
 

 
Abstract—Robots promise to enhance minimally-invasive 

surgery, but flexion of the thin instrument shaft introduces error 
into models of the robot kinematics. Visual or electromagnetic 
tracking of the instrument tip provides correct forward 
kinematics, but uncertainty in shaft bending and port location 
leaves residual errors in inverse kinematics. These errors can 
cause incorrect motions that preclude the use of image-guidance 
tools.  This paper proposes a model-based controller to correct 
the commanded motions. Comparison with a controller 
assuming a straight instrument shaft quantifies motion errors 
resulting from the use of a straight shaft controller. Analysis of 
the flexed shaft controller shows sensitivity to shaft length, shaft 
stiffness, tip force, and sensor noise. 

I. INTRODUCTION 

Image-guided robotic surgery uses three-dimensional 
medical image data to guide instruments to specific tissue 
locations identified in the image. This approach can involve 
either autonomous robotic control or human-in-the-loop 
techniques such as augmented reality and virtual fixtures 
[1,2]. In either case, good performance depends on accurately 
placing the instrument tip at the specified image coordinates. 

Unfortunately, instrument shaft flexibility can prove a 
serious limitation. For example, a 1N force applied to the tip 
of a cantilevered instrument for a commercial surgical robot 
(straight endoscissors for the ZEUS Surgical Robot System, 
Computer Motion, Inc, Goleta, Calif.; stainless steel shaft 355 
mm long, 3.35mm outer diameter, 1.47mm inner diameter) 
causes a 15mm tip deflection, much larger than the target 
anatomy in many procedures. Such bending has been shown 
to limit accuracy in animal studies of image-guided 
cardiothoracic procedures [2, 6]. As surgeons seek to 
minimize instrument size to reduce damage to healthy tissue 
and access smaller anatomical structures, this problem will 
become more pronounced. 

In terms of robot control, instrument flexibility alters the 
kinematic structure of the manipulator so that the assumed 
relationship between the robot’s joint and tip coordinates be-
comes inaccurate. A number of approaches to kinematic error 
correction have been developed in the robotics literature. Off-
line calibration attempts to precisely determine kinematic pa-
rameters, but does not account for online changes resulting 
from interactions with unmodeled environments [7, 8]. 
Research in flexible robot manipulators handles changes in 
endpoint-joint relationships during operation, but focuses on 
dynamic flexibility [9, 10]. Such an approach assumes known 

static kinematics, which is not the case for the quasi-static 
deformation seen in minimally invasive surgery. 

Tracking the instrument tip with computer vision 
techniques or an electromagnetic sensor solves the problem 
of error in the forward kinematics, as the instrument tip 
coordinates are directly measured. This measurement enables 
the use of image guidance in robotic minimally invasive 
procedures. Measuring the tip position will not directly 
correct the inverse kinematics, unfortunately.  The inverse 
kinematics will still be modeled off a straight instrument 
shaft, and can cause divergent motions of the instrument tip 
even with tip tracking [11]. With tip measurements and 
known errors in the kinematic model, there are convergence 
metrics for the error in Jacobian-based controllers, but these 
metrics do not reduce the motion errors [11, 12]. 

A model-based controller is a logical approach to reducing 
flexion-induced errors. In this paper we develop a mechanical 
model of the instrument shaft deflection, based on a simply 
supported beam. Using the developed model and tip tracking, 
we propose a real-time method to reduce the errors in the 
control of a surgical instrument. The metric introduced in 
[11] is used to quantify the convergence properties of the 
resulting Jacobian controller in the presence of measurement 
error. Simulations compare the resulting controller with a 
controller assuming a rigid instrument shaft. Sensitivity 
analysis shows the effect of measurement noise on the 
proposed controller. 

II. CONTROLLER DESIGN 

A. Flexion Model 
Fig. 1 diagrams a robot-assisted surgical procedure in 

which the instrument shaft is flexing. For the purposes of the 
following analysis, the instrument shaft is modeled as a 
straight rod, connected to the robot arm at a wrist. The 
controller’s job is to accurately position the tip in a world 
coordinate frame. As in many laparoscopic and thoracoscopic 
procedures, we assume that the instrument is introduced into 
the patient’s body through an endoscopic port, a rigid 
cannula a few cm in length that is tightly inserted into a small 
incision. As the instrument tip interacts with tissue, radial tip 
forces generate reaction forces at the port and at the robot 
wrist. These forces result in bending of the instrument. 

The goal is then to determine the actual kinematics of the 
instrument, i.e. its shape as it flexes during the procedure. 
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The Euler-Bernoulli beam bending equations were chosen to 
model the instrument flexion, with an assumption of a simply 
supported configuration, i.e., the wrist, port, and tip apply 
only forces normal to the shaft and no moments (Fig. 2). The 
simply supported configuration fits the situation where just 
the tip of the instrument is in contact with the patient and this 
model precludes complicated shapes such as s-curves in the 
interest of low complexity. With both ends of the beam on the 
x-axis the height of the beam in model space ([14]) is 
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and the slope of the beam is 
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where xm is the position along the beam, Fp is the force at the 
port acting at a distance a along the beam from the wrist, L is 
the total length of the beam, b = L-a, E is the Young’s 
modulus, I is the cross sectional moment of inertia, and  
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Fp and a are the two unknowns in this model, so two 
measurements of the beam position, slope, or curvature are 
necessary for a solution. Additionally, measurements are 
necessary for registration between world space and model 
space. 

We assume that instrument positions and orientations 
(slopes) are sensed near both ends: at the tip end using either 
electromagnetic or visual sensing, and at the wrist end using 
either electromagnetic or robot arm kinematic sensors (e.g., 
high resolution joint encoders). The measurements permit 

calculation of the model parameters, and thus the Jacobian 
relating the motion of the beam’s endpoints. Similarly, the 
port position or wrist force, port force, or tip force could be 
measured directly instead of the sensors used here; these 
alternatives are evaluated in the Discussion section below. 

B. Jacobian Construction 
Fig. 3 diagrams the inverse-Jacobian controller used in this 

paper and described in [11].  The premise is that the existing 
joint level controller accepts a desired angular configuration 
 ( ) ( )1

d i r desired tJ J p pθ θ −= + −  (4) 

where θ is the vector of current joint angles, Jr is the robot 
Jacobian relating joint motions to wrist motions, Ji is the 
Jacobian relating motions of the wrist end of the instrument 
shaft to motions of the tip end, pdesired is the desired tip 
position, and pt is the current tip position. The appeal of 
Jacobian-based controllers is that they move the instrument 
tip directly towards the desired position in world space, with 
clear safety advantages for working inside a patient’s body. 
Dynamics are unnecessary because surgical robots move 
slowly, are highly geared, and are often in contact with 
viscoelastic tissues, resulting in a quasi-static system. We 
assume that the robot arm can precisely position the wrist and 
the robot’s Jacobian is known, so our task is to find the 
Jacobian for the instrument shaft. For clarity, we consider 
position control in 2-D here; orientation control and extension 
to 3-D are discussed below. 

The Jacobian of the instrument shaft is constructed by 
taking the partial derivative of the tip position with respect to 
the robot wrist position 

 
 
 
 
 
 
 
 

 
Fig. 1. Flexion in surgical instrument shaft due to force on tip. 
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Fig. 2. Simply supported beam model of instrument shaft in model 
space. 
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Figure 3.  Block diagram of controller. 
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where pw = (xw, yw) is the robot wrist position in world space, 
and pt = (xt, yt) is the instrument tip position in world space. 
The position of the instrument tip in world space can be 
written as a transformation from model space 
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where φ is the angle between model space and world space 
(Fig. 4). To incorporate the port location, pp, which 
determines the kinematic relationship between the wrist and 
tip, this angle can be written as 
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Combining (1), (5), (6), and (7), and performing the 
derivative operations in (5), the Jacobian can be written as a 
function of pw, pp, a, Fp, ym(a), and known parameters. Now 
the terms pp, a, Fp, and ym(a) must be written as functions of 
the position and angle measurements at the instrument 
endpoints, pw, pt, θw, and θt. The port position in world space 
can be written as a transformation from its position in model 
space 
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From (1), the deflection height at the center force can be 
written in terms of Fp and a 
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Fp and a can be written as functions of the orientation 
measurements 
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where 
 ( ) ( )0 Tanm wy θ ϕ′ = −  (13) 

 ( ) ( )Tanm ty L θ ϕ′ = − . (14) 

Combining these equations permits calculation of the desired 
form of the Jacobian, which is reproduced in the appendix. 

III. EVALUATION 

To quantify the error in this inverse Jacobian controller we 
use a metric from [11]. The true and estimated Jacobians, Ji 
and Ĵi, are combined to create a map from the current position 
error to the position error after a motion commanded by the 
estimated Jacobian (Fig. 5) 
 1ˆ

i iG I J J −= − . (15) 

The induced Euclidean norm then finds the worst case for the 
resulting ratio between the new and old error lengths 
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where ∆pd is the old error vector. 
If this metric is less than 1 across the workspace, then 

commanded motions always shrink the length of the position 
error. Therefore, values below 1 indicate monotonic position 
convergence (lower values signifying faster convergence), 
and values above 1 indicate the potential for divergence 
(higher values signifying faster divergence). 

IV. METHODS 

The metric explained in the previous section will be used 
to compare the proposed controller with a controller based on 
kinematics of a straight shaft. The metric will also be used to 
determine the sensitivity of the proposed controller to sensor 
noise. 

A. Comparison with a Rigid Instrument Model 
Using the proposed metric, the controller introduced in this 

work can be compared with other controllers. The controller 
for the Zeus Surgical System assumes a rigid instrument shaft 
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Fig. 4. Relationship between world and model frames 

 
 
 
 
 
 

 
 
 
 
 
Fig. 5. Geometry of the motions for an erroneous inverse 
Jacobian controller. 
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and uses a Jacobian based on the lever equation 
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Without direct measurement, the port position, pp, is 
estimated over successive controller cycles. The port position 
is chosen as the intersection point of rays drawn along the 
instrument shaft as measured by wrist sensors. To quantify 
the benefits of tip tracking, the distance can be calculated 
between the actual tip position and the tip position estimated 
by the current Zeus rigid lever controller. To calculate the 
actual tip position, first the right triangle formed by a and 
ym(a) is solved for a (Fig. 4) 
 ( )2 2 2

p w mp p a y a− = +  (18) 

with (1) substituted in for ym(a). Then (1), (6), and (7) are 
combined to calculate the tip position. In addition, to quantify 
the benefits of the flexion model, the induced Euclidean norm 
can be used to compare the lever Jacobian with the flexion 
Jacobian. The rigid instrument Jacobian is calculated by 
substituting (17) into (5). 

B. Sensitivity Analysis for Jacobian 
To compute the effects of sensor noise on the proposed 

controller, the induced Euclidean norm is used again.  The 
flexion model Jacobian is substituted into (15) as both the 
true and estimated Jacobians, the latter instance being 
calculated with additive sensor noise. The noise has a 
uniform distribution along each sensor axis, with a maximum 
equal to the number listed in the figures and a minimum equal 
to the negative of the same number. To investigate 
convergence, the induced Euclidean norm is then evaluated at 
various insertion depths and with various magnitudes of 
sensor noise. For a given insertion depth, the maximum error 
across noise values is shown. One of the advantages of the 
flexion model is an estimate of the port position, the accuracy 
for which is unaffected by flexion. Error in port localization 

due to sensor noise is also calculated. 

V. RESULTS 

For all plots, the tip and wrist forces will be assumed to act 
such that Fw and Ft are in the –ym direction in model space; 
axial forces in the xm direction do not produce bending. 
Taking advantage of rotational symmetry about the port, all 
plots show the values as a function of insertion depth, r = [(xt 
- xp)2 + (yt - yp)2]½. 

A. Comparison with a Rigid Instrument Model 
The greater the insertion depth, the larger the error in tip 

position for the current Zeus controller without tip tracking 
(Fig. 6). Additionally, the motion error for the rigid 
instrument Jacobian is proportional to the insertion depth, as 
determined by (16) with the flexion model Jacobian as the 
true Jacobian. 

B. Sensitivity Analysis for Jacobian 
Noise in the position and orientation measurements 

degrades the performance of the flexion model Jacobian. To 
demonstrate these effects, (16) was calculated across the tip 
workspace, using the flexion Jacobian with noise in each 
measurement for the estimated Jacobian and without 
measurement noise for the true Jacobian. The following plots 
show the worst (maximum) values across all noise directions. 

In the presence of sensor noise, the motion errors from the 
flexion model Jacobian are smallest when the instrument is 
inserted approximately 70% of its length (Fig. 7). The 
motions become divergent as either the tip or the wrist move 
close to the port. Decreasing the sensor noise reduces the 
controller’s motion errors. 

The estimated parameters, Fp and a, can also be examined. 
Since Fp and the structural rigidity, EI, always enter the beam 
bending equations together, the term Fp/EI was estimated. 
This term can be thought of as a normalized force. Fp/EI can 
be incorrect by orders of magnitude outside of the convergent 
area due to the measurement noise, but improves as r/L 
approaches 0.5 (Fig. 8). The error in estimating the port 
position decreases as the instrument tip moves further from 
the port (Fig. 9). Increasing the instrument length, L, or the 
normalized force, Ft/EI, increases the convergence of the 
controller, similar to decreasing sensor noise (Fig. 10). 
Increasing these parameters increases flexion for a constant 
tip force. For a given level of sensor noise, increasing the 
flexion would increase the signal-to-noise ratio, explaining 
the similarity between Figs. 7 and 10. 

VI. DISCUSSION 

Tracking the instrument tip in minimally invasive surgery 
avoids errors in the forward kinematics and allows a more 
accurate kinematic model for motion control. The model-
based controller presented here for flexible instrument shafts 
can reduce motion error in comparison with controllers 
assuming rigid links. The simply supported beam models the 
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Fig. 6. Position error and Jacobian motion increase as the instrument
tip is inserted farther into the port. 
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situation in which the only forces on the instrument are at the 
wrist, port, and tip, and there are no moments. Barring sensor 
noise, the flexion model commands accurate motions in this 
situation whereas the rigid instrument model results in motion 
errors. 

To compare the sensor noise magnitudes used in this paper 
to a commercial product, the published RMS accuracy of the 
Liberty magnetic tracking system is 0.76 mm position and 
0.15 degrees orientation or about 0.0021L and 0.0026 radians 
(Polhemus Technologies, Colchester, VT). For this level of 
noise with L = 0.355 m and Ft /EI = 3 m-2, the insertion depth 
should be constrained to 0.55 < r/L < 0.85 to ensure 
monotonically convergent motions (Fig. 7). Improved signal 
processing or a tracking technology with less noise would 
relax these bounds on insertion depth. 

As shown in Fig. 6, the error in tip position estimation can 
be on the order of centimeters if a bent instrument shaft is 
assumed to be straight. Such an error magnitude is larger than 
the sizes of many surgical targets [2, 6]. Tip tracking 
measures the actual position of the tip, allowing effective 
image guidance. 

In this paper, the positions and orientations of the 
instrument’s endpoints are used to solve for the flexion model 
parameters. Other measurement possibilities exist, however, 
including the port position and orientation, and forces/torques 
on the wrist, port, and tip. Of these possibilities, measuring 
the force and torque at the robot wrist is the most feasible.  
Accurately measuring the position and orientation of the 
instrument shaft at the port is difficult due to the uncertain 
relationship between the physical port and any contact points 
between the port and the instrument shaft. Similarly, the 
difficulty of measuring the forces exerted on the port, or the 
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Fig. 8. In the presence of sensor noise, Fp/EI is best estimated in 
the center of the workspace. The first scaling number is the 
position error scaling, with respect to L. The second number is the 
angular error (rad).  L = 0.355 m.  Ft /EI = 3 m-2. 
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Fig. 9. The error in port position estimation decreases as insertion
depth increases. The first scaling number is the position error scaling,
with respect to L. The second number is the angular error (rad).  L = 
0.355 m.  Ft /EI = 3 m-2. 
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Fig. 7. The motions commanded by the flexion based Jacobian
become less accurate as sensor noise increases. Values greater
than 1 signify divergent motions. The first scaling number is the
position error scaling, with respect to L. The second number is 
the angular error (rad).  L = 0.355 m.  Ft /EI = 3 m-2. 
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Fig. 10. The motions commanded by the flexion based Jacobian 
become more accurate as either L increases or the tip force 
increases.  b = 0.355 m. c = 3 m-2. The noise magnitude is 0.002L
for the position measurements and 0.002 rad for the angle 
measurements. Values greater than 1 signify divergent motions. 
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instrument tip, obstruct direct measurement of one of the 
model parameters, Fp. Construction of a force sensor small 
enough to fit through the port, or of a port incorporating a 
force sensor, would allow this direct measurement. 

The Jacobian in this paper only handles motions in the 
plane containing the instrument, but is easily extended to 3-D. 
If the robot exerts a force on the instrument that is 
perpendicular to the plane of bending, torque will be 
generated at the port position.  The entire plane of bending 
will then rotate about a line that passes through the port 
position. 

Orientation control can be achieved by calculating the 
Jacobian relating the change of orientation of the tip to the 
change in position of the wrist. Assuming infinitesimal 
motions, moving the wrist does not change the shape of the 
beam, so the only change in orientation is caused by the 
changing registration between the model and world spaces. 
The columns of the positional Jacobian matrix describe the 
tip motions resulting from wrist motions along the world 
space axes, allowing calculation of the consequential change 
in rotation. 

In the interests of a better fit between the model and the 
true instrument shaft shape, the simply supported 
configuration can be replaced with a more complicated 
assumption of the shape. The new configuration would allow 
the controller to handle more complex 
instrument/environment interactions, but would contain more 
unknowns and thus require correspondingly more 
measurements.  Those measurements could come from a 
force/torque sensor as discussed above or from additional 
position and orientation measurements. 

APPENDIX: FLEXION JACOBIAN 
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