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Abstract— This paper demonstrates that sonar images corre-
late badly because target geometry and image fringes correlate in
different coordinate systems. It is shown that if the receiver is a
line array, all point objects have the same image in a coordinate
system with axes of range and the sine of target bearing (the
(r, s) coordinate system). Results from an ocean experiment
are presented. The ocean experiment shows that after a simple
translation, the correlation coefficient between Cartesian images
of a radar reflector drop to zero, while the correlation coefficient
between images of the same radar reflector in an (r, s) coordinate
system hover around 0.9.

I. INTRODUCTION

Data association is a fundamental problems in feature-based
navigation. When the timescale between observations is small,
data association can be considered a tracking problem; when
the timescale between observations is large, data association
can be considered a recognition problem. One approach to
object recognition is to coherently correlate images of targets,
an approach that typically fails when applied to sonar images.
This paper will show that coherent correlation fails because
the point response of a line array is shift invariant only in an
(r, s) coordinate system.

Numerous groups have investigated sonar perception.
Leonard and Durrant-Whyte [7] developed regions of constant
depth (RCDs) to determine correspondence in a sonar scan.
Nagatani et al. [8] developed the Arc Transversal Median
method to find edges. Mataric and Brooks [2] developed a
robot that maintained a fixed distance from walls by tracking
without an explicit model. Kleeman and Kuc [5] used the
method of images to distinguish corners and walls. Barshan
and Kuc [1] developed a sonar that differentiated between
convex corners and walls based on amplitude measurements.
Kuc [6] developed a sonar that could recognize objects based
on waveforms; the sonar adaptively positioned itself to search
for unique aspects of the target. Peremans et al. [11] built a
tri-aural sonar for estimating the range and bearing to a tar-
get. Wijk and Christensen [15], [16] developed Triangulation
Based Fusion, a method for mapping vertical edges using a
sliding window of recent sonar measurements. Kleeman [4]
designed a sonar that used double pulse coding to reject
interference and perform classification.

Williams and Mahon [14], in a Great Barrier Reef ex-
periment, combined sonar and vision to do particle filter
based localization. In a Baltic Sea experiment, Nygren and
Jannson [10] correlated bathymetric sonar images of the sea
floor against a prior map for localization. (The images used
in this paper differ in that they have an intensity component.)

At the GOATS 2002 experiment in the Ligurian Sea, Rikoski
et al. [13] tracked continuously observed objects using a
universal feature model and Newman et al. [9] performed
SLAM using the tracked features.

II. CORRELATING TWO IMAGE PATCHES

In this paper, correlation will refer to calculating the corre-
lation coefficient between two images or image patches.

Consider an image patch P1 from the Cartesian image
I1(x, y), centered at (x1, y1), with width and height ∆x and
∆y. The statistics of the patch can be calculated by multiplying
the original image I1(x, y) against a mask M(x, y), where
the mask is defined as being one inside of the patch and zero
outside of the patch.

M(x, y) = 1 (1)

|x− x1| < ∆x

2
, |y − y1| < ∆y

2

M(x, y) = 0 elsewhere.

The variance of P1 can be written as

σ2
1 = E[P 2

1 ]− E[P1]2 (2)

E[P1] =

∫∞
−∞

∫∞
−∞ I1(x, y)M(x, y)dxdy∫∞
−∞

∫∞
−∞M(x, y)dxdy

E[P 2
1 ] =

∫∞
−∞

∫∞
−∞ I2

1 (x, y)M(x, y)dxdy∫∞
−∞

∫∞
−∞M(x, y)dxdy

.

In a second image I2(x, y) there is a patch P2 that is shifted
some amount (δx, δy) with respect to the first patch. The
variance of the second patch as a function of its shift is

σ2
2(δx, δy) = E[P2(δx, δy)2]− E[P2(δx, δy)]2 (3)

E[P2(δx, δy)] =

∫∞
−∞

∫∞
−∞ I2(x + δx, y + δy)M(x, y)dxdy∫∞

−∞
∫∞
−∞M(x, y)dxdy

E[P 2
2 (δx, δy)] =

∫∞
−∞

∫∞
−∞ I2

2 (x + δx, y + δy)M(x, y)dxdy∫∞
−∞

∫∞
−∞M(x, y)dxdy

The covariance between the two patches, as a function of the
shift, is

σ2
12(δx, δy) = E[P1P2(δx, δy)]− E[P1]E[P2(δx, δy)] (4)

E[P1P2(δx, δy)] =



∫∞
−∞

∫∞
−∞ I1(x, y)M(x, y)I2(x + δx, y + δy)dxdy∫∞

−∞
∫∞
−∞M(x, y)dxdy

The correlation coefficient between the two patches is then

ρ(δx, δy) =
σ12(δx, δy)√
σ1σ2(δx, δy)

(5)

The correlation coefficient for all possible shifts can be effi-
ciently calculated in the frequency domain.

III. CORRELATING IMAGES OF POINT OBJECTS

Without rigorous proof, assume that the correlation coef-
ficient ρ(δx, δy) equals unity when two image patches are
identical except for a shift of (δx, δy), and is not equal to unity
when the images differ in some way. Therefore, it would be
desirable to correlate images of a target in a coordinate system
where the image is invariant to shifts. It will now be shown that
the image of a point object created by a line array in a two
dimensional environment is position dependent in Cartesian
and polar coordinates, but not in (r, s) coordinates.

A. Imaging a Point in Cartesian Coordinates

Assume a sonar with an omnidirectional transmitter at
(0, 0) that transmits a signal S(t) and has N omnidirectional
receiving elements along the y axis, the ith being at position
(0, yi) and receiving signal Si(t). A point target at position
(xp, yp) is imaged using the signals Si(t), i ∈ {1, . . . , N}.

Given the system geometry, the distance dt from the trans-
mitter to the point object is

dt =
√

x2
p + y2

p. (6)

The distance di from each receiving element to the point target

di =
√

x2
p + (yp − yi)2. (7)

Therefore, the distance-of-flight DOFi the sound travels from
the transmitter to each receiving element is

DOFi = dt + di =
√

x2
p + y2

p +
√

x2
p + (yp − yi)2. (8)

Assuming the point is far from the array (r > L2

λ , where L is
the length of the array and λ is the representative wavelength),
this can be rewritten as

DOFi ≈ 2
√

x2
p + y2

p − yi sin(θp) (9)

where θp is defined as

θp = arctan
yp

xp
. (10)

Denoting c as the speed of sound, the time-of-flight TOFi of
the signal for each element is

TOFi =
DOFi

c
≈

2
√

x2
p + y2

p − yi sin(θp)

c
. (11)

Assuming the reflection from the point object is simply a
delayed version of the transmitted signal S(t), the received
signal can be rewritten as

Si(t) = S(t− TOFi) ≈ S(t−
2
√

x2
p + y2

p − yi sin(θp)

c
).

(12)
Now, consider an image I(x, y). The image value correspond-
ing to location (x, y) will be defined as

I(x, y) =
N∑

i=1

Si(TOFi(x, y)) (13)

where TOFi(x, y) is the time of flight from the transmitter to
position (x, y) to receiving element i

TOFi(x, y) =

√
x2 + y2 +

√
x2 + (y − yi)2

c
(14)

≈ 2
√

x2 + y2 − yi sin θ

c

where θ is defined as

θ = arctan
y

x
. (15)

The equation for the image can either be rewritten in terms
of the element signals or delayed versions of the transmitted
signal

I(x, y) ≈
N∑

i=1

Si(
2
√

x2 + y2 − yi sin θ

c
) (16)

=
N∑

i=1

S(
2
√

x2 + y2 − yi sin θ

c
−

2
√

x2
p + y2

p − yi sin(θp)

c
)

It is worth noting that at the position in the image correspond-
ing to the location of the point (xp, yp), the image value is

I(xp, yp) =
N∑

i=1

S(0), (17)

which is independent of the target location. The value at
(xp, yp) is shift invariant. Now, consider the value at a location
(xp + ∆x, yp + ∆y) near the point. At this new position, the
image value is

I(xp + ∆x, yp + ∆y) ≈ (18)
N∑

i=1

S(
2
√

(xp + ∆x)2 + (yp + ∆y)2 − yi sin θ

c

−
2
√

x2
p + y2

p − yi sin θp

c
)

which is a function of (xp, yp). In other words, if the target
were at a different location in the image (x′p, y′p), the image
value (∆x, ∆y) away from the target position would be
different than it would be if the target were at (xp, yp).

The Cartesian image of a point target is dependent on where
it is with respect to a line array. Not only will two noiseless



Fig. 1. Diagram of simulated setup. The point target was translated from
Position 1 to Position 2.

images fail to yield a correlation coefficient of one, but the
peak value can correspond to a highly biased shift.

To illustrate this, consider the simulation shown in Fig-
ures 1- 4. (A simulation is used because Cartesian correlations
break down so dramatically that it is difficult to explain in
an environment of any complexity.) To make better use of
the aspect ratio of the figures, the array is placed on the x-
axis, centered at (0,0). The transmitted signal is a 100 kHz
5 cycle tone. A point object is imaged at two positions,
labeled Positions 1 and 2. The resulting images are shown
in Figure 2. In Figures 3(a) and 3(b), we see the zoomed out
versions of the images from Figure 2 replotted in decibels. The
correlation coefficient image is shown in Figure 4(a). Clearly,
although the actual target shift is (−1, 0), the peak correlation
coefficient corresponds to a shift of (0, 0.414). Looking at
Figure 4(b), it is obvious why the incorrect shift yields the
peak. At the peak correlation coefficient, the image fringes
are parallel, at the true shift, they are misaligned. The fringes
do not correlate best where the target geometry correlates best.

B. Imaging a Point in Polar Coordinates

If Eq. 16 is rewritten in polar coordinates, the pixel position
becomes (r, θ), and the target position becomes (rp, θp). The
image has pixels of size (dr, dθ). The image equation becomes

I(r, θ) ≈
N∑

i=1

Si(
2r − yi sin θ

c
) (19)

=
N∑

i=1

S(
2r − yi sin θ

c
− 2rp − yi sin(θp)

c
).

The value at a point (rp + ∆r, θp + ∆θ) is

I(rp+∆r, θp+∆θ) ≈
N∑

i=1

Si(
2(rp + ∆r)− yi sin(θp + ∆θ)

c
)

(20)

=
N∑

i=1

S(
2∆r − yi sin(θp + ∆θ) + yi sin(θp)

c
).

In this case, the image is independent of the radial coordinate
rp, but it is still a function of the azimuthal coordinate.

Essentially, this is because the angular resolution of the array is
a function of angle; the array has better resolution at broadside
than at endfire. As the target moves from broadside to endfire,
its image is dilated in the θ direction.

C. Imaging a Point in (r, s) Coordinates

Finally, if Eq. 16 is rewritten in (r, s) coordinates, where r
is range and s = sin θ, it becomes

I(r, s) ≈
N∑

i=1

Si(
2r − yis

c
) (21)

=
N∑

i=1

S(
2r − yis

c
− 2rp − yisp)

c
).

The image value at a point (rp + ∆r, sp + ∆s) is

I(rp + ∆r, sp + ∆s) ≈
N∑

i=1

Si(
2(rp + ∆r)− yi(sp + ∆s)

c
)

(22)

=
N∑

i=1

S(
2∆r − yi∆s)

c
).

Regardless of the target position (rp, sp), the value at (rp +
∆r, sp + ∆s) is the same. Since the image is shift invariant,
it perfectly correlates with itself in the noiseless case.

Having established that images of point objects are shift
invariant in the (r, s) coordinate system, it is obvious why
sonar images correlate poorly. A complex target can be thought
of as a collection of point scatterers, and the geometry of the
point scatterers is not shift invariant in the (r, s) coordinate
system. Image fringes correlate in (r, s), target geometry
correlates in (x, y), and the image of a geometrically extensive
target with significant fringing correlates in neither. Definitions
of ”extensive geometry” and ”significant fringing” will be left
for a future paper. The question then becomes how well targets
can be correlated over small perturbations, and what the limits
are on target size. This is left as future work.

IV. EXPERIMENTAL RESULTS

Two experiments will be presented in this section. The
first experiment demonstrates correlating images in the (r, s)
coordinate system using a simple sonar in a testing tank.
The second experiment demonstrates correlating sonar images
made by a moving robot in the ocean.

A. Tank Experiment

To demonstrate correlating (r, s) images, a simple sonar
was constructed for a test tank. A 100 kHz transducer with a
5 cm diameter circular aperture was used as a transmitter. Five
125 kHz broadband spherical hydrophones, spaced 2.5 cm
apart, were used as a line array. The transmitter was separated
slightly (less than 10 cm) from the receiver and remained
fixed throughout the experiment. To vary the target bearing,
the receiver was mounted on a rotatable rod. The target was
placed 1.25 meters in front of the transmitter.
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(a) Simulated image of a point target at Position 1.
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(b) Simulated image of a point target at Position 2.

Fig. 2. Simulated images of a point target made by a line array using the target locations in Figure 1. Clearly, the fringes in the two images have different
orientations.
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(a) Zoomed out image from Position 1 in dB.
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(b) Zoomed out image from Position 2 in dB.

Fig. 3. By expanding the simulated images and plotting them in decibels, it is evident that there exist low energy portions of the two images that are parallel.
These are the portions of the image that correlate best. The boxed portions of the images are what are shown in Figure 2. The radial streaking is due to Gibbs
phenomena in the simulator, which is only observable when plotted in decibels.
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(a) The correlation of the simulated images.
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(b) The cause of the biased peaks in the correlation of
the simulated images.

Fig. 4. From Figure 1, it is evident that the target shifted 1 meter to the left between images. This shift is labeled as 1 in the images, and yields a very low
correlation coefficient. The peaks in the correlation image, labeled as 2 and 3, correspond to shifting the peak values in the images over to parallel fringes.
This leads to highly biased peak correlations.
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(a) Cartesian image of the tank environment. (b) Robot used in the ocean experiment.

Fig. 5. For the tank experiment, the target was placed in the middle of a testing tank, about a meter from a wall. The robot on the right was used for the
ocean experiment.
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(a) The masked broadside (r, s) image of an oil filled
sphere.
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(b) The (r, s) image of an oil filled sphere at a 60◦ angle
to the array.

Fig. 6. Oil filled sphere images.
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(a) The broadside (r, s) image of a rock.
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(b) The (r, s) image of a rock at a 60◦ angle to the
array.

Fig. 7. Images of a rock suspended in a testing tank.
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(a) The correlation image for the oil filled sphere.
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(b) The correlation image for the rock.

Fig. 8. The correlation images of the two targets. In both cases, the peaks correspond to a shift of approximately 60◦ in the target location. Due to the
crude experimental apparatus (an array on a stick) it is impossible to make any strong statements about the errors in the peak values, but clearly the biases
seen in the Cartesian case are not evident. The peak correlation coefficient for the sphere is .71, the peak correlation coefficient for the rock is .74.

rotated rock

sin(θ)

ra
ng

e 
(m

et
er

s)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(a) The (r, s) image of a rock at broadside to the array
after being rotated approximately 60◦.
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(b) The correlation for the rotated rock. The true shift
is weakly shown at (0, 0), higher correlation coefficients
occur for incorrect shifts.

Fig. 9. The image and correlation after rotating the rock 60◦ while keeping it at broadside to the array. Correlating the rock template with the rotated rock
yields a correlation coefficient .55, other objects in the environment yield higher correlation coefficients.

In the first tank experiment, an oil filled sphere was used
as a target. Images from broadside and 60◦ were correlated.
In the second experiment, images of a rock at broadside and
at 60◦ were correlated. In the last experiment, the rock was
placed at broadside and rotated 60◦ between images. In the
first two experiments (Figures 6 and 7), the peak correlations
corresponded to the correct shift. In the third experiment, the
peak correlation did not correspond to the correct shift. This
is because the target was aspect dependent.

B. GOATS Experiment

At NATO SACLANT’s GOATS 2002 experiment off the
coast of Framura, Italy, the Bluefin Robotics Odyssey III class
autonomous underwater vehicle Caribou used a 16-element
dual line array 5-25 kHz broadside synthetic aperture sonar to
gather acoustic data in a target field. The results presented here
are from the data set referred to as SAS 15 6 2002 16 11,
which was also featured in [9], [12], [13]. In this data set, the
robot circled a target field of radar reflectors.

A typical sonar image of a radar reflector is shown in
Figure 10(a). This image was generated using one of the line
arrays on Caribou. Since a radar reflector is designed to act
as a strong point object, all images of radar reflectors were
essentially the same. The only object in the data that looked
different was the image of the sea floor, which is shown in
Figure 10(b). Although the image of the sea floor is similar
to the image of the radar reflector (due to a strong specular
component), it is broader and longer due to diffuse scattering.

In [5], point and planar objects were differentiated by the
difference in arrivals between elements. Because planar objects
acted as mirrors, causing the receiver to see an image of the
transmitter, by looking at the signal arrival times across the
elements points and planes could be differentiated. This is a
very powerful technique. However, it only works if the target
is in the nearfield of the array, a condition that does not hold in
this case. Therefore, the difference in the angular extent of the
radar reflector and bottom image is not due to this phenomena.

The radar reflector and sea floor were tracked using the



technique described in [13]. Time series of the range to the two
are shown in Figure 11. Range and bearing were constructed
from images of the target, images which were also correlated.

To show the correlation between images, a template image
was chosen for each target. The image from timestep 2930
was chosen for the radar reflector; the image from 1244 was
chosen for the sea floor. Those images are shown in Figure 10.
The image template was correlated against all other images in
the time series of observations. The correlation of the image
against itself is not graphed since its coefficient is one.

Figure 12(a) shows the time series of correlation coefficients
for the radar reflector. At the top (in black) are the peak
correlation coefficients for each timestep derived by comparing
(r, s) images to the template. The target is 50m away, and the
correlation coefficients are approximately 0.9. The correlations
drop as the sonar beam moves past the target.

In the middle (in green) are the correlation coefficients for
the (r, s) radar reflector images and the template of the sea
floor. The two correlate fairly well, although not as well as
correlating the radar reflector with itself. This is because of
the strong specular reflection in the bottom bounce.

On the bottom (in black) are the correlation coefficients for
the Cartesian images of the radar reflector and the Cartesian
radar template. Some may find it surprising that the coefficient
reaches zero, as zero correlation is quite rare. A zero occurs
because the covariance between images is zero. The covariance
is obtained by taking the mean value of the product of two
images. Looking at the images in Figure 2, it is clear that
multiplying the two together will lead to an ”egg carton”
pattern. Since the mean of that pattern is zero, the covariance
is zero, and the expected correlation coefficient is zero.

V. CONCLUSION

This paper has shown that line array images of point
targets correlate well in an (r, s) coordinate system. In the
noiseless case, the correlation coefficient between any two
images of a point target will always be one. For Cartesian
coordinates, the correlation coefficient falls off quickly as the
difference between target bearings increase. This is because
the fringe pattern rotates to focus on the receiver. This leads
to a fundamental problem. A complex target can be thought of
as a collection of point scatterers. If those point scatterers are
translated, their positions will correlate perfectly in a Cartesian
coordinate system, but their sonar images will quickly decor-
relate in a Cartesian coordinate system as this individual fringe
patterns rotate and dialate. In an (r, s) coordinate system, as
the collection of point scatterers their fringes will correlate
but the configuration of the constellation will be transformed;
the geometry will not correlate. Correlating images of targets
over a wide range of aspects is unlikely to be successful in
the general case.

Having shown that sonar image correlation works for simple
targets but fails for complex targets, one naturally wonders
about the broader impacts on sonar perception. What does
this imply how a robot ought to perceive its environment

using sonar? Is correlation ever an acceptable technique? How
should a robot recognize objects from different vantage points?

Our belief is that correlation will be shown to be acceptable
within limited regimes, that there will be a tradeoff between
object complexity and acceptable translations, and that large
complex objects will decorrelate faster than small or simple
objects. In a SLAM context, images of near objects will
decorrelate faster than images of distant objects for a given
translation, as the change in angle will be smaller. Landmarks
should be distinct and distant.
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(a) An (r, s) image of a radar reflector.
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(b) An (r, s) image of the sea floor.

Fig. 10. Typical images of a radar reflector and the bottom. The central portions of these images were used as the templates for the correlations shown in
Figure 12.
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(a) The time series of ranges measurements of the radar
reflector. This is the target that was tracked in Figure 6
of [13].
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(b) The time series of range measurements of the sea
floor used in Figure 12(b).

Fig. 11. Time series of measurements.
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(a) Correlation coefficients of images of a radar reflector.
The top line shows the correlation coefficients when the
(r, s) image from timestep 2930 is correlated against
the other images. The middle line (in green) shows
the correlation coefficients when the radar reflector is
correlated against the seafloor template. The bottom line
shows the correlation between cartesian images of the
point target, using the cartesian image from timestep
2930 again as the template.

1200 1210 1220 1230 1240 1250 1260 1270 1280
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

adjusted timesteps

co
rr

el
at

io
n 

co
ef

fic
ie

nt

(b) Correlation coefficients of images of the bottom. The
top line shows the correlation between (r, s) images of
the sea floor and the (r, s) image from timestep 1244.
The middle line shows the correlation between (r, s)
images of the sea floor and the radar reflector template.
The bottom line show the correlation between Cartesian
images of the sea floor.

Fig. 12. Time series of correlation coefficients for objects tracked in the ocean.


