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Abstract— Disassembly-based motion planning (DBMP) is a
novel and efficient single-query, sampling-based motion planning
approach for free-flying robots. Disassembly-based motion plan-
ning uses workspace information to determine the workspace
volume of a potential solution path and uses this information to
exclude large portions of configuration space from exploration.
It also identifies the most constrained placements of the robot
along the potential solution path. These placements are referred
to as assemblies because they are highly constrained by the
environment, much like parts in an assembly are constrained.
The constraints limit the possible motions of the robot and thus
can be exploited to further limit configuration space exploration.
The use of these two sources of workspace information permits
the solution of many practical problems with very limited
configuration space exploration. This reduction in configuration
space exploration results in performance improvements of sev-
eral orders of magnitude, compared to state-of-the-art motion
planning methods. For non-free-flying robots, disassembly-based
motion planning performs at least as well as the sampling-based
motion planning method it is based on.

I. INTRODUCTION

We present a novel sampling-based, single-query motion
planning method for free-flying robots. The proposed planner
systematically reduces the amount of configuration space it has
to explore to solve a particular motion planning problem. This
is accomplished by an analysis of the workspace. The planner
uncovers structure in the workspace and uses it to guide
configuration space exploration. This structure is exploited in
two ways:

a) Exploiting Workspace Connectivity: Since the
workspace is of constant and low dimensionality, its
connectivity can be computed very efficiently. We determine
a volume of free work space through which the robot can
plausibly move from the initial to the final configuration. The
volume is referred to as tunnel. Plausibility is determined
based on a simple geometric criterion. The exploration of the
high-dimensional configuration space can then be restricted
to those regions that represent configurations of the robot
in which it intersects with the free workspace volume. This
generally eliminates large portions of configuration space.
Moreover, the workspace tunnel also includes information of
the distribution of obstacles along the path. This information
is essential in choosing appropriate sampling algorithms
(below). The details of this procedure are presented in
Section III-A.

b) Exploiting Geometric Constraints: The complexity
of configuration space regions varies over the configuration
space in most realistic applications. Because the variation is

unknown a priori, this property gives rise to the narrow passage
problem in sampling-based motion planning: the sampling
density for the entire configuration space has to be chosen
such that the most difficult narrow passage along the solution
path can be solved. As a result, many computational resources
are wasted in less difficult regions of the configuration space.
Rather than being adversely affected by narrow passages,
the proposed motion planning approach exploits them to
accelerate motion planning. The environment imposes many
geometric constraints on a collision-free configuration inside
a narrow passage, thus we view such a configuration as an
assembly. The geometric constraints of an assembly greatly
facilitate disassembly, as they limit the possible directions of
motion and thus the amount of configuration space that has to
be explored. The proposed planner uses this insight to improve
the efficiency of motion planning. The details of how narrow
passages are found, how assemblies are determined, and how
they are disassembled are given in Section III-B.

Fig. 1. Decomposition of a path planning problem into disassembly
problems: a) initial and final configurations of a robot; b) an “assembled”
state is determined based on information about the workspace connectivity;
c) constraints imposed by the environment are used to solve disassembly
problems; d) the motion planning problem is solved by connecting the
disassembly sequences to the initial and final configurations in an open region.

By combining these two ways of exploiting workspace
structure, we obtain a very efficient motion planner. We
demonstrate the main ideas with an example as follows: given
a motion planning problem shown in Figure 1a), workspace
information is obtained and used to determine the spatial
location of a narrow passage along a potential solution path.
A collision-free configuration of the robot inside the narrow
passage is obtained, as shown in Figure 1b). We consider
this configuration to be an assembled state of the robot.



The corresponding disassembly problem can be solved much
more efficiently than the assembly problem by exploiting
the geometric constraints imposed by the environment (see
Figure 1c). Finally, the disassembled states are connected to
the initial and final configurations. This results in the overall
solution path shown in Figure 1d). This can be done very
efficiently, because the intermediate regions contain mostly
free space. This principle also applies in environments with
multiple narrow passages.

Effectively, the proposed planner divides the configuration
space into three types of regions: a) the regions of configura-
tion space that are not explored at all, because they represent
configurations that do not intersect the workspace tunnel, thus
irrelevant to the path query, b) difficult regions or narrow
passages, i.e., regions in which the constraints imposed by
workspace obstacles on collision-free configurations can be
exploited to perform disassembly, and c) open regions that
can be solved very efficiently. By performing this division, the
proposed planner can distribute sampling densities accordingly
and accelerate configuration space exploration significantly,
yielding tremendous performance improvements over existing
sampling-based path planners.

Performance improvements for the proposed planner are
most pronounced for free-flying robots, because for these types
of robots the configuration space can most effectively be di-
vided into the three aforementioned categories. For other types
of robots, the performance of decomposition-based motion
planning will be equivalent to that of the underlying sampling-
based motion planning approach. However, we believe that the
principle of exploiting structure to render configuration space
exploration is general and can lead to other efficient planners
for the general motion planning problem [5].

II. RELATED WORK

The original probabilistic roadmap (PRM) approach [12]
gives rise to the narrow passage problem: paths through narrow
passages in configuration space can either not be found, or the
sampling density for the entire configuration space has to be
prohibitively high. To alleviate this problem, some approaches
perform sampling informed by workspace information. By
producing samples in the proximity of the medial axis of the
workspace, the likelihood of generating collision-free samples
can be improved [9]. Information obtained in the workspace
can also be exploited to locally adapt the sampling density [8],
[14], [19], [21].

Decomposition-based motion planning methods [4], [8] de-
compose the motion planning problem into a low-dimensional
and a high-dimensional subproblem. The low-dimensional
motion planning problem can be solved efficiently in the
workspace. The solution to this problem captures connectivity
information in the workspace relevant to the high-dimensional
planning problem. By exploiting this information, a solution
to the overall motion planning problem can be computed
efficiently. The method proposed in this paper differs from [8]
in that it replaces the computation of the generalized Voronoi
diagram with an efficient and localized sphere expansion;

it further differs in that it can easily handle geometrically
complex robots (since it avoids the “orientation” phase); and—
most importantly—it differs in that it decomposes motion
planning problems into disassembly problems. Generally, plan-
ners attempt to find paths into narrow passages. In contrast,
disassembly-based planning first identifies narrow passages
in the workspace to then find configuration space paths out
of them, greatly facilitating the motion planning process.
Whereas in [8] the focus is on exploiting workspace informa-
tion in easy regions of the workspace, decomposition-based
motion planning uses workspace information to solve the
narrow passages of a motion planning problem. Furthermore,
since decomposition-based motion planning is entirely based
on sampling-based techniques, we can maintain probabilistic
completeness guarantees.

A number of enhanced sampling strategies for multi-query
motion planning have been proposed [1], [3], [7], [10], [16].
These methods exploit local configuration space properties to
identify samples believed to contribute to a useful roadmap.
Single-query planners guide the exploration of configuration
space based on a particular motion planning query [2], [6],
[11], [13], [18]. They employ heuristics to reduce the region
of configuration space explored during planning.

III. DISASSEMBLY-BASED MOTION PLANNING

In this section, we describe the disassembly-based motion
planning approach (DBMP). First, we explain how workspace
information can be obtained efficiently. Then, we present the
methods of using this information to reduce the amount of
configuration space that must be explored to solve a given
motion planning problem.

A. Obtaining Workspace Information

A robot sweeps out a workspace volume as it moves from
an initial to the final configuration. If this workspace volume
were known, the exploration of configuration space could
be restricted to the subset of configurations at which the
robot is contained within this volume. Decomposition-based
approaches to motion planning compute an approximation of
this workspace volume, called a workspace tunnel [4]. The
exploration of configuration space can then be restricted to
those configurations for which the robot partially overlaps
with the tunnel. The set of qualifying configurations represents
a small subset of the overall configuration space and conse-
quently exploration can be performed much more efficiently.
Disassembly-based motion planning uses the same idea, and
thus belongs to the family of decomposition-based motion
planning approaches.

1) Sphere expansion: The workspace tunnel is computed
using a sphere expansion algorithm. The details of this algo-
rithm are given elsewhere [4]; here, we outline the general
idea. The purpose of the sphere expansion algorithm is to
determine a continuous workspace volume through which the
robot might be able to move from its initial position to its
final position. Intuitively, sphere expansion is a wavefront
propagation algorithm with adaptive step sizes.



To compute a workspace tunnel, we use a wavefront of
free space spheres with maximum radius. Initially, the largest
sphere of free space centered at a reference point of the robot
in its initial position is computed. The radius of this sphere
is determined by the distance of the reference point to the
closest obstacle. The surface of the sphere is sampled and
maximal spheres of free space centered at the sample points
are determined. If the size of a sphere does not allow the robot
to move through it, it is not expanded further. The remaining
spheres are kept in a priority queue, with the highest priority
assigned to the sphere closest to the final position of the robot.
This process is referred to as sphere expansion. Expansion of
the highest-priority sphere is performed until a sphere contains
the reference point of the robot in its final position. The
priority assignments of the spheres determine the exploration
pattern of the workspace. Different heuristics can be applied
to attain the fastest exploration of the workspace.

During sphere expansion, the parent/child relationship of
spheres is maintained. The resulting data structure is a tree of
spheres. The root sphere contains the reference point of the
robot in its initial position. The spheres of the tunnel represent
a path from the root of the tree to the leaf containing the refer-
ence point in the final position of the robot. Figure 2 shows a
resulting free space tunnel. The line segments connecting the
centers of the spheres along the tunnel are referred to as the
spine of the tunnel.

Fig. 2. Workspace tunnel computed using sphere expansion, connecting the
initial position of the robot in the bottom, left part of the environment and
the final position in the right part.

In contrast to other approaches that use workspace in-
formation [14], [19], [21], the sphere expansion provides
information about workspace connectivity for a specific path
query; exploration of the entire workspace is not necessary.

2) Exploring alternative tunnels: The sphere expansion
method described above determines a workspace volume that
connects the initial to the final configuration and has a certain
minimum diameter. The requirement of minimum diameter is
not sufficient to ensure that a particular tunnel also contains a
valid solution to the planning problem. Should the planner at
a later stage discover that no such path exists, an alternative
tunnel has to be considered. Such alternative tunnels can be
computed with a small modification to the sphere expansion
algorithm described in the previous section.

If configuration space sampling identifies a particular region
of the workspace tunnel as blocked, the corresponding spheres
of the tunnel are marked and their children are removed from
the queue. Sphere expansion then resumes normally until

another workspace tunnel has been obtained (see Figure 3).
This algorithm will explore alternative tunnels until the entire
workspace has been examined.

Fig. 3. For the initial tunnel (a) no assembly could be found. An alternative
tunnel (b) is computed.

It should be noted that the computation of workspace
information does not rely on any specific planning method
and the connectivity information computed is helpful to all
sampling-based motion planners. Once a candidate workspace
tunnel has been computed, sampling is restricted to the tunnel.
In the following, we will present a particular sampling-based
motion planner based on disassemblies that exploits additional
information obtained in the workspace.

B. Solving Narrow Passages as Disassemblies

So far, we have determined a workspace tunnel using sphere
expansion. We now describe how this tunnel can be used to
solve the corresponding motion planning problem efficiently.

1) Finding narrow passages: An assembly represents a
placement of the robot inside a narrow passage in the work
space. To find assemblies, narrow sections of the computed
tunnel are considered. A section is narrow, if the radius of
spheres in this section is below a threshold. This threshold is a
parameter of the proposed approach. It can easily be estimated
based on the geometry of the robot [4].

Once narrow passages are identified, local sphere expansion
is performed to improve the understanding of the workspace
nearby. In the implementation, sphere expansion explores the
area reached by the robot end-effector with the base fixed
in the smallest sphere in the narrow region. To divide the
motion planning problem into disassembly problems, the most
difficult regions of the tunnel must be identified. This can
be accomplished by using the watershed algorithm applied
to the union of spheres contained in the tunnel and the
additional spheres obtained in the additional exploration [19],
[20]. The result will be a set of spheres representing each
narrow passage, labeled by the narrow passage they belong
to. Spheres between two adjacent narrow passages are also
labeled as easy regions distinctly, as are the spheres connecting
the initial and the final position to the first and last narrow
passage along the tunnel.

An example of such a labeling is given in Figure 4. Fig-
ure 4 a) shows the initial and final position of the robot and the
environment with a narrow passage. Figure 4 b) illustrates the
tunnel computed by sphere expansion. The spheres obtained



by the local expansion and the labeling determined by the
watershed algorithm are shown in Figure 4 c).

Fig. 4. Decomposition of the motion planning problem based on assemblies:
a) the initial and final position of a robot; b) workspace tunnel connecting
the initial and final positions; c) spheres are added to improve workspace
understanding around narrow passages, spheres are labeled as the narrow
passage and open regions (distinguished with different colors in the figure);
d) the assembled state of the robot decomposes the motion planning into
two subproblems: moving from the assembled state to the initial and final
configurations.

2) Finding an assembly: An assembly is found by sampling
robot configurations in the proximity of the narrow passage.
Uniform sampling is adequate in this situation, because the
entire region has roughly uniform complexity. To generate
a sample inside the narrow passage for free-flying robots, a
value for the rotational degrees of freedom of the robot is
generated uniformly at random. In addition, a reference point
on the robot and a random point inside the volume of the
narrow passage are chosen. The translational component of
the robot’s configuration is determined such that these two
points coincide.

Since an assembly should represent a highly constrained,
collision-free placement of the robot, we require that the robot
be either completely contained inside the narrow passage or
can reach across it. In the latter case, we require that two
points of the robot be contained in spheres with different labels
outside the narrow region. An example of such a placement
can be seen in Figure 4 d). Collision-free samples that do not
fulfill this criterion are rejected. If more than one assembly
is discovered after a certain number of samples, we choose
a set of connected assemblies randomly to disassemble. If no
assembly can be found, a new tunnel has to be computed.

3) Performing disassembly: So far only a very small frac-
tion of the configuration space has been explored by uniform
sampling. These regions correspond to narrow passages along
a workspace tunnel connecting the initial and the final config-
uration. This computational expense is necessary, however, to
solve the most difficult parts of the motion planning problem.
The resulting assemblies give us much information about
solutions for the remaining disassembly problems. We will
use the configuration of the assembly to bias our sampling
scheme for disassembly. The sampling scheme is motivated
by two insights:

1) the translational component of the disassembly motion

should be biased to move the robot out of the narrow
passage and into an open region, and

2) due to the constraints imposed by the environment, only
small incremental motions should be attempted.

Pseudo code for the proposed sampling procedure for
diffusion-based disassembly is shown in Figure 5. Given a
set A of connected assembled placements of the robot inside
the narrow passage, this procedure builds a roadmap for
each disassembly subproblem. Since assemblies are strictly
constrained by the environment, samples are obtained by
small perturbations of milestones already presented in the
roadmap. This effectively uses the information contained in
the initial assembly and subsequently the entire roadmap to
reduce configuration space exploration by limiting samples in
the regions likely containing collision-free placements of the
robot. While the rotational component is perturbed randomly,
the translational component of the configuration is perturbed
with a bias towards the open regions of workspace represented
by the tunnel. This bias exploits workspace information to fur-
ther reduce configuration space exploration, since promising
directions for translational motions are sampled more densely.

DISASSEMBLE (assemblies A, tunnel T )
initialize roadmap R to contain assemblies A

while robot has not left narrow passage
randomly select milestone m from R

randomly select direction d towards open region in T

perturb translation of m biased by d to obtain m′

perturb rotational components of m′ to obtain m′′

if m′′ is collision free
if r ∈ R exists so that m′′ can be connected to r

insert m′′ and edge (r,m′′) into R

Fig. 5. Pseudo code for disassembly; A represents a list of assembled states,
T refers to the workspace tunnel, R designates a roadmap; m, m′, m′′, r are
configurations.

By selecting configurations for perturbation uniformly at
random in the roadmap R, rather than in a biased fashion
as in other approaches [11], [13], we effectively achieve a
bias towards promising regions of configuration space. This
can be seen as follows. Since the configuration space region
under consideration represents a narrow passage, collision-
free samples will be rare. Once a collision-free sample has
been found, its neighborhood is likely to contain additional
free placements of the robot. This probability increases, as
configurations move away from the assembled state, effec-
tively introducing a bias from constrained regions towards less
constrained regions. This bias is desirable for disassembly.

An assembly is considered to be disassembled, once the
robot has been removed from the narrow section of the tunnel.
Consecutive disassembled configurations along the tunnel are
connected using the traditional PRM framework with uniform
sampling [12]. Only samples in proximity to the relevant
section of the workspace are retained. Consequently, the PRM
framework is only applied to a small and open region of the
configuration space and a small roadmap suffice to find a



solution.

C. Connecting Disassemblies

By concatenating disassembly sequences obtained by the
proposed sampling scheme and intermediate paths obtained
using a localized PRM planner, a solution to the initial motion
planning problem can be determined. A localized PRM planner
uses the sampling scheme described in Section III-B.2, instead
of a uniform sampling scheme. This restricts the generation
of samples to the region of interest by ensuring that the robot
intersects with the relevant workspace region.

D. Probabilistic Completeness

Due to space limitations we can only provide high-level
arguments for the probabilistic completeness of disassembly-
based motion planning. Ultimately, we defer to the complete-
ness proof for probabilistic roadmap methods with uniform
sampling [17] and show that the algorithmic differences be-
tween the two motion planning methods do not affect the
proof.

Our argument requires that all applied sampling methods
are probabilistically complete; uniform sampling fulfills this
requirement [17]. The implementation described in Section III
uses uniform sampling to find assemblies. Uniform sampling is
also used in easy regions. To ensure probabilistic completeness
for uniform sampling, we can show that restricting sampling
to workspace tunnels does not affect completeness.

For disassemblies in difficult regions, however, a diffusion-
based technique is employed. To show completeness for the
disassembly step, we require that a certain fraction of the
samples placed during disassembly are placed uniformly at
random in the disassembly regions; we then use the same
argument as for uniform sampling. (In practice, we found
that the sampling method described in Section III-B.3 is much
more efficient than uniform sampling. We did not observe any
problem instance solvable by uniform sampling, but not by
using the disassembly method.)

To argue probabilistic completeness, we have to make an
additional modification to the motion planner presented in
Section III. This modification addresses the special case when
the robot has to perform a motion for the purpose of re-
orienting itself. Such a situation can arise when the initial and
final configuration lie in the same difficult region. This difficult
region can contain a valid workspace tunnel, but might not
allow the robot to perform the required motion to assume the
goal configuration. However, a solution path may still exist.
Such a solution path would lead the robot from the difficult
region into an easy region for re-orientation and then back
into the difficult region. The workspace-based exploration of
configuration space would not generate such a path, since
it only generates samples along non-overlapping workspace
tunnels connecting the initial and final placement of the robot.
To find such a solution path, the workspace exploration will,
after all other workspace tunnels have been rejected, generate
a tunnel consisting of the entire workspace (see Figure 6).
At this stage, the proposed planner would still benefit from

the different sampling densities in different regions of the
configuration space. The advantage gained from the restriction
of sampling to a particular configuration space regions would
be lost. Effectively, the planner is transformed from a single-
query to a multi-query planner.

Fig. 6. A workspace tunnel resulting from a sphere expansion in the entire
workspace.

Given these modifications to the algorithm, we rely on
the completeness proof for probabilistic roadmap methods
with uniform sampling [17] to argue that decomposition-based
motion planning is probabilistically complete.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed planner, we compare it with
six prevailing sampling-based planning methods: probabilis-
tic roadmap (PRM) method with uniform sampling [12],
PRM with Gaussian sampling [3], PRM with the bridge
test [10], visibility-based PRM [16], rapidly-exploring random
trees (RRTConnect) [13], and lazyPRM [2]. RRTConnect and
lazyPRM can be viewed as the most commonly used single-
query approaches. Since disassembly-based motion planning
(DBMP) is a single-query method, these planners are most
appropriate for comparison. We also compare the performance
of disassembly-based motion planning with common multi-
query planners. Our experiments indicate that in some envi-
ronments these multi-query planners outperform the single-
query planners (RRT and lazyPRM), but not disassembly-
based motion planning. An additional comparison of the
proposed method with a sampling-based motion planner using
an approximated medial axis (aMAPRM [21]) can be found
in [22].

The implementation used for the experiments is based
on the Motion Strategy Library (MSL) [15]. This library
contains implementations of PRM with uniform sampling and
RRTConnect. Other motion planners used in the experimental
evaluation were integrated into MSL.

The experimental environments used for the evaluation of
disassembly-based motion planning are shown in Figure 7.
The two left-most environments in Figure 7 contain two
chambers connected by a narrow passage. The initial and
goal configurations are located in different chambers. The two
environments only differ in the width of the narrow passage.
These environments are used to demonstrate that, in contrast
to the other planners, the performance of disassembly-based
motion planning is only marginally affected by the width of
the narrow passage.



Fig. 7. Experimental environments: In the first environment on the left is bounded by a box (12m × 4.5m × 4.5m) and contains two parts of free space
connected by a narrow passage (we consider two passages of different size: 0.1m× 0.5m× 0.5m and 0.1m× 1.0m× 1.0m). The second environment is
bounded by a box (12m× 4.5m× 4.5m) and the two parts of free space are connected by a long tunnel (2.5m× 1.0m× 1.0m); this tunnel is longer than
the PA10 robot, which has a total length of 1.3m. The third environment is bounded by a box (12m×7.5m×4.5m) and the tunnel connecting the lower two
chambers has a size of 0.1m× 0.375m× 0.375m; both passages connecting the upper chamber to the lower chambers have a size of 0.1m× 1m× 1m.
The fourth environment is bounded by a box (12m× 10m× 4.35m) and contains several rooms. The doors have width of 0.5m.

The second picture from the left in Figure 7 shows an
environment in which the length of the narrow passage exceeds
the length of the robot. This experiment illustrates that narrow
passages can be solved efficiently, irrespective of their sizes.

The next environment contains three chambers, of which
the two bottom chambers are connected by a passage that is
very narrow for the robot. DBMP identifies this tunnel as an
area containing a possible solution path. When the process of
finding an assembly fails, the alternative tunnel is found and
a solution path along the corresponding workspace volume is
computed. This illustrates DBPM’s ability to handle the failure
of finding an assembly or the appropriate disassembly.

The right-most environment in Figure 7 represents an office
building with hallways and offices. A projection of the model
into the plane is shown. The robot moves between the rooms,
connected by the hallway. This experimental environment
illustrates how large portions of the configuration space can
be excluded from motion planning based on workspace con-
nectivity.

Fig. 8. Robots used in the experiments. Left: free-flying Mitsubishi PA-
10 with 13 degrees of freedom, total length 1.317m; Right: free flying 102
degree-of-freedom robot, composed of 33 links (0.1mm × 0.0125mm ×

0.0125mm, total length 2.9m) with ball-joints.

We ran experiments with a thirteen degree-of-freedom,
free-flying PA10 robot and a 102 degree-of-freedom robot
(Figure 8). Experimental results are reported in Table I. Our
method outperforms other planners not only with respect to
overall planning time, but also with respect to the size of the
resulting roadmap. As discussed in Section III, DBMP spends
most of the computational resources finding assemblies and
disassembling them, i.e., solving those parts of the planning
problem that are considered difficult. Only very limited re-

sources suffice to connect disassembled states through easy
regions. This indicates DBMP distributes the computational
resources according to the difficulties of the regions. As a
result, the roadmap contains most samples in difficult regions,
where a denser sampling is required to capture the connectivity
of the restricted free space. In open regions very few samples
suffice to capture connectivity.

The experiments with the 102 degree-of-freedom robot
demonstrate the ability of DBMP to solve planning problems
in high dimensional configuration spaces. In the office environ-
ment, more time is spent connecting paths in the easy regions
because the rooms and the corridor are small with respect to its
size. In [22], we also demonstrate the effectiveness of DBMP
applied to rigid body robots.

PRM with uniform sampling, PRM with Gaussian sampling,
PRM with bridge test, and visibility-based PRM are multi-
query planners. They explore the entire configuration space.
It therefore is not surprising that disassembly-based motion
planning can outperform these methods. It is noteworthy,
however, that these multi-query methods in some environments
outperform the single-query methods RRTConnect [13] and
lazyPRM [2]. We offer the following explanation: RRTCon-
nect prefers to drive configuration space exploration towards
unexplored and open regions. It thus has difficulties to find
paths from open regions into narrow passages. It also suf-
fers from the translation-rotation discrepancy problem [7].
LazyPRM, on the other hand, biases exploration of configura-
tion space based on proximity to the straight line connecting
initial and final configuration of the planning problem. The
experimental environments used in this paper contain a narrow
passage that has to be traversed to solve the planning problem.
If this narrow passage is “far away” from the straight line,
lazyPRM is forced to exhaustively explore large regions of
the configuration space.

Finally, to illustrate the sparseness of roadmaps resulting
from disassembly-based motion planning, we show the sam-
ples of a successful roadmap in Figure 9. All milestones of
the roadmap are along the workspace tunnel and most of them
are close to the narrow passages.



Robot Workspace Computation Path Planning Total
Environment Planner Ts(s) Nv Ne Nc Ta Td Te Tc(s) T (s) Factor

PRM N/A 18259 36516 29849130 N/A N/A N/A 6962.02 6962.02 5481.9
Gaussian N/A 9075 18146 2968297 N/A N/A N/A 1993.08 1993.08 1569.4

BridgeTest N/A 2361 4703 1997788 N/A N/A N/A 983.74 983.74 774.6
Visibility N/A 53 103 2614581 N/A N/A N/A 1526.12 1526.12 1201.7

RRTConnect N/A 12273 12272 804802 N/A N/A N/A 1174.95 1174.95 925.2
lazyPRM N/A no path found after 20,000 seconds >15748.0
DBMP 0.08 14 26 1444 0.27 0.92 0.00 1.19 1.27 1.0

PRM N/A 1441 2878 269144 N/A N/A N/A 148.02 148.02 208.5
Gaussian N/A 335 662 66086 N/A N/A N/A 40.20 40.20 56.6

BridgeTest N/A 331 633 270557 N/A N/A N/A 130.57 130.57 183.9
Visibility N/A 25 49 222557 N/A N/A N/A 122.61 122.61 172.7

RRTConnect N/A 80 79 28591 N/A N/A N/A 17.75 17.75 25.0
lazyPRM N/A 7816 373357 91228 N/A N/A N/A 3128.96 3128.96 4407.0
DBMP 0.08 8 14 932 0.13 0.50 0.00 0.63 0.71 1.0

PRM N/A no path found after 20,000 seconds >3738.3
Gaussian N/A 1945 3854 492442 N/A N/A N/A 381.02 381.02 71.2

BridgeTest N/A 473 869 352156 N/A N/A N/A 164.76 164.76 30.8
Visibility N/A 64 107 331750 N/A N/A N/A 199.13 199.13 37.2

RRTConnect N/A 8471 8470 657739 N/A N/A N/A 700.90 700.90 131.0
lazyPRM N/A no path found after 20,000 seconds >3738.3
DBMP 3.77 13 24 1487 0.08 1.50 0.00 1.58 5.35 1.0

PRM N/A 2798 5590 3440460 N/A N/A N/A 2029.61 2029.61 253.7
Gaussian N/A 894 1772 200279 N/A N/A N/A 136.97 136.97 17.1

BridgeTest N/A 923 1781 1020581 N/A N/A N/A 466.78 466.78 58.3
Visibility N/A 80 153 1251411 N/A N/A N/A 684.25 684.25 85.5

RRTConnect N/A 5245 5244 501984 N/A N/A N/A 383.24 383.24 47.9
lazyPRM N/A no path found after 20,000 seconds >2500.0
DBMP 1.36 43 84 6773 0.45 4.36 1.83 6.64 8.00 1.0

PRM N/A 2580 5510 6485085 N/A N/A N/A 4082.56 4082.56 249.1
Gaussian N/A 1028 1993 209273 N/A N/A N/A 170.60 170.60 10.4

BridgeTest N/A 589 1004 427681 N/A N/A N/A 237.94 237.94 14.5
Visibility N/A 165 307 436722 N/A N/A N/A 321.15 321.15 19.6

RRTConnect N/A 5934 5933 550687 N/A N/A N/A 479.08 479.08 29.2
lazyPRM N/A no path found after 20,000 seconds >1220.3
DBMP 10.80 39 76 4261 1.64 1.97 1.99 5.59 16.39 1.0
PRM N/A 1734 3456 370109 N/A N/A N/A 3137.48 3137.48 330.3

Gaussian N/A 3977 7425 1268621 N/A N/A N/A 11402.24 11402.24 1200.2
BridgeTest N/A 2309 4056 1036890 N/A N/A N/A 7508.79 7508.79 790.4
Visibility N/A 41 64 317935 N/A N/A N/A 2590.49 2590.49 272.7

RRTConnect N/A no path found after 20,000 seconds >2105.3
lazyPRM N/A no path found after 20,000 seconds >2105.3
DBMP 2.00 7 12 1459 2.03 5.47 0.00 7.50 9.50 1.0

PRM N/A 3299 6514 1229858 N/A N/A N/A 10612.4 10612.4 375.4
Gaussian N/A 1335 2358 343108 N/A N/A N/A 3264.92 3264.92 115.5

BridgeTest N/A 1563 2509 658825 N/A N/A N/A 5345.59 5345.59 189.1
Visibility N/A 109 206 642390 N/A N/A N/A 5577.04 5577.04 197.3

RRTConnect N/A no path found after 20,000 seconds >707.5
lazyPRM N/A no path found after 20,000 seconds >707.5
DBMP 7.44 23 44 2735 3.02 17.82 0.00 20.83 28.27 1.0

PRM N/A 1407 2656 535469 N/A N/A N/A 6239.24 6239.24 47.6
Gaussian N/A 1365 2309 324785 N/A N/A N/A 3612.45 3612.45 27.6

BridgeTest N/A 1134 1618 356464 N/A N/A N/A 3545.02 3545.02 27.0
Visibility N/A 182 324 512168 N/A N/A N/A 5381.38 5381.38 41.1

RRTConnect N/A no path found after 20,000 seconds >152.6
lazyPRM N/A no path found after 20,000 seconds >152.6
DBMP 34.70 63 122 8082 0.73 53.08 42.55 96.36 131.07 1.0

TABLE I

Experimental Results
Comparison of a PRM planner with uniform sampling (PRM), a PRM planner with Gaussian sampling (Gaussian), a PRM planner with bridge test
BridgeTest, a visibility-based PRM (Visibility), an RRTConnect planner, a lazyPRM planner and a disassembly-based motion planning (DBMP).
Ts represents the time to compute the workspace connectivity information; Nv denotes the number of vertices in the roadmap, Ne refers to the
number of edges in the roadmap, Nc specifies the total number of collision checks, Ta is the time to find assemblies in the narrow passage(s), Td

represents the time to disassemble the robot from assemblies, Te denotes the time to connect configurations in easy regions, Tc gives the duration
of roadmap construction, and T is the add-up time consumption. Factor indicates the time consumption ratio between other planners and DBMP.
All times are averaged over ten runs, given in seconds. The experiments were performed on a PentiumIV 3.2GHz PC with 1GB RAM and a 64MB
DDR Radeon 300 graphics card.



Fig. 9. Sample placement for disassembly-based motion planning: The
planning problem requires the PA10 robot to move from one room to another
in the floor environment. Left: the workspace tunnel connecting the initial
and goal positions of the robot. Right: milestones of the resulting roadmap
projected into the workspace. There are clusters of milestones inside the
narrow passages. This indicates that most computation time is spent solving
the difficult portions of the motion planning problem.

V. CONCLUSION

Disassembly-based motion planning is a single-query,
sampling-based motion planning method for free-flying robots
that outperforms existing motion planning techniques by sev-
eral orders of magnitude for many realistic scenarios. We
present extensive experimental evidence in support of this
argument, comparing the performance of disassembly-based
motion planning with several state-of-the-art sampling-based
motion planners. For stationary robots the planner is capable of
achieving performance improvements and will always perform
at least as well as the underlying sampling-based motion
planning approach.

Disassembly-based motion planning derives its efficiency
from the exploitation of workspace information. This infor-
mation is used to identify configuration space regions that are
likely to contain the solution path. By restricting exploration
to these regions, only a small fraction of configuration space
need to be explored, significantly increasing the efficiency of
the motion planning process.

To restrict configuration space exploration, two distinct
types of workspace information are exploited. Connectivity
information from the workspace is used to identify a tunnel of
free workspace likely to contain a solution path. Configuration
space exploration can then be restricted to configurations in
which the robot intersects this workspace tunnel. Note that
this aspect of the proposed planner can be applied as a
pre-processing step to any sampling-based motion planner to
significantly improve its performance.

Workspace information is further used to identify narrow
passages. A collision-free placement of the robot inside a
narrow passage is considered an assembly, because geometric
constraints of the environment limit the motions the robot
can perform. The constraints imposed by the environment can
in turn be exploited to limit configuration space exploration,
resulting in further performance improvements.
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