, whereA is the number of reported intervals. associated edges.

Since any interval is reported and deleted at most once, and-€mma 3: The reduced antecedent graph contdias 1)) },
the interval tree can be built i@ (n2 log n) time, the total time the set of all orientations and at least one shortest path of the

Fig. 6. The projections of the cells on the second diagonal.

7. Push diagram having for examglé, 2,3} or {3,4,1} as circular
rvals.

to do the BFS isD(n2logn). m antecedent graph between them.
Proof: Obviously{(¢,)} and the set of all orientations
IV. DESIGNING PUSH PLANS are circular rectangles. Lé#l, B) be an edge in the antecedent

In this section we give a polynomial time algorithm to find¥raph with A being a circular rectangle. LBt be the smallest
an optimal sequence of push actions bringing any parts circular rectangle that contais. By monotonicity of the push
and( into some prescribed realizable stable pair, irrespecti{nction, any push action sending in A also sendsB’ in
of their initial orientations. We first show how this problemy}- Thus, B’ is also an antecedent of. Consider a shortest
reduces to computing a shortest path in some directed grdfih 41 — ... — A, from A, = {(¢,¢)} to the set4,
and then improve that computation by using the geometry 8f all orientations. By induction there exists a path —
the problem. By — ... — B;_1 — A; such that4; C B; and theB; are

An antecedenbf a set of stable paird is any set of stable circular rectangles. This path is thus contained in the reduced
pairs B for which there exists a push action bringing ans’;mtecedent graph and has the same length as a shortest path.
pair in B to some pair inA. The antecedent graplis the u
directed _graph whose nodes are all sets of St_able pairs ar"ﬂ’he wrap around effect can split it into four rectangles in the region
whose directed edges connect each node to all its antecedgntsr)?.



The reduced antecedent graph BE&*) nodes, each having Proof: By the same reasoning as in Section IlI-B a
O(n?) out-going edges The size of the graph is thus(n®) realizable family can be computed in tin@(kn?). Gener-
and standard graph techniques allows for a computation alizing the transition graph introduced in Section IlI-C %o
an optimal push plan for a specified realizable paiOim®) parts is straightforward and the problem of enumerating all
time and space. Again, this result can be improved by usitite realizable families also translates to a breadth-first search
the GPD. in some graph, which now had(n*) nodes. The families of

Consider a copy of a circular rectanglesliding positively orientations accessible from a given famity correspond to
along the diagonal in the GPD. The circular rectangles that dre k-dimensional boxes whose projection on the hyperplane
antecedents ofl correspond to the rectangles contained in thatthogonal to the main diagonal contain the projection of
copy at the positions where it has at least one stable pair Bh The dynamic data structure that supports the BFS now
its lower or left boundary. Therefore, there is an edgeB) becomes somewhat more involved: it will be a multi-level data
in the reduced antecedent graph iff there exists a translatiorstriucture [3], whose first — 2 levels are segment trees and
B along the diagonal mapping the stable pairsBofo A with whose last level is an interval tree. Such a data structure on
at least one being mapped to the lower or left boundaryl.of boxes use®)(slogh 2 s) storage(s logh~1 s) preprocessing
We thus organize all the rectangles over the generalized ptishe, and queries and deletions can be don®iibg" ! s)
diagram in a data structure that allows for efficient answerstime (plus O(A) time for reporting the answers in case of

such queries. a query.) For lack of space, we omit the (standard) details.
Theorem 4:An optimal push plan achieving a specifiedSince we have = O(n*) cells, the running time of the entire

realizable pair of orientations can be found @r{n*log?n) algorithm isO(n*log"~' n). [

time and space. Our algorithm to compute an optimal push plan generalizes

Proof: Assume we are looking for rectanglds with in a similar way:
at least one equilibrium point mapped #s left boundary; Theorem 6:An optimal push plan for a separating families

the rectangles with an equilibrium point mappedie bottom of orientations of polygonal parts(P;, ..., P;) with O(n)
side can be found with a similar data structure. It is not difficutquilibrium points each can be found @(n2* log®* n) time.
to see that now the query translates to the following: find all  Proof: Omitted. ]
rectanglesB such that (a) the left side d# is contained in the

left side of A when both sides are projected orthogonally onto V1. CONCLUSION

a line of slope -1, and (b) the length &fs horizontal sides is We presented a polvnomial-time algorithm to desian a push
less than or equal to the length dfs horizontal sides. Again P poly ¢ gnap

| hi . itabl ic d uFlan for putting two types of parts into such orientations
we can solve this using a suitable geometric data Structufig,, they can be sorted using a simple sensorless device. Our

More preusely, the above query can b,e traqsformed to aa@ﬁproaeh generalizes to non-polygonal parts with finitely many
d|men5|ona_l range query. US”!Q a 3_—d|menS|0naI_range o Suilibrium orientations, that is any shape whose boundary
and dy”"?‘m'c fractional cascadm_g (with Sn'y deletions) [28},65 not contain a circular arc centered at the center of mass.
we obfain a data structure 2u5|r@(slog n) storage and .00 Gesigns gained considerable attention recently as they
preprocessing, and W!tl@(log n) update and query time can replace push mechanisms for certain tasks and are simpler
(pllus, for queriesO(1) _tlme for each reported answer), wher(?o realize. We also plan to generalize our technique for sorting
s is the number of objects stored in the structure. " parts so that it works with fences instead of push actions. The
main difference for our method is that the pushing angle of
a fence is more restricted than that of a jaw. The diagonal
Most of our results generalize to any number of polygonguery lines thus becomes diagonal query segments and our
shapes. Le{ Py, ..., P;} be a set of polygonal parts havingdata structures over the generalized push diagram have to be
O(n) equilibrium points each. The problem now becomes tadjusted accordingly.
find a sequence of push actions that brings any shape intg\n interesting open problem is to find the overall shortest
some fixed orientation such that the resulting positions of tkequence of push actions leading to any realizable stable pair
centers of mass of the shapes are pairwise separated. Thef orientations, or to any realizable stable pair of orientations
two fundamental questions remain the design of algorithmgoviding a prescribed minimum separation between the cen-
to enumerate all realizable families of orientations, as sorters of mass of both parts. It would also be interesting to
families may obviously not be realizable, and to compute anvestigate the worst-case number of push actions needed to

V. SORTING k PARTS

optimal push plan for a given realizable family. bring any two shapes into a given stable pair of orientations.
Theorem 5:The realizable families of orientations df
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