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Abstract— Haptic rendering involving deformable objects has Mass-spring-damper models are rather popular in haptic
seen many appllcatlons, from sqrglcal S|mglat|0n and training, to  rendering (e.g. [3][4]). Such models are simple with well
virtual prototyping, to teleoperation, etc. High quality rendering understood dynamics, easy to construct and can be used for

demands both physical fidelity and real-time performance, which . t fi d L-ti imulati H it h
are often conflicting requirements. In this paper, we simulate Interactive and even real-ime Simuiation. However, 1t has

contact force between a held rigid body and an elastic object drawbacks. The physical accuracy of such a model is often
and the corresponding shape deformation of the elastic object not sufficient. For example, incompressible volumetricects
efficiently and realistically based on a nonlinear physical model or thin surfaces that are resistant to bending are difficult t
and a novel beam-skeleton model, taking into account friction, be modeled as mass-spring systems. The model is linear, and

compliant motion, and multiple contact regions. Our approach . . . o
is able to achieve a combined update rate of over kHz in N order to simulate nonlinear force response, it is necgssa

realistic, smooth, and stable rendering, as demonstrated by our t0 integrate the linear model in a way similar to using Finite

implemented examples. Element Method (FEM), but then real-time update rate for
haptic rendering is hard to achieve.
. INTRODUCTION As for continuum models, such as models based on FEM

[5], Finite Difference Method [6], Boundary Element Method

Modeling deformable objects in contact has been studigr|, and Long Element Method [8], real-time performances
both for graphic rendering and for haptic rendering. Earlan be achieved only by further simplifications or adaptive
research work on graphic rendering of deformable objects w@ethods. With the aid of pre-calculations and multiresohut
surveyed by Gibson and Mirtich [1]. More recent survey Omethods, deformation of more complicated objects can be
graphic and haptic rendering involving deformable objees simulated in real-time. However, little is done to deal with
be found in [2]. The existing work can be divided mainlyeformable objects under complex contact states involving
into two large categories of approaches: purely geometfigultiple contacts and compliant motions with friction, whi
approaches (including methods based on splines, patclies @uld make real-time performance hard to achieve. The major
free-form geometric models) and physically based app®schity of previous approaches have assumed single contactrregi
(based on mass-spring models and continuum models).  and localized deformation [9]. Increasing rendering spised

While graphic rendering only needs to make the modeledivays at the expense of lowering physical accuracy.
object deformatiotook realistic, haptic rendering requires that In this paper, we simulate contact force between a held rigid
the deformed objecteels realistic as well, and, comparingbody and an elastic object and the corresponding globalkshap
to visual images, humans tend to have a more acute, fingsformation of the elastic object efficiently and realislig
and richer tactile sense of object properties. While the tgpddased on a nonlinear physical model and a ndvehm-
rate in graphic rendering needs to be around 20-30 Hz dkeletormodel. Our approach takes into account friction, com-
look realistic, the update rate in haptic rendering needs pdiant motion, and multiple contact regions. The objeciize
reach 1kHz to feel realistic. Therefore, haptic renderingoth to avoid expensive computation and to preserve pHysica
requires much higher level of physical realism and muctefastaccuracy of continuum model.
update rate than graphic rendering to achieve high quaiitly a We use the general Duffing equation [10] as a foundation to
realistic rendering, which is essential for many applmadi simulate nonlinear contact forces from a deformed object in
that simulate manipulations in real physical world. contact. The Duffing equation is one of the standard models

However, high-level of physical realism and fast update rafor studying nonlinear systems subjected to external &rce
of rendering are often conflicting requirements. A commoilt is well studied, relatively simple, and yet is powerful to
approach is to adopt the physically-based deformable rmodeaiodel very complex behaviors [11]. This model is particiylar
used in graphic rendering, such as mass-spring-damperisnodeitable for modeling the nonlinear stiffness of biomatisri
and continuum models, and to improve the update rate by in surgical simulations. Contact forces of differentetyf
applying certain simplifications to speed up computation. deformable objects (i.e. elastic, plastic, etc) can be kitad



by changing the related parameters, which can be achieved b¥or any point on the elastic object outside certain immediat

pre-calculations [9]. neighborhoodR of a contact region, we consider its deforma-
We introduce a novebeam-skeletomodel to compute the tion as caused by the stresses and strains spread to it feom th

stresses and strains of a deformed elastic object at certeamtact region as a function of the contact force and call it

extremal points as well as the stresses at multiple contatbbal deformation

regions, based on which, we further introduce fast comjmutat  For points inside the neighborhodti of the contact region,

of global shape change through an interpolation method the¢ take into account that the shape deformation is not only

achieves minimization of elastic energy. Moreover, we tal@aused by the contact force but also by the size of the contact

into account the different effects of different contactar®n region: the greater the size, the smaller the unit presanes

shape change (under the same force). under the same force, and thus the smaller the deformatien. W
The rest of the paper is organized as follows. In Sectigherefore modify the shape deformation insieaccordingly

II, we introduce some basic assumptions. In Section Illand call the resullocal neighborhood deformatio(Fig. 1).

we briefly describe real-time collision detection used i ou et

approach. In Section 1V, V, and VI, we describe our method for ’

contact force modeling and beam-skeleton model for graphic e, . [ )
rendering of shape deformation and for dealing with mustipl O um::>-" /
contact region cases. We present some implementatiortgesul

in Section VIl and conclude the paper in Section VIII.

(@) (b) (c)
Il. BASIC ASSUMPTIONS Fig. 1. Example of shape deformation: (a) originally undefatnedastic
. . . object, (b) global deformation over the whole elastic ob{#wt dot line shows
Homogeneous Isotropic Elastic Material the surfaces before deformation), (c) local neighborhoddrdeation

Depending on material properties, deformable objects can
be categorized into many types. In this paper, we focus &erce from the Human User
modeling objects that are made of homogeneous isotropse ela Here we assume that the force exerted to the held object
tic material. The overall deformation effect for such miter from the human user is applied to the mass center of the
is nonlinear. However, the nonlinear deformation only exisheld object. This assumption is useful later for estimatimg
inside a small neighborhood of the contact point/regionrehedistribution of contact pressure (see Section IV.C).
the stress is very high. The stress felt in other regions ishmu

: : L [1l. REAL-TIME COLLISION DETECTION
less and can be considered as linearly distributed.

I . ) Collision detection for rigid objects has been well in-

Stable Eqwhbnum Conﬂgur.atlons vestigated. However, real-time collision detection inuad

We_ only con_su_ier modeling _the con';act forges caused deeforming object in interactive environment poses specia
qua_5|-stat|c collision and compliant motion, Wh'Ch_mGMt challenges. Our strategy is to treat contact detection dwtw
motions are sl_cl)wlenough ‘,Q‘UCh t.hat only deformation ogcurrgqigid body and an elastic object as two rigid bodies at the
at stable equilibrium configurations needs to be consideregl,o ¢ contact and then dynamically change the surface mode
wherg thg eIaspc Energy 1S mlnlmlzed. T'h|s provides %k the elastic objet to reflect the shape changes due to dentac
effective discretization of the otherW|s_e cor_mnu_ous Eoemd Specifically we use a real-time collision detection package
shape change happened on the elastic object in contact. SOLID[12] for objects in mesh models that allows dynamic
Objects and Contacts updates of meshes. In each time stegontact detection is

We use a mesh model representation for the geometry aifaracterized by one of the following three phases.
the rigid held object. For the elastic object, we maintain In the first phase, no contact has yet happened between
both a mesh model and an exact parametric surface mothel two objects, and thus the elastic object does not change
of its undeformed shape (especially if it is non-polyhedralits shape. Here collision detection can be considered as jus
The exact parametric surface model is used for both fast dmetween two rigid objects (in mesh models).
accurate computation of shape deformation (Section V). The second phase is marked by the transition from no

We define a singleontact regionas a cluster of contact contact to contact between the two objects, i.e., at least on
points S such that the distance between a contact poinf in contact point is established in the current time stepnce that
and its nearest neighboring contact pointdnis less than a happens, at least one contact region is formed and recorded.
thresholdr. A contact point outsidé' is considered belonging The third phase describes the situation when the two objects
to another contact region, and there can be multiple contastre already in contact in the previous time step 1 and
regions in general. remain in contact in the current time stépbut the contact

We only focus on cases where each single contact regi@ygion(s) may change. There are two possible changes: (1)
is relatively small so that within the contact region, thestfir existing contact region changes because the contact gaints
partial derivatives of the originally undeformed surfadete it change, and (2) new contact regions are formed. Our cbntac
elastic object hardly change. A contact region may congist detection algorithm deals with the situation by comparimg t
just a single contact point. contact points detected in time stép- 1 with those detected



in the current time step to update existing contact regions
and/or form new contact regions (in terms of mesh models).
Note that collision detection can again be treated as betwee
two rigid objects in this phase, but the undeformed shape of () (b - (c
h lastic obiect is replaced by the deformed shape Obtairllljlﬁg' 3.  Contact force simulation: (a) contact is norm_al to tht_i[al
the elas ] p y p deformed surface, (b) skewed deformation, (c) compliant anotiith
from time stepi — 1. deformation

Aiter all contgct regions are determined, con_tact forced; a\r/]\()here the first part in the above equation is the transiem ter
the corresponding shape change of the elastic object can

2 . . .
computed and rendered haptically and graphically for titap s and the second part is the steady-state term. With the quasi-
1 in real-time as detailed in Sections 1V, V, and VI.

3
1
A

static assumption (Sect. 11.B), under a laygethe steady-state
is achieved when: reachesD at the end of one time step, i.e.,

2
In this section, we first apply the general Duffing equation @
to provide a nonlinear contact force model for a single poidthat is, atz = D = a, the held rigid object becomes static,
contact caused by pressing the rigid object normally to a fagnd the contact force respong®'.|| from the elastic object
of the elastic object (Fig. 2). Then we extend the method Bglances the external for¢d'. | = mA, wherem is the mass

model other single point contact or single region contasesa Of the rigid object. Thus, from (2), by omitting the high orde
term of e (sincele| << 1), we have

IV. CONTACT FORCEMODELING FORHAPTIC RENDERING D A
= aq =

w*2

362¢€
[Fell = mlw§ D + =2=D°| 3)
Do.
= B. Skewed Deformation and Compliant Motion
Pe Now we extend our basic method of contact force simulation

to point contact cases where the direction of deformation is
not normal to the initially undeformed surface of the elasti
object so that the held rigid object may get stuck or perform
A. General Duffing Equation compliant motion on the elastic object.

One of the commonly used nonlinear equations for char-Whe” the direction of deformation is not normal to the
acterizing the behaviors of nonlinear mechanical, elealri originally undeformed contact surface of the elastic objec

and chemical systems is the Duffing equation. We can use fhéd- 3), the deformation displacement vecforcan be de-

Duffing equation to characterize the nonlinear force resporc©MPosed into tangential and normal componémsandD.,

of an elastic object in the basic single point contact case '§EPECtively. The force response due to deformation along
a quasi-static state as shown in Fig. 2, whegeindicates the normal directionF', can be computed from (3) with

the position of the contact point before deformation, whicf = [Px |, pointing to the direction agai.n@n. .
we call theorigin of the deformation distributignand D is ~ 'NOW we need to detect whether the rigid body is stuck or

the distance fronp, to the point of maximum deformation PEforms a compliant motion tangentially along the contact
pe, Which we call thedeformation displacement vectrith surface of the elastic object. First, assume that the rigidlyb

magnitudeD. The Duffing equation essentially defines a nodds fStUCk at ;he current t|mfe steﬁ dule to thbe tangﬁntrllal
linear spring-damper-restorer model. eformation force response from the elastic obJegt whic

A general Duffing equation has the following form: can be computed from (3) witl = [|D.||, pointing to the
direction againsD;.
X+ 20X + wix + €42x> = Acost (1) According to [13], the maximum friction from objects of
_ o _ _ different elasticity is proportional t§F.,[°, 2 < 8 < 1, in
where z is the deformation distance;w2x is the linear the empirical equatioffi,., = K ||F..||° where the coefficient

restoring term,—2;x is the damping term—¢/33x* is the K and 3 were given in [14] for various deformable materials.
nonlinear restoring term (withe| << 1), Acoit is propor- For a truly elastic solidg = 2,

tional to the external force, anf} is a constant. Note that  Now if ||[F.|| < fnee, OUr assumption is correct: the
the nonlinear restoring force item represents the nomafingigid object is indeed stuck by the friction so that it will
properties offered by the deformation of the nearby area. not have a compliant motion at the current time step. Only a
It is reasonable to assume that the force exerted to the h%wed deformation happens (See F|g 3b. Note that the Shape
rigid body from the human operator is constant during ong deformation is modeled in Section V). The total contact

short time step. By using the equivalent frequency[10], force response from the elastic object to the rigid body is
w* = wo + 303a’e/8uwo, wherea is the value ofz at steady- g, —F,, + F,,.

Fig. 2. Contact force simulation: a single point contact witbrmal
compression (the hollow arrow indicates contact force tivag

state, we have the solution as Otherwise, if[|[Fe| > fimaz, this represents an impossible
B ) A case for static friction, indicating that our assumptioattthe
x=e MCsin /w2 — u?t + w2 rigid body is stuck is incorrect. On the contrary, the rigid

w



object in fact makes a compliant motion, which shiits(i.e., Next, we can find arquivalent point contadb the single

the origin of the deformation distribution) from the prew® region contact in that the contact force response to thatt poi
time stepi — 1 to the current time step If the contact point contact is the same as the total contact force response of the
p. (on the held rigid object) has moved tangentially from timeingle region contacF.. With known F. and m (the mass
stepi — 1 to time stepi with a distanceAd, then to model the of the rigid object, which can be considered as concentrated
effect of compliant motion, we also shify the distanceAd on the equivalent contact point), the equivalent deforomati

to obtain its new position. For the dynamic frictidfy;, we displacemenD of the equivalent contact point can be obtained
have||F.|| = up||Fenl| Whenup||Fenl| < fmae: Otherwise from equation (3). The position of the equivalent contadhpo

we have||F.|| = fmaz, Whereup is the dynamic friction p. before deformation can be considered as at the geometric
coefficient. Subsequently, the total contact force respémsn center of the projection of the contact region on the oriyna

the elastic object to the rigid body iB. = F., + F.. undeformed surface of the elastic object along the defeomat
Accordingly, there is a shift of the deformed shape of thdirectiond. See Fig. 5. Using such an equivalence of a point
elastic object at time stepfrom that at time step — 1 due contact to the original single region contact simplifies the
to compliant motion (as shown in Fig. 3c. See Sect. V fahape rendering of the deformed elastic object (see Sect. V)
modeling of the shape of deformation).

C. Single Region Contact

A single region contact is formed by a contact region of
more than one point. The total effect of contact forces can
be obtained by integrating contact forces generated oracbnt
points (or infinitesimal contact areas) over the whole ctnta
region. We discretize the force integration as the summatio
of contact forces responding to a number of evenly disteithut
contact points with different displacements of defornmtio
as shown in Fig. 4. To achieve real-time processing, the
discretization can be simply based on the vertex points of
the mesh model of the contact region of the rigid object,
provided that these vertex points are evenly distributethen
mesh. The contact force responsg at each contact point (c) (d)

p; can be calculated by the general Duffing equation basgd. 5. Examples of quivalent contact point: (a) before normal deforma-
on its deformation displacemers (Fig. 4) and the mass; tion, (b) after normal deformation, (c) before skewed deforomat(d) after

N . . . deformation
distributed on it. Summing up alf; gives the total forcef’
against the direction of deformatiah V. SHAPE DEFORMATION MODELING AND GRAPHIC

RENDERING

In Sections IV, the contact force response from a contact
point or a single contact region of the elastic object to the
rigid object is modeled. Now we consider how to model the

- shape deformation occurred on the elastic object due to such
a contact.
(@) (b) A. Global Deformation Modeling and Rendering

Fig. 4. Examples of single region contact and contact regisaretization . . .
(d is the direction of deformation): (a) normal deformation (bjewskd Since global deformation is due to the spread of

deformation stresses/strains caused by the contact force, in the case of

In the case of a normal deformation (Fig. 4a), the computedsingle region contact, we use the equivalent point contact
F is the total contact force responsg. along the normal (which gives the same contact force effect — see Sect. IV.C)
of the originally undeformed surface of the elastic objed¢b compute the deformation just as in the case of a single poin
corresponding to the single region contact. contact, as described below.

However, in the case of skewed deformation (Fig. 4b), the Recall that we maintain the exact parametric surface model
computedF with magnitudeF' along direction—d should be of the undeformed elastic object (Section Il). Because the
further decomposed to a normal compon®y}, (i.e., normal elastic object without deformation consists of smooth (@liat
to the originally undeformed surface of the elastic object) curved) faces, which may be bounded by smooth (straight-
a tangential componer®.;. Depending on the magnitude ofline or curved) edges and vertices, its deformed faces and
F., following the same analysis as presented in Sect. IV.Bdges should also be smooth except at bounding vertices
we can determine whether the held rigid object gets stuck @and the contact (or equivalent contact) point to minimize
performs compliant motion as the single region contact rxclelastic energy. Therefore, our strategy to capture theadlob
and obtain the corresponding total contact foR;e deformation of an elastic object includes following twopste



1) Compute the amount of deformation at each curvatutlee beam end and the deformation distapCés
extremal point on its boundary surface, which is either a 3EL
vertex, where the curvature is discontinuous, a point with F, = 3 y (4)
local minimum or maximum curvature, or an inflection
point with zero curvature [15]. These extremal pointgle can relate, to the stresses on the beam:
are obtained from the exact parametric surface model of F,
the elastic object. Tz = _]_Z(l —a)y oy =0:="Ty: =0
2) Do a deformation interpolation between these extremal

points and the contact (or equivalent contact) point to Tyz = #&[% +v22 — (14 v)y%
obtain smooth deformation of faces and edges of the 2(0+v) L.~ 9y
elastic object. 1 F,0¢
Tze = 57 N7 A
Both steps can be performed in real time as detailed in the 20+v) I, 0z

following. _ _ ~whered’s are stresses;’s are shear stressek, is the moment
1) Deformation computation at curvature extremal pointsyf inertia, ande; is the bending function of the deformable

To perform the first step, we need to find the elastic force ghject depending on the shape of the cross section of the beam
each curvature extremal point which causes the deformatiofoy gifferent shapess; is different.
and compute the amount of deformation accordingly in real-we call the above case where the external force is normal
time. For this purpose, we introduce a no#am-Skeleton {5 the heam @imple bending case
Model to capture the underlying physics of elasticity effi-
ciently: once a contact is formed, the stress and straitioala
between the contact (or equivalent contact) point and each
curvature extremal point on the elastic object is modeled
by a beam whose central line connects them, where beam
parameters are determined by the physical properties ds wel
as the exact parametric surface properties of the elasgciob
The collection of such beams forms what we calb@am
skeleton Fig. 6 shows an example of a beam skeleton on an!n general, the external force applied to a beam at one end is
elastic ellipsoid object. not necessarily normal to the beam central line. In such e, cas
based on the Saint-Venant principle [17], we can decompose
Elastic Object the force into a normal force and a tangential one and
decompose the problem of relating the external force to beam
deformation into two simpler cases: one is the above simple

/
O

y

Fig. 7. Schematic of beam bending

eld Object bending case, and the_ other is a simple compression/expansi
case, which we describe below.
Fig. 6. Beam skeleton (in solid lines) on an elastic elligsobject For the 5|mple compreSS|on/expan5|on of the beam caused

_ o by a tangential external forcé}, assuming the area of the
Now we describe how deformation is computed for a beaggss_section of the beam iS, we can relateF, to the

of length [ (which is determined based on the undeforme@ngemim deformation (i.e., compression or expansifn)
shape of the elastic object) bent at one end with the other efihe peam end = 7 with the following equation:
fixed based on the Bernoulli-Euler bending beam theory [16]. ES

Establish the beam coordinate systemCasyz as shown in F, = —~Ax (5)
Fig. 7, where the origin is set at the center point of the fixed !

end of the beam, and the axis is along the central line of we can also relaté’, to the stresses of the beam:

the beam before it is bent and pointing to the other end of the
beam. They axis is following the bending force direction and
the > axis is orthogonal to both the andy axis following  The total stresses at a point of a beam are the vector

the right-hand rule. A poinp on the central line of the beamsums of the stresses from the simple bending case and simple
before it is bent has coordinatés, 0,0). Once the beam is compression/expansion case.

pressed at the end that is not fixed, the beam bends, and thg, our application, the forcee applied to a contact or

o, =F./S Oy =02 = Tpy = Tpz =Ty =0

new coordinates of is (z',y’, z’) satisfying equivalent contact point from the rigid object to the efasti
object can be viewed as applied to the common end of a beam
/ / Fy 1 2 1 3 / foti :
T =z V=57 (§la: g ) =0 skeleton consisting af beams connecting the common end to
z

each curvature extremal point of the elastic object. Theefor
where E is the Young’'s modules anfl is moment of inertia F can be obtained as opposing the contact force response from
with respect to the axis. At the end of the beam where= [, the elastic object (as computed in Section IV) with the same
the relation between the external foreg normally applied to magnitude. Establish a coordinate frarfg-z;y;2; for each



beam: (i = 1, ...,n) of the beam skeleton such that the originvhereD~! is the inverse of the elastic coefficient matrix [16].
O; is located at the-th curvature extremal point, which is at  Given a curvature extremal point with coordinafasy, z}

the other end of the beaimz; axis is along the beam centraland its stresses, we can get its strains from (10). Next, its
line before it is deformed and pointing to the common endisplacement due to deformatidn, v, w} can be solved from

y; is on the plane determined by the axis and the force these strains using (9).

F, andz; axis is orthogonal ta:; andy; axes following the  2) Global deformation renderingWith the displacements
right-hand rule. of all curvature extremal points of the elastic object due to
Now we can viewF applied to the same (contact) poinijeformation determined together with the displacemenhef t

of the common end of all the beams in the skeleton as thgntact (or equivalent contact) point, we obtain the defmtm
sum of the forcesF'; applied to each beam at the same shape of the entire elastic object by an interpolation netho
point so that the deformation occurred at each beam can tr@@ending the Phong shading method [18]. Phong shading is
be computed separately. Notice thtdoes not have &; ysed for linear interpolation of vectors at vertices bongd
component in the beans frame. LetF,, and I, be thex; polygon across internal points of the polygon.

andy; components of;. From (4) and (5), we can obtain the |y our case, however, the elastic object can have a general
following relations among alF';’s and the relation betweengyface with curved features with or without deformatioet L
eachF; and the deformation of beaimat the common end of p pe the set of curvature extremal points plus the contact poin

the beam skeleton expressed in bezsrframe: of the surface of the elastic object before the current defor
Axq Ax; Az, mation, note that the elastic object can already be deformed
FoytowiFoponi oy = LTTL T 6) pefore the current deformation to further change its shape.
, , , Such a surface can be partitioned by curves connecting each
Fy:.:F,:..:F, = z;—; I Z;—; I % (7) pair of points inP into smooth curvature-monotonic surface
1 i n patches, calledaces[15]. The vertices of each face are a
Additionally, the sum of allF;’s should equal td&": subset of points iP. Now given the deformation displacement
n vectors of these vertices for each face, we extend the Phong
ZFi =F (8) shading to obtain a linear interpolation of the deformation
i=1 displacement vectors across the face as the following:
From the2n equations (6), (7), and (8F; can be solved for Let 6; denote the angle between the direction of
each beam. displacement and the outward normal direction of

With the above method, we can compute the stresses at point i on the face, called théisplacement angle
the fixed end of each beam (which is centered at a curvature of point i; the directions of displacement vectors
extremal point of the elastic object). Now imagine the fixed across the face are obtained by linearly interpolating
end of each beam is no longer fixed, the effect of the stresses the displacement angles of the vertices of the face,
will make the corresponding curvature extremal point mave t  and the magnitudes of displacement vectors across
a new position. The position change can be considered as the the face are obtained by linearly interpolate the dis-
deformation at such a curvature extremal point, which can be placement vectors’ magnitudes of the face’s vertices.
computed from those stresses.

Now we describe how to compute strains from stressg
and subsequently compute the deformation at each curva
extremal point. In general, the deformation displaceméra o
point on the surface of an object can be expressed param
cally as{u,v,w}, satisfying

We obtain the deformed shape of the entire elastic object
performing the above shading on all faces. Note that since
€ do graphical rendering of an object based on its polygonal
mesh approximation, the interpolated points of defornmatio
%Héding of a face can be simply the corresponding mesh points
of the face.
u=u(z,y,z) v=uv(z,vy,2) w=w(z,y,2) It should be emphasized that using our beam-skeleton model
to compute deformation fits the physics of elasticity well.

The strain at pointu, v, w) can be represented as First, according to physics, the stresses/strains are thiyoo

€ % 0 0 spread over the elastic object surface and have extremal
€ 0 a% 0 values on the cu.rvature extremal point;. Thus, if we can get

. 0 0 % thg stresses/strains on all extrgmal points o_f the defdemab

€= Yoy = aﬁ ag 0 v (9) object, we can get stresses/stralns on any points betwesa t.h

Yoe Oy 9 8 w extremal points by interpolations. S_econd,_ the deformatio
Yo P 6’2 % d|splaceme_nts at these extremal points with r_esp_ect to the
9z oz contact region can be thought of as the combination results

The relation between the strain and stress for a point orohextension/compression, bending and twisting, all ofakihi

linear elastic object can be represented as can be captured by the beam-bending model. The global shape

deformation of the elastic object obtained from intergakt
{e} =D o} (10) these displacements satisfies that the closer a surfacetpoin



the contact point or the equivalent contact point, the greatompute strains at those points. Fig. 9 shows an example with
the deformation and curvature change is at this point. two contacts and their beam-skeletons on an elastic ellipso

B. Local neighborhood deformation modeling and rendering Elastic Object

For the cases of a single point contact, there is no need to
modify the result of global shape deformation describedrabo —h
in the neighborhood? of the contact point. b2

For the cases of a single region contact, however, the effeI::ct o B el ‘ in solid I stic ellinsoid
of the contact area on shape deformation in the neighborhod%j . Beam skeletons for two contacts (in solid lines) orefastic ellipsol
R needs to be taken into account. Since the number of mesh ~ VII. | MPLEMENTATION AND TESTRESULTS

points n in the contact region is proportional to the area e have implemented our approach and applied it to real-
of the contact region, we can definenaodification factor time haptic rendering involving a virtual rigid body and an
w =y to capture the effect of the contact area 0Bjastic object via a PHANToM Premium 1.5/6DOF device,
deformation: the larger the area, the shallower the defdoma \yhjch is connected to a computer with dual Intel Xeon 2.4GHz
Now, we use a modified equivalent deformation displacemepocessors and 1GB RAM. Human operator can virtually hold
wD (where D is determined in Section IV.C), which isthe rigid objectA by attaching it to the haptic device and make
shallower thanD, to conduct the same kind of interpolationgrpitrary contact to the elastic objeBt(with its bottom center

as in global deformation rendering within the neighborh@dd fixed, where a world coordinate system is set) by guarded
on the globally deformed shape to further modify the shapgyotions and perform compliant motions on the elastic object

The result is the combined effect of global shape deformatigye ysed the following values for the parameters:= 1kg,
with local neighborhood shape modification. Fig. 8 shows twee,. — ( 4, w, = 0.2, K = 10, 8 = 0.75, and parameters for

examples of local neighborhood shape deformation causedrQiber: p = 1100Kg/m?, E = 3 - 10°N/m?, andv = 0.5.

a single region contact as modeled by this method. Figures 10 to 12 show some test results, where the unit of
’[ force is Newton, the unit of length is mm, and the unit of time
‘ is ms. The world coordinate system in all examples is built as
the following: z-axis points righty-axis points up, and-axis
[ f\: points out of the paper plane and is orthogonak:t@and y
P, U’c axes following the right-hand rule.
DPe De Fig. 10 shows a test example with a rigid mallet and an

Fig. 8. Two examples of local neighborhood shape deformatign (€lastic ellipsoid. The human operator first moved down the
indicates the modified equivalent point, dotted lines inithe shapes before mallet to make a contact with the elastic ellipsoid, and ndove
modification) the mallet compliantly along therz direction mostly and

VI. DEALING WITH MULTIPLE CONTACT REGIONS
When there are multiple contact regions (at one time step),

S;,t = 1,...,m, we establish a beam-skeleton model with 3 ‘
respect to each contact region in order to compute both the /__\\ B ’/—\\l
contact force responses and the shape deformation of the ‘ J i 15
elastic object. The beam-skeleton modglw.r.t. S; connects B i > /'/q

—

the (equivalent) contact point; of S; to each extremal point — e U

of the elastic object as well as the (equivalent) contachtpoi — ——

of every other contact regiop; (j # i) by beams. Sy '\
The contact forceFs, from the elastic object to the rigid B ,}*“

body at contact regioy; consists of not only the force from — s S

deformation atS; alone as described in Section IV but also

the stress contributions from every other contact regign 25- -

(j € {1,...,m} — {i}). The stress force contribution fros); 20] Tk

can be computed from the beam-skelef®nin a way similar 15] oy

to that described in Section V.A. e

e
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The overall shape deformation of the elastic object can be
computed by superimposing the shape deformation conddbut
by each contact regio;,i = 1,...,m, which can be com-
puted based on each beam-skeleton ma@jeh a way similar R e T
to that described in Section V. The only difference is thathe Time (ms)

the (equivalent) contact poinis's (j € {1,...,m} — {i}) are Fig. 10. Force rendering results when a mallet moved compjiahting an
fixed beam ends that do not move so that there is no neeckltipsoid
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eling and computing haptic force took a constant and almost
instant time, of approximately 3fs, that is, the computation
had an update rate of approximately B3z — regardless of

the objects geometry. This was negligible compared to the
time needed for real-time contact detection (Section Illisp
shape updating for the elastic object, which was in the ocofler
kHz. In all test examples shown above, as can be seen, shape
deformation of the elastic object looks quite realistic.

VIII. CONCLUSIONS

We have introduced a novel approach to model and render
in real-time both the nonlinear contact force response and
the shape deformation of a general elastic object caused by
a rigid object contacting it and moving compliantly on it,
taking into account friction. Our approach achieves boti-re
time efficiency and physical accuracy by taking advantage
of nonlinear physics equations, elasticity principlesarbe
bending theory, and geometrical properties of generaheas.

The approach is implemented to confirm its effectiveness.
An update rate of over kHz is achieved for the entire
rendering process, including collision detection and egimg)
both haptic force and graphic shape change. A future researc
goal is to further test the validity of our approach.
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Fig. 12. Two contact regions between a rigid compass and ardefie
heart: (left) one contact region (right) two contact region
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