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Abstract— Haptic rendering involving deformable objects has
seen many applications, from surgical simulation and training, to
virtual prototyping, to teleoperation, etc. High quality rendering
demands both physical fidelity and real-time performance, which
are often conflicting requirements. In this paper, we simulate
contact force between a held rigid body and an elastic object
and the corresponding shape deformation of the elastic object
efficiently and realistically based on a nonlinear physical model
and a novel beam-skeleton model, taking into account friction,
compliant motion, and multiple contact regions. Our approach
is able to achieve a combined update rate of over 1kHz in
realistic, smooth, and stable rendering, as demonstrated by our
implemented examples.

I. I NTRODUCTION

Modeling deformable objects in contact has been studied
both for graphic rendering and for haptic rendering. Early
research work on graphic rendering of deformable objects was
surveyed by Gibson and Mirtich [1]. More recent survey on
graphic and haptic rendering involving deformable objectscan
be found in [2]. The existing work can be divided mainly
into two large categories of approaches: purely geometric
approaches (including methods based on splines, patches and
free-form geometric models) and physically based approaches
(based on mass-spring models and continuum models).

While graphic rendering only needs to make the modeled
object deformationlook realistic, haptic rendering requires that
the deformed objectfeels realistic as well, and, comparing
to visual images, humans tend to have a more acute, finer,
and richer tactile sense of object properties. While the update
rate in graphic rendering needs to be around 20–30 Hz to
look realistic, the update rate in haptic rendering needs to
reach 1 kHz to feel realistic. Therefore, haptic rendering
requires much higher level of physical realism and much faster
update rate than graphic rendering to achieve high quality and
realistic rendering, which is essential for many applications
that simulate manipulations in real physical world.

However, high-level of physical realism and fast update rate
of rendering are often conflicting requirements. A common
approach is to adopt the physically-based deformable models
used in graphic rendering, such as mass-spring-damper models
and continuum models, and to improve the update rate by
applying certain simplifications to speed up computation.

Mass-spring-damper models are rather popular in haptic
rendering (e.g. [3][4]). Such models are simple with well
understood dynamics, easy to construct and can be used for
interactive and even real-time simulation. However, it has
drawbacks. The physical accuracy of such a model is often
not sufficient. For example, incompressible volumetric objects
or thin surfaces that are resistant to bending are difficult to
be modeled as mass-spring systems. The model is linear, and
in order to simulate nonlinear force response, it is necessary
to integrate the linear model in a way similar to using Finite
Element Method (FEM), but then real-time update rate for
haptic rendering is hard to achieve.

As for continuum models, such as models based on FEM
[5], Finite Difference Method [6], Boundary Element Method
[7], and Long Element Method [8], real-time performances
can be achieved only by further simplifications or adaptive
methods. With the aid of pre-calculations and multiresolution
methods, deformation of more complicated objects can be
simulated in real-time. However, little is done to deal with
deformable objects under complex contact states involving
multiple contacts and compliant motions with friction, which
could make real-time performance hard to achieve. The major-
ity of previous approaches have assumed single contact region
and localized deformation [9]. Increasing rendering speedis
always at the expense of lowering physical accuracy.

In this paper, we simulate contact force between a held rigid
body and an elastic object and the corresponding global shape
deformation of the elastic object efficiently and realistically
based on a nonlinear physical model and a novelbeam-
skeletonmodel. Our approach takes into account friction, com-
pliant motion, and multiple contact regions. The objectiveis
both to avoid expensive computation and to preserve physical
accuracy of continuum model.

We use the general Duffing equation [10] as a foundation to
simulate nonlinear contact forces from a deformed object in
contact. The Duffing equation is one of the standard models
for studying nonlinear systems subjected to external forces.
It is well studied, relatively simple, and yet is powerful to
model very complex behaviors [11]. This model is particularly
suitable for modeling the nonlinear stiffness of biomaterials,
as in surgical simulations. Contact forces of different types of
deformable objects (i.e. elastic, plastic, etc) can be simulated



by changing the related parameters, which can be achieved by
pre-calculations [9].

We introduce a novelbeam-skeletonmodel to compute the
stresses and strains of a deformed elastic object at certain
extremal points as well as the stresses at multiple contact
regions, based on which, we further introduce fast computation
of global shape change through an interpolation method that
achieves minimization of elastic energy. Moreover, we take
into account the different effects of different contact areas on
shape change (under the same force).

The rest of the paper is organized as follows. In Section
II, we introduce some basic assumptions. In Section III,
we briefly describe real-time collision detection used in our
approach. In Section IV, V, and VI, we describe our method for
contact force modeling and beam-skeleton model for graphic
rendering of shape deformation and for dealing with multiple
contact region cases. We present some implementation results
in Section VII and conclude the paper in Section VIII.

II. BASIC ASSUMPTIONS

Homogeneous Isotropic Elastic Material
Depending on material properties, deformable objects can

be categorized into many types. In this paper, we focus on
modeling objects that are made of homogeneous isotropic elas-
tic material. The overall deformation effect for such material
is nonlinear. However, the nonlinear deformation only exists
inside a small neighborhood of the contact point/region where
the stress is very high. The stress felt in other regions is much
less and can be considered as linearly distributed.

Stable Equilibrium Configurations
We only consider modeling the contact forces caused by

quasi-static collision and compliant motion, which means that
motions are slow enough such that only deformation occurred
at stable equilibrium configurations needs to be considered,
where the elastic energy is minimized. This provides an
effective discretization of the otherwise continuous force and
shape change happened on the elastic object in contact.

Objects and Contacts
We use a mesh model representation for the geometry of

the rigid held object. For the elastic object, we maintain
both a mesh model and an exact parametric surface model
of its undeformed shape (especially if it is non-polyhedral).
The exact parametric surface model is used for both fast and
accurate computation of shape deformation (Section V).

We define a singlecontact regionas a cluster of contact
pointsS such that the distance between a contact point inS
and its nearest neighboring contact point inS is less than a
thresholdr. A contact point outsideS is considered belonging
to another contact region, and there can be multiple contact
regions in general.

We only focus on cases where each single contact region
is relatively small so that within the contact region, the first
partial derivatives of the originally undeformed surface of the
elastic object hardly change. A contact region may consist of
just a single contact point.

For any point on the elastic object outside certain immediate
neighborhoodR of a contact region, we consider its deforma-
tion as caused by the stresses and strains spread to it from the
contact region as a function of the contact force and call it
global deformation.

For points inside the neighborhoodR of the contact region,
we take into account that the shape deformation is not only
caused by the contact force but also by the size of the contact
region: the greater the size, the smaller the unit pressuresare
under the same force, and thus the smaller the deformation. We
therefore modify the shape deformation insideR accordingly
and call the resultlocal neighborhood deformation(Fig. 1).

(a) (b) (c)
Fig. 1. Example of shape deformation: (a) originally undeformed elastic
object, (b) global deformation over the whole elastic object(the dot line shows
the surfaces before deformation), (c) local neighborhood deformation

Force from the Human User
Here we assume that the force exerted to the held object

from the human user is applied to the mass center of the
held object. This assumption is useful later for estimatingthe
distribution of contact pressure (see Section IV.C).

III. R EAL-TIME COLLISION DETECTION

Collision detection for rigid objects has been well in-
vestigated. However, real-time collision detection involving
a deforming object in interactive environment poses special
challenges. Our strategy is to treat contact detection between
a rigid body and an elastic object as two rigid bodies at the
time of contact and then dynamically change the surface model
of the elastic objet to reflect the shape changes due to contacts.
Specifically we use a real-time collision detection package
SOLID[12] for objects in mesh models that allows dynamic
updates of meshes. In each time stepi, contact detection is
characterized by one of the following three phases.

In the first phase, no contact has yet happened between
the two objects, and thus the elastic object does not change
its shape. Here collision detection can be considered as just
between two rigid objects (in mesh models).

The second phase is marked by the transition from no
contact to contact between the two objects, i.e., at least one
contact point is established in the current time stepi. Once that
happens, at least one contact region is formed and recorded.

The third phase describes the situation when the two objects
were already in contact in the previous time stepi − 1 and
remain in contact in the current time stepi, but the contact
region(s) may change. There are two possible changes: (1)
existing contact region changes because the contact pointsin
it change, and (2) new contact regions are formed. Our contact
detection algorithm deals with the situation by comparing the
contact points detected in time stepi − 1 with those detected



in the current time stepi to update existing contact regions
and/or form new contact regions (in terms of mesh models).
Note that collision detection can again be treated as between
two rigid objects in this phase, but the undeformed shape of
the elastic object is replaced by the deformed shape obtained
from time stepi − 1.

After all contact regions are determined, contact forces and
the corresponding shape change of the elastic object can be
computed and rendered haptically and graphically for time step
i in real-time as detailed in Sections IV, V, and VI.

IV. CONTACT FORCEMODELING FORHAPTIC RENDERING

In this section, we first apply the general Duffing equation
to provide a nonlinear contact force model for a single point
contact caused by pressing the rigid object normally to a face
of the elastic object (Fig. 2). Then we extend the method to
model other single point contact or single region contact cases.

X

D

p0

pc

Fig. 2. Contact force simulation: a single point contact withnormal
compression (the hollow arrow indicates contact force direction)

A. General Duffing Equation

One of the commonly used nonlinear equations for char-
acterizing the behaviors of nonlinear mechanical, electrical
and chemical systems is the Duffing equation. We can use the
Duffing equation to characterize the nonlinear force response
of an elastic object in the basic single point contact case at
a quasi-static state as shown in Fig. 2, wherep0 indicates
the position of the contact point before deformation, which
we call theorigin of the deformation distribution, and D is
the distance fromp0 to the point of maximum deformation
pc, which we call thedeformation displacement vectorwith
magnitudeD. The Duffing equation essentially defines a non-
linear spring-damper-restorer model.

A general Duffing equation has the following form:

ẍ + 2µẋ + ω2
0x + ǫβ2

0x3 = AcosΩt (1)

where x is the deformation distance,−ω2
0x is the linear

restoring term,−2µẋ is the damping term,−ǫβ2
0x3 is the

nonlinear restoring term (with|ǫ| << 1), AcosΩt is propor-
tional to the external force, andΩ is a constant. Note that
the nonlinear restoring force item represents the non-linear
properties offered by the deformation of the nearby area.

It is reasonable to assume that the force exerted to the held
rigid body from the human operator is constant during one
short time step. By using the equivalent frequencyω∗ [10],
ω∗ = ω0 + 3β2

0a2ǫ/8ω0, wherea is the value ofx at steady-
state, we have the solution as

x = e−µtC sin
√

ω∗2 − µ2t +
A

ω∗2

X X X

(a) (b) (c)

DDD

Fig. 3. Contact force simulation: (a) contact is normal to the initial
undeformed surface, (b) skewed deformation, (c) compliant motion with
deformation

where the first part in the above equation is the transient term
and the second part is the steady-state term. With the quasi-
static assumption (Sect. II.B), under a largeµ, the steady-state
is achieved whenx reachesD at the end of one time step, i.e.,

D = a =
A

ω∗2
(2)

That is, atx = D = a, the held rigid object becomes static,
and the contact force response‖Fc‖ from the elastic object
balances the external force‖Fe‖ = mA, wherem is the mass
of the rigid object. Thus, from (2), by omitting the high order
term of ǫ (since|ǫ| << 1), we have

‖Fc‖ = m|ω2
0D +

3β2
0ǫ

4
D3| (3)

B. Skewed Deformation and Compliant Motion

Now we extend our basic method of contact force simulation
to point contact cases where the direction of deformation is
not normal to the initially undeformed surface of the elastic
object so that the held rigid object may get stuck or perform
compliant motion on the elastic object.

When the direction of deformation is not normal to the
originally undeformed contact surface of the elastic object
(Fig. 3), the deformation displacement vectorD can be de-
composed into tangential and normal componentsDt andDn

respectively. The force response due to deformation along
the normal directionFcn can be computed from (3) with
D = ‖Dn‖, pointing to the direction againstDn.

Now we need to detect whether the rigid body is stuck or
performs a compliant motion tangentially along the contact
surface of the elastic object. First, assume that the rigid body
is stuck at the current time stepi due to the tangential
deformation force response from the elastic objectFct, which
can be computed from (3) withD = ‖Dt‖, pointing to the
direction againstDt.

According to [13], the maximum friction from objects of
different elasticity is proportional to‖Fcn‖

β , 2

3
≤ β ≤ 1, in

the empirical equationfmax = K‖Fcn‖
β where the coefficient

K andβ were given in [14] for various deformable materials.
For a truly elastic solid,β = 2

3
.

Now if ‖Fct‖ ≤ fmax, our assumption is correct: the
rigid object is indeed stuck by the friction so that it will
not have a compliant motion at the current time step. Only a
skewed deformation happens (see Fig. 3b. Note that the shape
of deformation is modeled in Section V). The total contact
force response from the elastic object to the rigid body is
Fc = Fcn + Fct.

Otherwise, if‖Fct‖ > fmax, this represents an impossible
case for static friction, indicating that our assumption that the
rigid body is stuck is incorrect. On the contrary, the rigid



object in fact makes a compliant motion, which shiftsp0 (i.e.,
the origin of the deformation distribution) from the previous
time stepi − 1 to the current time stepi. If the contact point
pc (on the held rigid object) has moved tangentially from time
stepi−1 to time stepi with a distance∆d, then to model the
effect of compliant motion, we also shiftp0 the distance∆d
to obtain its new position. For the dynamic frictionFct, we
have||Fct|| = µD||Fcn|| whenµD||Fcn|| < fmax; Otherwise
we have||Fct|| = fmax, whereµD is the dynamic friction
coefficient. Subsequently, the total contact force response from
the elastic object to the rigid body isFc = Fcn + Fct.
Accordingly, there is a shift of the deformed shape of the
elastic object at time stepi from that at time stepi − 1 due
to compliant motion (as shown in Fig. 3c. See Sect. V for
modeling of the shape of deformation).

C. Single Region Contact

A single region contact is formed by a contact region of
more than one point. The total effect of contact forces can
be obtained by integrating contact forces generated on contact
points (or infinitesimal contact areas) over the whole contact
region. We discretize the force integration as the summation
of contact forces responding to a number of evenly distributed
contact points with different displacements of deformation,
as shown in Fig. 4. To achieve real-time processing, the
discretization can be simply based on the vertex points of
the mesh model of the contact region of the rigid object,
provided that these vertex points are evenly distributed onthe
mesh. The contact force responseFi at each contact point
pi can be calculated by the general Duffing equation based
on its deformation displacementdi (Fig. 4) and the massmi

distributed on it. Summing up allFi gives the total forceF
against the direction of deformationd.
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Fig. 4. Examples of single region contact and contact region discretization
(d is the direction of deformation): (a) normal deformation (b) skewed
deformation

In the case of a normal deformation (Fig. 4a), the computed
F is the total contact force responseFc along the normal
of the originally undeformed surface of the elastic object
corresponding to the single region contact.

However, in the case of skewed deformation (Fig. 4b), the
computedF with magnitudeF along direction−d should be
further decomposed to a normal componentFcn (i.e., normal
to the originally undeformed surface of the elastic object)and
a tangential componentFct. Depending on the magnitude of
Fct, following the same analysis as presented in Sect. IV.B,
we can determine whether the held rigid object gets stuck or
performs compliant motion as the single region contact occurs
and obtain the corresponding total contact forceFc.

Next, we can find anequivalent point contactto the single
region contact in that the contact force response to that point
contact is the same as the total contact force response of the
single region contactFc. With known Fc and m (the mass
of the rigid object, which can be considered as concentrated
on the equivalent contact point), the equivalent deformation
displacementD of the equivalent contact point can be obtained
from equation (3). The position of the equivalent contact point
pc before deformation can be considered as at the geometric
center of the projection of the contact region on the originally
undeformed surface of the elastic object along the deformation
directiond. See Fig. 5. Using such an equivalence of a point
contact to the original single region contact simplifies the
shape rendering of the deformed elastic object (see Sect. V).
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Fig. 5. Examples of quivalent contact pointpc: (a) before normal deforma-
tion, (b) after normal deformation, (c) before skewed deformation, (d) after
deformation

V. SHAPE DEFORMATION MODELING AND GRAPHIC

RENDERING

In Sections IV, the contact force response from a contact
point or a single contact region of the elastic object to the
rigid object is modeled. Now we consider how to model the
shape deformation occurred on the elastic object due to such
a contact.

A. Global Deformation Modeling and Rendering

Since global deformation is due to the spread of
stresses/strains caused by the contact force, in the case of
a single region contact, we use the equivalent point contact
(which gives the same contact force effect – see Sect. IV.C)
to compute the deformation just as in the case of a single point
contact, as described below.

Recall that we maintain the exact parametric surface model
of the undeformed elastic object (Section II). Because the
elastic object without deformation consists of smooth (flator
curved) faces, which may be bounded by smooth (straight-
line or curved) edges and vertices, its deformed faces and
edges should also be smooth except at bounding vertices
and the contact (or equivalent contact) point to minimize
elastic energy. Therefore, our strategy to capture the global
deformation of an elastic object includes following two steps:



1) Compute the amount of deformation at each curvature
extremal point on its boundary surface, which is either a
vertex, where the curvature is discontinuous, a point with
local minimum or maximum curvature, or an inflection
point with zero curvature [15]. These extremal points
are obtained from the exact parametric surface model of
the elastic object.

2) Do a deformation interpolation between these extremal
points and the contact (or equivalent contact) point to
obtain smooth deformation of faces and edges of the
elastic object.

Both steps can be performed in real time as detailed in the
following.

1) Deformation computation at curvature extremal points:
To perform the first step, we need to find the elastic force at
each curvature extremal point which causes the deformation
and compute the amount of deformation accordingly in real-
time. For this purpose, we introduce a novelBeam-Skeleton
Model to capture the underlying physics of elasticity effi-
ciently: once a contact is formed, the stress and strain relations
between the contact (or equivalent contact) point and each
curvature extremal point on the elastic object is modeled
by a beam whose central line connects them, where beam
parameters are determined by the physical properties as well
as the exact parametric surface properties of the elastic object.
The collection of such beams forms what we call abeam
skeleton. Fig. 6 shows an example of a beam skeleton on an
elastic ellipsoid object.

Contact Point
Held Object

Elastic Object

Fig. 6. Beam skeleton (in solid lines) on an elastic ellipsoid object

Now we describe how deformation is computed for a beam
of length l (which is determined based on the undeformed
shape of the elastic object) bent at one end with the other end
fixed based on the Bernoulli-Euler bending beam theory [16].
Establish the beam coordinate system asO-xyz as shown in
Fig. 7, where the origin is set at the center point of the fixed
end of the beam, and thex axis is along the central line of
the beam before it is bent and pointing to the other end of the
beam. They axis is following the bending force direction and
the z axis is orthogonal to both thex and y axis following
the right-hand rule. A pointp on the central line of the beam
before it is bent has coordinates(x, 0, 0). Once the beam is
pressed at the end that is not fixed, the beam bends, and the
new coordinates ofp is (x′, y′, z′) satisfying

x′ = x y′ =
Fy

EIz

(
1

2
lx2 −

1

6
x3) z′ = 0

whereE is the Young’s modules andIz is moment of inertia
with respect to thez axis. At the end of the beam wherex = l,
the relation between the external forceFy normally applied to

the beam end and the deformation distancey′ is

Fy =
3EIz

l3
y′ (4)

we can relateFy to the stresses on the beam:

σx = −
Fy

Iz

(l − x)y σy = σz = τyz = 0

τyx =
1

2(1 + ν)

Fy

Iz

[
∂φ1

∂y
+ νz2 − (1 + ν)y2]

τzx =
1

2(1 + ν)

Fy

Iz

∂φ1

∂z

whereσ’s are stresses,τ ’s are shear stresses,Iz is the moment
of inertia, andφ1 is the bending function of the deformable
object depending on the shape of the cross section of the beam
– for different shapes,φ1 is different.

We call the above case where the external force is normal
to the beam asimple bending case.

O
x

y

F

Fig. 7. Schematic of beam bending

In general, the external force applied to a beam at one end is
not necessarily normal to the beam central line. In such a case,
based on the Saint-Venant principle [17], we can decompose
the force into a normal force and a tangential one and
decompose the problem of relating the external force to beam
deformation into two simpler cases: one is the above simple
bending case, and the other is a simple compression/expansion
case, which we describe below.

For the simple compression/expansion of the beam caused
by a tangential external forceFx, assuming the area of the
cross-section of the beam isS, we can relateFx to the
tangential deformation (i.e., compression or expansion)∆x
at the beam endx = l with the following equation:

Fx =
ES

l
∆x (5)

we can also relateFx to the stresses of the beam:

σx = Fx/S σy = σz = τxy = τxz = τyz = 0

The total stresses at a point of a beam are the vector
sums of the stresses from the simple bending case and simple
compression/expansion case.

In our application, the forceF applied to a contact or
equivalent contact point from the rigid object to the elastic
object can be viewed as applied to the common end of a beam
skeleton consisting ofn beams connecting the common end to
each curvature extremal point of the elastic object. The force
F can be obtained as opposing the contact force response from
the elastic object (as computed in Section IV) with the same
magnitude. Establish a coordinate frameOi-xiyizi for each



beami (i = 1, ..., n) of the beam skeleton such that the origin
Oi is located at thei-th curvature extremal point, which is at
the other end of the beami, xi axis is along the beam central
line before it is deformed and pointing to the common end,
yi is on the plane determined by thexi axis and the force
F, andzi axis is orthogonal toxi and yi axes following the
right-hand rule.

Now we can viewF applied to the same (contact) point
of the common end of all the beams in the skeleton as the
sum of the forcesFi applied to each beami at the same
point so that the deformation occurred at each beam can then
be computed separately. Notice thatF does not have azi

component in the beami’s frame. LetFxi
andFyi

be thexi

andyi components ofFi. From (4) and (5), we can obtain the
following relations among allFi’s and the relation between
eachFi and the deformation of beami at the common end of
the beam skeleton expressed in beami’s frame:

Fx1
: ... : Fxi

: ... : Fxn
=

∆x1

l1
: ... :

∆xi

li
: ... :

∆xn

ln
(6)

Fy1
: ... : Fyi

: ... : Fyn
=

y′

1

l31
: ... :

y′

i

l3i
: ... :

y′

n

l3n
(7)

Additionally, the sum of allFi’s should equal toF:
n

∑

i=1

Fi = F (8)

From the2n equations (6), (7), and (8),Fi can be solved for
each beami.

With the above method, we can compute the stresses at
the fixed end of each beam (which is centered at a curvature
extremal point of the elastic object). Now imagine the fixed
end of each beam is no longer fixed, the effect of the stresses
will make the corresponding curvature extremal point move to
a new position. The position change can be considered as the
deformation at such a curvature extremal point, which can be
computed from those stresses.

Now we describe how to compute strains from stresses
and subsequently compute the deformation at each curvature
extremal point. In general, the deformation displacement of a
point on the surface of an object can be expressed parametri-
cally as{u, v, w}, satisfying

u = u(x, y, z) v = v(x, y, z) w = w(x, y, z)

The strain at point(u, v, w) can be represented as

ǫ =































ǫx

ǫy

ǫz

γxy

γyz

γzx































=



































∂
∂x

0 0
0 ∂

∂y
0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x









































u
v
w







(9)

The relation between the strain and stress for a point on a
linear elastic object can be represented as

{ǫ} = D−1{σ} (10)

whereD−1 is the inverse of the elastic coefficient matrix [16].
Given a curvature extremal point with coordinates{x, y, z}

and its stresses, we can get its strains from (10). Next, its
displacement due to deformation{u, v, w} can be solved from
these strains using (9).

2) Global deformation rendering:With the displacements
of all curvature extremal points of the elastic object due to
deformation determined together with the displacement of the
contact (or equivalent contact) point, we obtain the deformed
shape of the entire elastic object by an interpolation method
extending the Phong shading method [18]. Phong shading is
used for linear interpolation of vectors at vertices bounding a
polygon across internal points of the polygon.

In our case, however, the elastic object can have a general
surface with curved features with or without deformation. Let
P be the set of curvature extremal points plus the contact point
of the surface of the elastic object before the current defor-
mation, note that the elastic object can already be deformed
before the current deformation to further change its shape.
Such a surface can be partitioned by curves connecting each
pair of points inP into smooth curvature-monotonic surface
patches, calledfaces [15]. The vertices of each face are a
subset of points inP . Now given the deformation displacement
vectors of these vertices for each face, we extend the Phong
shading to obtain a linear interpolation of the deformation
displacement vectors across the face as the following:

Let θi denote the angle between the direction of
displacement and the outward normal direction of
point i on the face, called thedisplacement angle
of point i; the directions of displacement vectors
across the face are obtained by linearly interpolating
the displacement angles of the vertices of the face,
and the magnitudes of displacement vectors across
the face are obtained by linearly interpolate the dis-
placement vectors’ magnitudes of the face’s vertices.

We obtain the deformed shape of the entire elastic object
by performing the above shading on all faces. Note that since
we do graphical rendering of an object based on its polygonal
mesh approximation, the interpolated points of deformation
shading of a face can be simply the corresponding mesh points
of the face.

It should be emphasized that using our beam-skeleton model
to compute deformation fits the physics of elasticity well.
First, according to physics, the stresses/strains are smoothly
spread over the elastic object surface and have extremal
values on the curvature extremal points. Thus, if we can get
the stresses/strains on all extremal points of the deformable
object, we can get stresses/strains on any points between these
extremal points by interpolations. Second, the deformation
displacements at these extremal points with respect to the
contact region can be thought of as the combination results
of extension/compression, bending and twisting, all of which
can be captured by the beam-bending model. The global shape
deformation of the elastic object obtained from interpolating
these displacements satisfies that the closer a surface point to



the contact point or the equivalent contact point, the greater
the deformation and curvature change is at this point.

B. Local neighborhood deformation modeling and rendering

For the cases of a single point contact, there is no need to
modify the result of global shape deformation described above
in the neighborhoodR of the contact point.

For the cases of a single region contact, however, the effect
of the contact area on shape deformation in the neighborhood
R needs to be taken into account. Since the number of mesh
points n in the contact region is proportional to the area
of the contact region, we can define amodification factor
w = 1

1+logn
to capture the effect of the contact area on

deformation: the larger the area, the shallower the deformation.
Now, we use a modified equivalent deformation displacement
wD (where D is determined in Section IV.C), which is
shallower thanD, to conduct the same kind of interpolation
as in global deformation rendering within the neighborhoodR
on the globally deformed shape to further modify the shape.
The result is the combined effect of global shape deformation
with local neighborhood shape modification. Fig. 8 shows two
examples of local neighborhood shape deformation caused by
a single region contact as modeled by this method.

pcpc

p′c p′c

Fig. 8. Two examples of local neighborhood shape deformation (p
′

c

indicates the modified equivalent point, dotted lines indicate the shapes before
modification)

VI. D EALING WITH MULTIPLE CONTACT REGIONS

When there are multiple contact regions (at one time step),
Si, i = 1, ...,m, we establish a beam-skeleton model with
respect to each contact region in order to compute both the
contact force responses and the shape deformation of the
elastic object. The beam-skeleton modelBi w.r.t. Si connects
the (equivalent) contact pointpi of Si to each extremal point
of the elastic object as well as the (equivalent) contact point
of every other contact regionpj (j 6= i) by beams.

The contact forceFSi
from the elastic object to the rigid

body at contact regionSi consists of not only the force from
deformation atSi alone as described in Section IV but also
the stress contributions from every other contact regionSj ,
(j ∈ {1, ...,m} − {i}). The stress force contribution fromSj

can be computed from the beam-skeletonBj in a way similar
to that described in Section V.A.

The overall shape deformation of the elastic object can be
computed by superimposing the shape deformation contributed
by each contact regionSi, i = 1, ...,m, which can be com-
puted based on each beam-skeleton modelBi in a way similar
to that described in Section V. The only difference is that here
the (equivalent) contact pointspj ’s (j ∈ {1, ...,m} − {i}) are
fixed beam ends that do not move so that there is no need to

compute strains at those points. Fig. 9 shows an example with
two contacts and their beam-skeletons on an elastic ellipsoid.

p1

p2

Elastic Object

Fig. 9. Beam skeletons for two contacts (in solid lines) on anelastic ellipsoid

VII. I MPLEMENTATION AND TEST RESULTS

We have implemented our approach and applied it to real-
time haptic rendering involving a virtual rigid body and an
elastic object via a PHANToM Premium 1.5/6DOF device,
which is connected to a computer with dual Intel Xeon 2.4GHz
Processors and 1GB RAM. Human operator can virtually hold
the rigid objectA by attaching it to the haptic device and make
arbitrary contact to the elastic objectB (with its bottom center
fixed, where a world coordinate system is set) by guarded
motions and perform compliant motions on the elastic object.
We used the following values for the parameters:m = 1kg,
β2

0ǫ = 0.4, ω0 = 0.2, K = 10, β = 0.75, and parameters for
rubber:ρ = 1100Kg/m2, E = 3 · 106N/m2, andν = 0.5.

Figures 10 to 12 show some test results, where the unit of
force is Newton, the unit of length is mm, and the unit of time
is ms. The world coordinate system in all examples is built as
the following:x-axis points right,y-axis points up, andz-axis
points out of the paper plane and is orthogonal tox and y
axes following the right-hand rule.

Fig. 10 shows a test example with a rigid mallet and an
elastic ellipsoid. The human operator first moved down the
mallet to make a contact with the elastic ellipsoid, and moved
the mallet compliantly along the+x direction mostly and
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Fig. 10. Force rendering results when a mallet moved compliantly along an
ellipsoid
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Fig. 11. Comparison of deformation in two different cases of single region
contact

Fig. 12. Two contact regions between a rigid compass and a deformable
heart: (left) one contact region (right) two contact regions

slightly toward the+z direction. In this case the contact
normal generally has three components:Fx, Fy, andFz. Here
during the compliant motion, the valueFx changed from
negative to positive,Fy was always positive and reached the
maximum value when the mallet was moved to the upmost
position of the ellipsoid, andFz only had a small positive value
since the movement was slightly on the half of the ellipsoid
toward the+z direction. For the friction forcefx, fy, andfz,
fx always had a negative value since the movement is toward
+x direction,fy increased from negative to positive since the
movement was first upward then downward along they axis,
and fz was almost zero while the oscillation was from the
difficulty of moving the mallet in a straight motion.

Fig. 11 shows an experiment to compare the different effects
of two cases with different contact areas on local neighborhood
shape deformation. In case 1, a mallet’s head contacted an
elastic cube, and in case 2, the mallet’s tail contacted the elastic
cube. The contact area in case 1 was larger than the contact
area in case 2. We can see that when the same force was
applied, the modified equivalent deformation displacementD
of case 1 is smaller than that of case 2, which resulted in
shallower deformation that fits the related physics principle.

Figure 12 shows example with two contact regions, where
a rigid compass first touches a deformable heart with one side
pin and then both side pins.

We have used many test examples to confirm the generality
of our presented method of computing and rendering contact
force and shape deformation. In all of our experiments, mod-

eling and computing haptic force took a constant and almost
instant time, of approximately 30µs, that is, the computation
had an update rate of approximately 33kHz – regardless of
the objects geometry. This was negligible compared to the
time needed for real-time contact detection (Section III) plus
shape updating for the elastic object, which was in the orderof
kHz. In all test examples shown above, as can be seen, shape
deformation of the elastic object looks quite realistic.

VIII. C ONCLUSIONS

We have introduced a novel approach to model and render
in real-time both the nonlinear contact force response and
the shape deformation of a general elastic object caused by
a rigid object contacting it and moving compliantly on it,
taking into account friction. Our approach achieves both real-
time efficiency and physical accuracy by taking advantage
of nonlinear physics equations, elasticity principles, beam
bending theory, and geometrical properties of general surfaces.
The approach is implemented to confirm its effectiveness.
An update rate of over 1kHz is achieved for the entire
rendering process, including collision detection and rendering
both haptic force and graphic shape change. A future research
goal is to further test the validity of our approach.
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