
Optimal Rules for Programmed Stochastic Self-Assembly

Eric Klavins Samuel Burden Nils Napp

Electrical Engineering
University of Washington

Seattle, WA 98195

Abstract— We consider the control of programmable self-
assembling systems whose dynamics are governed by stochastic
reaction-diffusion dynamics. In our system, particles may de-
cide the outcomes of reactions initiated by the environment,
thereby steering the global system to produce a desired assem-
bly type. We describe a method that automatically generates
a program maximizing yield based on tuning the rates of
experimentally determined reaction pathways. We demonstrate
the method using theoretical examples and with a robotic
testbed. Finally, we present, in the form of a graph gram-
mar, a communication protocol that implements the generated
programs in a distributed manner.

I. I NTRODUCTION

Self-assembly is a phenomenon in which asoup of
particles spontaneously arrange themselves into a coherent
structure. Self-assembly is ubiquitous in nature. For ex-
ample, virus capsids, cell-membranes and tissues are all
self-assembled from smaller components in a completely
distributed fashion. Self-assembly is beginning to find itsway
into engineering, harnessed using a variety of technologies
such as DNA [1], [2], PDMS [3], MEMs [4] and robots [5],
[6], [7].

Self-assembly comes in, roughly, two flavors: passive and
active. In passive self-assembly, particles interact according
to geometry or surface chemistry and tend toward a thermo-
dynamic equilibrium at which the system is assembled. For
example, phospholipids stick to each other along hydropho-
bic regions to form membranes. In active self-assembly, the
particles can somehow decide in what interactions to partake.
For example, proteins in cells may undergoconformational
switching that changes the outcomes of their subsequent
interactions in very specific ways.

This paper is about the active model. The systems we
consider are still dominated by thermodynamics, so that
structures form and decay according to natural rates. The
particles merely steer the dynamics of the system by disal-
lowing or slowing some of the reaction pathways in which
they participate. We believe this model may apply to a
wide variety of phenomena in which reaction pathway tuning
occurs. For example, directed evolution is routinely used to
tune metabolic pathways [8].

Besides exploring a number of theoretical models of
programmed self-assembly, we have built a self-assembling
system consisting of a number of very simple robotic parts
(Figure 1) [5]. When mixed on an air-hockey table, the parts

This work is partially supported by NSF Grant #0347955:CAREER:
Programmed Robotic Self-Assembly. S. Burden is also partially supported
by a Mary Gates Undergraduate Research Training Fellowship.

Motor

Motor mount

Movable magnets

and holder

Fixed magnet

Circuit board

IR Transmitter

IR Receiver

Chassis

Fig. 1. The programmable part mechanism includes low power magnetic
latches, infrared communications, and an on-board micro-controller [5]. The
parts do not move themselves. They float on an air table and are mixed
randomly by airjets along the perimeter.

randomly collide and bind to each other. Once bound, the
parts may communicate with each other and, at some future
time, may decide to detach from each other. Besides that, the
parts simply diffuse through the environment. Nevertheless,
we are able to program the system to form pre-specified
shapes, as illustrated in Figure 2.

Here we explain how to program particles so that the yield
of a desired assembly type at equilibrium is maximized. We
describe a model of the system based on chemical kinetics
that includes the effect of programming the interactions.
We then pose a general optimization problem in which
maximizing a certain function of the equilibrium state of the
Markov Process describing the system results in optimal self-
assembly programs. Finally, we describe how the results of
the optimization (a vector of probabilities) can be encoded
into a communications protocol for the robotic parts. This
extends our earlier work from the nondeterministic setting,
wherein we guarantee only that the desired assembly is
reachable and stable, to the stochastic setting. We give
several examples, including the application of the ideas to
the programmable parts system.

II. RELATED WORK

The present paper owes much to the work of Hosokawa,
Shimoyama and Miura who describe their macroscale self-
assembling system using models from chemical kinetics [9].
Their system consisted of passive triangular parts in a vertical
shaker, whereas our parts are programmable. The modeling
techniques in the present paper are applicable to robots,

(a) (b) (c)

Fig. 2. (a) The programmable parts are initially unattached. (b) After
random mixing, the parts form hexagons by rejecting certain binding events
and accepting others according to their programming. (c) The parts can be
reprogrammed to form other assembly types, such as chains. Thispaper
addresses the problem of programming the parts to maximize the yield of
the desired assembly type.

built by several groups, that either float on an air table
[10], [5] or even are suspended in oil [7]. The design of
such robots borrows heavily from other types of modular
robots [11], [12]. We also believe that these ideas will be
applicable to micro- and nano-scale self-assembly problems
[3], [1]. This work is aimed at building a comprehensive
dynamical systems model and programming discipline for
these systems and builds upon the grammatical approach
described in Section VII and in [13], [14]. The combination
of standard ideas from chemical kinetics [15], the notion
of programmable reactions (Section V) and optimization
(Section VI) is new, to the best of our knowledge. Besides
the grammatical approach, the most relevant work toward un-
derstanding self-assembly “programs” in a stochastic setting
is nucleic acid design [16], where the free-energy landscape
associated with DNA hybridization reactions is engineered.
The present work differs in that we suppose that local
interactions are controllable, whereas in the DNA work the
initial oligo sequences are the programmable elements.

III. T HE STOCHASTIC MODEL OF SELF-ASSEMBLY

A. Macrostates and Reactions

A componentis a connected group of particles. The
self-assembly of a component occurs when two smaller
components combine. We denote the set of allcomponent
typesin a system byC = {C1, C2, C3, ...}. The number of
component types may be either finite or countably infinite. A
macrostatedescribes the number of each type of component
in the system at a given time. Formally, a macrostatev is a
function fromC to the natural numbers. We write macrostates
as vectors, for example,

v = (10 5 2 0 ...)T (1)

to denote the state in which there are10 components of type
C1, 5 component of typeC2, 2 components of typeC3 an
no components of any other type.

A reaction is a vector that describes an assembly or
disassembly event as in, for example,

a = (−1 − 1 1 0 ...)T , (2)

which describes the reaction typeC1 +C2 ⇀ C3. The result
of a reactiona in the macrostatev is

v′ = v + a

when all the entries ofv′ are non-negative. In this case,a

is said to beapplicableto v.
When a reaction describes the combination of two com-

ponents, it is called aforward reaction. When it describes
the degradation of a component into smaller components,
then it is called areverse reaction. The inverseof a forward
reactiona is a−1 = −a. The sets of forward and reverse
actions applicable to a macrostatev are denotedF(v) and
R(v), respectively.

The matrixA = (a1 ... ak) whose columns are all the
forward reaction types in a given system is called theforward
reaction matrix(or stoichiometric matrix). The matrix−A

is the reverse reaction matrix.

B. Rates

Each reactiona has associated with it astochastic rate
constantk(a) that describes the rate at which the reaction oc-
curs given that the reactants (those components with negative
entries ina) have encountered each other. Typically, these
rates must be measured from experiments (as, for example,
we describe in Section IV-B).

The multiplicity M(v,a) of the reactiona in macrostate
v is the number of ways in whicha can occur inv.
For example, the multiplicity of the reactiona defined
by Equation (2) evaluated in the macrostatev defined by
Equation (1) isv(1)v(2) = 10 ·5 = 50, there being 50 ways
in which a component of typeC1 and a component of type
C2 can be chosen inv to react according toa. If a is not
applicable tov, thenM(v,a) is zero.

The rate of the reactionv ⇀ v + a is defined by

K(v,a) = k(a)M(v,a).

The vector-valued functionsKf andKr defined by

Kf (v) = (K(v,a1), ...,K(v,ak))T

and
Kr(v) = (K(v,a−1

1), ...,K(v,a−1

k))T ,

wherea1, ...,ak are the forward reactions of a given system,
are called theforward and reverse rate functionsof the
system, respectively.

C. Dynamics

A system, given by an initial macrostatev0, a forward
reaction matrixA and the forward and reverse rate functions
Kf and Kr, describes a stochastic system. We interpret a
system as either a continuous-time, discrete-state Markov
process or as a set of mass action kinetics equations. The
former is useful for systems with relatively small numbers
of particles and is also useful for obtaining the rates of a
system experimentally [6]. The latter is useful for systems
with large numbers of particles and is useful for evaluating
the average performance of a system.

a) Markov Process:The interpretation of the system as
a Markov Process uses theMaster Equationfrom chemical
kinetics [17]. The states are the possible macrostatesv,
which we enumerate using a simple (although computation-
ally intensive) algorithm: Letv0 be the initial macrostate
(n 0 0 ...)T . Apply each actionai in the system tov0 to

obtain new macrostatesv1...vk. To each of those, apply all
the actions again to obtain a (possibly) new set of macrostates
and so on. Continue this process until allN macrostates
have been enumerated. In the systems we examine here,
reactions do not create new mass, and thus this procedure
will terminate. It is useful to define,S = (v0 v1 ... vN),
the |C| × N dimensional matrix of reachable macrostates.
In general, there areO(2n) macrostates for a system with
n particles andO(n) component types. Nevertheless, this
formulation is quite useful for understanding small systems
or fragments of larger systems.

Let xi(t) be the probability that the system is in macrostate
vi at time t. The rate at whichxi transitions toxj is given
by

Qi,j =
∑

vj=vi+a

K(vi,a) +
∑

vj=vi−a

K(vi,−a)

wherea ranges over all forward reactions applicable tovi

and which result invj . The diagonal elementsQi,i are the
negative sum of the elementsQi,k for k 6= i. The average
behavior of the system is then given by

ẋ = QT x,

which is Kolmogorov’s Forward Equation [18, pp. 85-86]. A
steady state distribution of the system is obtained by solving
QT x = 0 and is denotedx(∞). Because each reaction is
reversable,x(∞) is typically unique in these problems. The
product

v = Sx

gives the expected number of each component type as a
function of time.

The dynamicsẋ described byQT should be thought of
as the average behavior of many experiments. Individual
trajectories of the system must be obtained through simu-
lation, usingGillespie’smethod [17]. In this paper, we will
be primarily concerned with the steady state behaviorx(∞)
and leave the control of the transient behaviors to a later
paper.

b) Mass Action Kinetics:In the interpretation of the
system using mass action kinetics, we suppose thatv(i) ∈ R

represents the concentration of componenti in the system.
We also typically useM(v,a) = i2 instead of i(i − 1)
for the multiplicity of forward reactions involving the same
component typei. The equation describing the behavior is

v̇ = A · (Kf (v) − Kr(v)).

This is, in general, a nonlinear equation for which only
numerical solutions can be obtained. It is interesting to note
that finding the steady state of the mass action kinetics
requires solving the nonlineaṙv = 0, while finding the
steady state of Kolmogorov’s equation requires finding the
null-space of the high-dimensional linear operatorQT . Both
yield the same information about the steady state.

IV. NATURAL SYSTEMS

The components inC we consider are each composed of
some number of parts. When two components interact, they
do so via one part from each component, and these two parts

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

.
.
.

Fig. 3. The indexing scheme for the smaller components that can form in
the programmable parts system.

can locallydecidewhether or not to bind according to their
programming. In this section, we considernatural systems
in which interacting partsalwaysdecide to bind.

We consider two examples. The first, a simple model
of polymerization, is primarily for purposes of illustration.
The second, theprogrammable parts, deals with our testbed
robots.

A. Polymerization

The first example deals with simple labeled acyclic graphs
with degree at most two. Thus, the components of the system
are

C1 = {P1, P2, P3, P4, ...Pn},

wherePi denotes a path of lengthi. We suppose there are
n parts in total, so the largest object that can be built isPn.
Each forward reaction either joins two paths (Pi + Pj ⇀
Pi+j) or breaks a path (Pi+j ⇀ Pi + Pj). For example,
assuming there are six parts (or that only components up to
size six are permitted), the reaction matrix is

A =




−2 −1 −1 −1 −1 0 0 0 0
1 −1 0 0 0 −2 −1 −1 0
0 1 −1 0 0 0 −1 0 −2
0 0 1 −1 0 1 0 −1 0
0 0 0 1 −1 0 1 0 0
0 0 0 0 1 0 0 1 1




.

A reasonable model for the rates is to suppose that each
forward actiona occurs at the ratek(a), and its reverse
occurs at the ratek(a−1) = k(a)e−ε, whereε > 0 is the
energy of a bond. To construct examples, we will choose the
forward rates randomly.

B. The Programmable Parts

The components in the programmable parts system are
connected triangular sub-tilings of the plane. We index the
smaller components for easy reference, as shown in Figure 3.

To determine the rates for reactions between pro-
grammable part components, we use a high-fidelity
mechanics-based simulation of the system [6] and fit the
stochastic process described by the Master Equation to the
data. We repeat the essential details here for completeness.

We fix the average kinetic energy of the parts (i.e. the
temperature) at Kave = 5 × 10−4J , which is the kinetic
energy measured from experiments using the actual robots

1 + 2 ⇀ 3 0.00679± 0.00028
1 + 1 ⇀ 2 0.0112± 0.0006
1 + 5 ⇀ 10 0.0110± 0.0012
1 + 3 ⇀ 6 0.00261± 0.00025
2 + 2 ⇀ 6 0.00304± 0.00034
2 + 3 ⇀ 10 0.00638± 0.00082
2 + 5 ⇀ 19 0.00182± 0.00050
3 + 3 ⇀ 19 0.00118± 0.00020
1 + 10 ⇀ 19 0.00187± 0.00090
6 ⇀ 1 + 3 0.000951± 0.00024
2 ⇀ 1 + 1 0.000133± 0.000130
4 ⇀ 1 + 3 0.00110± 0.00021
4 ⇀ 2 + 2 0.00111± 0.00035

Fig. 4. Some of the 272 kinetic rate constants we measured for the
programmable part system with12 parts,ρ = 5parts/m2 and Kave =
5 × 10−4 J. The initial macrostate for each approximation is chosen so
that there are an approximately equal number of theforward reactants (see
Figure 3 for a listing of the reactant types). The errors in the rate constants
for the reverse reactions are in general larger because we observed fewer
reverse reactions. Note that the error bars do not account for errors in the
measurement of the physical properties of the programmable parts.

in the laboratory. We also fix a density ofρ = 5 parts/m2

that (1) approximately matches the physical testbed and (2)
comes from a parameter regime where the reaction-diffusion
model is valid [6], [17]. The simulations useN = ρA = 10
parts.

As an example, supposea is the reaction1 + 2 ⇀ 3. To
determine the ratek(a) for a single part (component type
1) combining with a “dimer” (component type 2) to form a
“trimer” (component type 3), we choose a macrostate of the
form

v0 = (N1 N2 0 0 ...)T

with N1 single parts andN2 dimers. We runn simulations
from random initial positions and with the initial velocities
chosen from a Gaussian distribution with mean equal to
Kave/m, wherem is the mass of a part. As soon as a reaction
occurs, in this case either1+2 ⇀ 3 or 2 ⇀ 1+1, we restart
the simulation with a new random initial condition.We do
not reset the timet when we restart the simulation.

Suppose that the times at which a reactiona occurs are

τ(a) = (t1, t2, ..., tr).

The hypothesis (from the assumption that the system is a
Markov Process) is that the intervals∆ti = ti+1 − ti are
distributed according to a Poisson waiting process with mean
λ = 1/k(a). We thus arrive at the estimate

k(a) ≈ 1

N1N2

(
1

〈∆t〉 ±
std(∆t)√
n〈∆t〉2

)

where〈∆t〉 is the average waiting interval for the reaction
andstd(∆t) is its standard deviation. Note thatN1N2 is the
multiplicity M(v0,a). Said differently, the approximate rate
constant is the rate at which the reaction occurs starting at
v0 divided by the multiplicity of the reaction inv0. From
the same set of simulations, we also obtain an approximation
of the ratek(2 ⇀ 1 + 1) from the timesτ(2 ⇀ 1 + 1).

In Figure 4 we list the rates obtained from simulation
for a number of the most primitive reactions of the system.

Each rate was obtained from between 500 and 1000 observed
simulated reactions. Simulations of the stochastic system
described by just the rates and using Gillespie’s method
[17] match the full-mechanics-based simulations of the pro-
grammable parts and experiments using the actual testbed
robots.

V. PROGRAMMED SYSTEMS

In a programmed system, two interacting components may
decidewhat to do after binding. For example, suppose the
goal is to make copies ofP3 in the polymerization example.
If a P2 and aP2 interact, they should temporarily form a
P4. Then the parts making up theP4 should shed aP1,
leaving aP3. Suppose thatkcom, is the rate at which the
parts decide and communicate what to do. Then thenatural
reactionP2 + P2 ⇀ P4 becomes the programmed reaction
pathway

P2 + P2 ⇀ P4 ⇀ P3 + P1

or simply
P2 + P2 ⇀ P3 + P1,

when we assume thatkcom � kf . We describe a com-
munications protocol that implements programmed reactions
using the language ofgraph grammars[13] in Section VII.

We write ã for a reaction that has been programmed. In
the above example, we have changed the fifth reaction in the
polymerization example from

a5 = (0 − 2 0 1 ...)T

to
ã5 = (1 − 2 1 0 ...)T .

More generally, we may wish to consider all possible ways
to break apartP4. There are five possibilities:

1 : P4 4 : P2 + 2P1

2 : P3 + P1 5 : 4P1

3 : 2P2

Defineq4,j to be the probability that the parts decide to use
the jth option in the above list after the natural reactiona5

produces aP4. The resulting programmed reaction can be
written as

ã5 = −(0 2 0 0 0 . . .)T + q4,1(0 0 0 1 0 . . .)T

+ q4,2(1 0 1 0 0 . . .)T + q4,3(0 2 0 0 0 . . .)T

+ q4,4(2 1 0 0 0 . . .)T + q4,5(4 0 0 0 0 . . .)T

where
∑

q4,j = 1. Each programmed action therefore has
the form

ãi = ai,0 +
∑

j

qk,jai,j

where actionai is assumed to produce componentk, the
index j ranges over the options of how to break-up compo-
nentk, andai,0 describes the components consumed by the
reaction.

If A is the natural (un-programmed) reaction matrix then
we write Ãq for the reaction matrix programmed with the
probabilities q. Notice that the rates of the programmed
actions are identical to the rates of the natural reactions.

Also notice that components still decay according to the
natural reverse reactions in−A. This is easily seen in the
new equation describing the mass action kinetics

v̇ = Ãq · Kf (v) − A · Kr(v). (3)

In the interpretation of the system as a Markov Process, we
have that the matrixQ is now parameterized by the vector
q and the averaged dynamics become

ẋ = Q(q)T x. (4)

The off-diagonal elements ofQ(q) are

Q(q)i,j =
∑

vj=vi+ak,0+ak,l

qpk,lK(v,ak) +
∑

vj=vi−a

K(vi,−a)

where the first sum ranges over allk and l such thatvj is
obtained fromvi by using thelth option for breaking up the
productCpk

of forward reactionak.

VI. OPTIMAL PROGRAMS

We wish to find a probability vectorq so that a costJ
is optimized subject to the constraints

∑
j qi,j = 1 and the

dynamics. We will use the Markov Chain interpretation of
the rates so that the resulting optimization problem is linear.

For the self-assembly problem, let

c = (0 . . . 0 1 0 . . . 0)T

be the |C| × 1 dimensional vector with zeros everywhere
except in themth place. To maximize the yield of component
m we we maximize the function

Jassem = cT Sx

subject toQT x = 0 and the constraints
∑

j

qi,j = 1

for all i. This problem can be recast as a bilinear program-
ming problem and solved (locally) with existing software
[19]. The solution can be obtained in polynomial time in the
number of probabilities inq and the dimensionN + 1 of x,
which unfortunately is usually quite large.

The optimal probabilities in Equation 3 determine the
usefulnessof each component inC. Obviously, the desired
component i should be formed after a natural reaction
whenever possible, by detaching sub-components. The sub-
components may need to be further dismantled, depending on
the other rates. For example, suppose the result of a natural
reactiona can be broken into the desired componenti and
another componentj. It may be that the rates of forward
reactions involvingj are low or zero – soj is a dead-end
component. In that case, componentj should be broken-
down further.

When the goal is to maximize the yield of themth
component, each reaction is programmed as follows. If the
result of the natural reaction contains themth component
as a sub-component, then keep that component and release
and dismantle the remaining components. If the result of the
natural reaction does not contain themth component, simply
dismantle the result of the reaction. In the examples below,
we only consider how to dismantle components whose size
is less than or equal to the size of themth component.

A. The Polymerization Example

Suppose the goal is to maximize the number of compo-
nents of typeP4. Any reaction resulting in something larger
thanP4 will be broken into aP4 and some other component.
Furthermore, we need only consider components up toP6,
since larger components could only result in combinations
of components involvingPj , j ≥ 4, which either should
not participate in reactions (in the case ofP4) or should
break-down into aP4 and some smaller component. The
programmed reaction matrix is

Ãq =




−2 + 2q2,2 −1 + q3,2 + 3q3,3 −1 0 −1 + 2q2,2

q2,1 −1 + q3,2 0 0 q2,1

0 q3,1 −1 0 0

0 0 1 0 1

0 0 0 0 −1

0 0 0 0 0

. . .

0 1 2q2,2 2q2,2

−2 −1 −1 + q2,1 q2,1

0 −1 0 −2

1 1 0 1

0 0 0 0

0 0 0 0


 ,

and should be compared to the natural reaction matrixA for
six parts shown in Section IV-A.

As an example, suppose that the rateskf (a) are 3, 3, 5, 4,
4, 3, 1, 5 and 4, taken in the same order as the actions appear
in A. The reverse rates are determined using a bond energy
ε = 1. Starting with the macrostatev0 = (6 0 0 0 0 0 0)
gives 11 states. In this case, the optimal probabilities are

q = (q2,1, q2,2, q3,1, q3,2, q3,3)
T = (

1

2
,
1

2
, 1, 0, 0)T ,

which gives an average yield of0.72 components of typeP4

at equilibrium.
In this example, the obvious (and suboptimal) choice

may seem to beq = (1 0 1 0 0)T , where one keeps
components of typeP2 when they form. We call this the
greedychoice. However, in this example (due to the choice
of reaction rates), components of typeP3 form quickly and
require an additionalP1 to becomeP4s. Figure 5 shows the
transient responses for the optimal and greedy assignment of
probabilities.

Remark: This formulation depends on the number of parts
assumed to be present initially in the system, since each
choice forn results in a differentS and thereforeQ. How-
ever, we have noticed empirically that: (1) the probabilities
q resulting from different choices ofn are often the same
or nearly the same; and (2) when the probabilities found via
optimization using different values forn are plugged in to the
mass action kinetics equations (which assume a continuum
of parts), the resulting equilibria are very close. We hope to
report on these interesting phenomena more completely in a
later paper.

B. The Programmable Parts Example

To illustrate the optimization method with the pro-
grammable parts, we consider the problem of assembling
hexagons (C19 in Figure 3). The goal is to use the large set
of rate data (Figure 4) intelligently to make the best hexagon-
forming program possible.

1 2 3 4

0.1
0.2
0.3
0.4
0.5
0.6
0.7

[P4] (optimal)
[P4] (greedy)

t

yield

Fig. 5. The expected number of components of typeP4 as a function of
time for the optimal and greedy choices ofq.

A hexagon is grown from componentsC1, C2, C3, C5

andC10. One may also wish to allow “scaffold” assemblies
like C8 and hope they later react with, for example, aC3

to form a component that contains a hexagon. There are
hundreds of other component types that can result from
interactions among this small set of component types and
we have measured hundreds of non-zero reaction rates for
these interactions. This results in a very largeQ matrix.
Furthermore, for each component type that does not contain
a hexagon as a sub-component, one has a choice of how to
break it down according toq.

However, much can be gleaned from smaller subproblems.
For example, we have noticed in experiments thatC10

hardly ever reacts with other assemblies. The framework
above allows us to determine the optimal way to handle the
appearance ofC10: We consider how to breakC10 into the
following six options:

1 : C10 4 : C3 + 2C1

2 : C5 + C1 5 : C2 + 3C1

3 : C3 + C2 6 : 5C1,

to which we associate the probabilitiesq10,i, i ∈ {1, ..., 6}.
To reduce the state space, we use thegreedy choicefor
reactions that create sub-components of typeC19 and the
reject choicefor all other reactions (meaning that we simply
undo these reactions as soon as they happen). Starting with 9
parts and enumerating the states according to the procedure
described in Section III-C results in26 states and a26× 26
dimensionalQ(q) matrix.

Running our optimization code on this problem using the
measured reaction rates givesq10,2 = 1 and all other options
equal to zero1. We also ran the optimization assuming other
values forn, and obtained the same value forq. For example,
with 16 partsQ is 136 × 136 dimensional.

To test the approach, we compared the optimal versus the
greedy choice using the mass action kinetics model of the
dynamics, the high-fidelity simulation and the robot testbed.
The results are shown in Figure 6. The data agree quali-
tatively, with the details in, for example, time scale differ

1To ensure thatQ(q) admits only one stationary distribution and is
physically realistic [18, ch. 5], we have assumed that the reverse reactions
that we did not observe in collecting data nevertheless havenon-zero rate
constants, which we have taken to be an order of magnitude slower than
the slowest measured rate.

due to the different assumptions on how communications
are modeled compared to the somewhat slow communication
rate in the actual robots.

VII. A U NIVERSAL GRAPH GRAMMAR

IMPLEMENTATION

To implement programmed assembly actions with robotic
parts, we have designed a communications protocol that
keeps each robot up-to-date about the component-type it is a
part of and the role it takes in that component. The protocol
is easily expressed as agraph grammar[13], which is a set
Φ of rules of the formL ⇀ R whereL and R are simple
labeled graphs. If the some part of the system matches the
graphL it can be replaced by the graphR in a distributed
manner.

When an assembly event occurs, the topology of the robot
network changes, and the robots use agraph recognizer
[20], [21] protocol to determine the new topology. We have
modified the notion of a graph recognizer to also include
information concerning therole that each node takes in the
graph.

Here we describe the protocol for the polymerization ex-
ample. We briefly discuss the protocol for the programmable
parts, which is similar, but considerably more tedious to
describe.

A. Polymerization Protocol

At all times, each robot in the system has alabel of the
form (i, j, σ) where i, j ∈ N record the component type
and role andσ ∈ Σ is a symbol used to store temporary
information. Initially, all robots are disconnected, and each
has the label(1, 1, .), meaning that each has role 1 in a
component of type 1. The symbol “.” is used to indicate a
resting state. A chain of, say, four robots in a resting state
has the form

(4, 1, .) − (4, 2, .) − (4, 3, .) − (4, 4, .).

We suppose that the protocol executes at a much higher
rate than the natural forward and reverse rates with which
components combine. In practice, we use time-stamps along
with the labels described below to resolve conflicts wherein
two updates are happening simultaneously.

(Formation) When two componentsPi and Pk interact,
they form Pi+k. This could happen in four different ways,
depending on which ends interact. For example, suppose they
bind via the robots labeled(i, i, .) and(k, k, .). The following
rules manage the recognition of the new situation. In the first
rule, we require thati < k and in the second and third rules,
we require thati 6= k.

(i, i, .) (k, k, .) ⇀ (i + k, k + 1, g) − (i + k, k, s)

(i, j, s) − (k, l, .) ⇀ (i, j, .) − (i, j − 1, s)

(i, j, .) − (k, l, g) ⇀ (k, l + 1, g) − (k, l, .)

(k, k, g) ⇀ (k, k, .).

The interpretation of, for example, the first rule, is: If some
robot labeled(i, i, .) interacts with a robot labeled(k, k, .),
then they bind and change their labels to(i+k, k+1, g) and
(i + k, k, s) respectively. The symbolsg and thes initiate a

(3,1,.) (3,2,.) (3,3,.) (4,4,.) (4,3,.) (4,2,.) (4,1,.)
(3,1,.) (3,2,.) (7,5,g) (7,4,s) (4,3,.) (4,2,.) (4,1,.)
(3,1,.) (7,6,g) (7,5,.) (7,4,.) (7,3,s) (4,2,.) (4,1,.)
(7,7,g) (7,6,.) (7,5,.) (7,4,.) (7,3,.) (7,2,s) (4,1,.)
(7,7,.) (7,6,.) (7,5,.) (7,4,.) (7,3,.) (7,2,.) (7,1,s)

(5,1,s) (5,2,.) (5,3,.) (5,4,.) (5,5,.)
(5,1,2:2) (5,2,.) (5,3,.) (5,4,.) (5,5,.)
(2,1,.) (2,2,2:2) (5,3,.) (5,4,.) (5,5,.)
(2,1,.) (2,2,.) (2,1,2:-) (5,4,.) (5,5,.)
(2,1,.) (2,2,.) (2,1,.) (2,2,2:-) (5,5,.)
(2,1,.) (2,2,.) (2,1,.) (2,2,.) (1,1,-)
(2,1,.) (2,2,.) (2,1,.) (2,2,.) (1,1,.)

This robot flips a q-biased coined
to decide how to break the component.

(5,1,.) (5,2,.) (5,3,.) (5,4,.) (5,5,.)
(5,1,.) (5,2,.) (5,3,b) (5,4,b) (5,5,.)
(5,1,.) (5,2,.) (3,3,f) (2,1,f) (5,5,.)
(5,1,.) (3,2,f) (3,3,.) (2,1,.) (2,2,f)
(3,1,f) (3,2,.) (3,3,.) (2,1,.) (2,2,.)
(3,1,.) (3,2,.) (3,3,.) (2,1,.) (2,2,.)

(a) (b) (c)

Fig. 7. Examples of the universal grammar in action. (a) Two chains bind. Theformation rulesupdate the labels of the robots to reflect the size of the
new component and their roles in it. (b) A newly formedP5 dismantles itself using thedestruction rulesinto 2P2 + P1. (c) A P5 is broken by some
external force and the robots adjust their labels to reflect the new situation using theuncontrolled break rules.

200 400 600 800 1000 1200 1400 t

0.2

0.4

0.6

0.8

1

v19 (greedy)
v19

v19

(optimal)

(a)

500 1000 1500 2000

0.2

0.4

0.6

0.8

1

v19 (greedy)
v19

v19

(optimal)

t

(b)

100 200 300 400

0.2

0.4

0.6

0.8

t

v19 (greedy)
v19

v19

(optimal)

(c)

Fig. 6. Comparison of the optimal choice and the greedy choice for how
to dismantleC10 when assemblingC19. (a) Mass action kinetics with
an initial concentration of nine parts per square meter. (b) The average
of 256 trajectories from a high-fidelity mechanics-based simulation of the
robots starting with nine parts. (c) Data averaged over 15 runs of our
programmable parts testbed with nine parts and the universal grammar.
The data was collected using an overhead camera and subsequent software
analysis of the video data. The different time scales are likely due to different
communication rates: immediate in (a), fast in (b) and somewhat slow in
(c), the actual experiment.

cascade of rule applications to the rest of the robots in the
chain, as illustrated in Figure 7(a). The rules describing the
update resulting from the chains combining via(i, 1, .) and
(k, k, .) etc., are similar.

(Destruction) When a chain is first formed, it must be
dismantled into smaller, more useful components according
to the probabilitiesqi,j determined by the optimization
described in Section VI. We appoint the node labeled(k, 1, s)
to make this choice by using a random number generator.
If the node chooses to break the chain into parts of size
p1, ..., pr, then it throws a rule of the form

(k, 1, s) ⇀ (k, 1, h : t)

where h = p1 and t = {p2, ..., pr−1} is a head-tail
description of the list of part sizes (as used in functional
programming, for example). We then have the following
rules.

(i, j, h : t) − (k, l, .) ⇀ (h, j, .) − (h, j + 1, h : t) h 6= j

(i, h, h : t) − (k, l, .) ⇀ (h, h, .) (hd(t), 1, hd(t) : rest(t))

(h, h, h : ∅) ⇀ (h, h, .).

Notice that the second rule deletes an edge (or breaks a bond)
in a controlled way to execute the required dismantling.
These rules are illustrated in Figure 7(b).

(Uncontrolled Breaks) When a reverse reaction occurs nat-
urally, a chain is broken into two smaller chains. A graph
grammar rule that models this is

(i, j, .) − (i, j + 1, .) ⇀ (i, j, b) (i, j + 1, b)

where the symbolb denotes the fact that the part has just
broken a bond. This rule is not part of the communications
protocol. Rather, the robots can sense when their neighbors
disappear, and they set the third component of their labels to
“b” accordingly. We then use one other symbol, “f ”, to mean
“fixed” in the following rules torecoverfrom the break. The
first three repair the states of the lower half of a broken chain.

(i, j − 1.) − (i, j, b) ⇀ (i, j − 1, .) − (j, j, f)

(i, j − 1, .) − (k, j, f) ⇀ (k, j − 1, j) − (k, j, .)

(k, 1, f) ⇀ (k, 1, .).

The second three repair the upper half.

(i, j, b) − (i, j + 1, .) ⇀ (i − j + 1, 1, f) − (i, j + 1, .)

(i, j, f) − (k, l, .) ⇀ (i, j, .) − (i, j + 1, f)

(i, i, f) ⇀ (i, i, .).

B. Programmable Parts Protocol

The programmable parts use a very similar protocol to
implement programmed reactions, which we discuss briefly.
The two main complications are: (1) The programmable parts
can form components more complicated than paths; and (2)
the role of each face of each part must be identified. The
first complication can be handled by maintaining a spanning
tree of each component as components form and adapting
the rules in the previous subsection to trees. The second
complication requires the use of rules of the form

a d
b

c

f

e
g j

h

i

l

k

where a . . . l are compound labels such as those used in
the previous subsection. The grey triangles indicate how
the triangular labeled graphs are embedded in the plane.
Rule sets for programmable parts are still graph grammars.
However, the orientation of the triangles must be maintained
in rule application, slightly complicating the formalism,as
described elsewhere [13].

VIII. D ISCUSSION

The main contributions of this paper are (1) careful model-
ing of programmed stochastic self-assembly in the language
of kinetics; (2) the recognition that, in our systems, local
interaction rules simply accept, reject or redirect binding
events initiated by the environment; (3) a formulation of the
problem that allows us to find interaction rules that result in
optimum performance; and (4) the application of these ideas
to a variety of examples, including our experimental testbed
for which we have meticulously measured natural kinetic rate
constants as input into the optimization problem.

We believe that our notion of reaction pathway tuning
can be applied to a variety of systems (we are investigating
directed self-assembly at other scales in our lab) and using
a variety of objective functions that not only optimize yield,
but also the overall rate, the strength of a desired pathway
for a particular component, the probability of oscillations,
robustness to model-uncertainty, etc. In the future, we plan
to explore and extend these ideas.

The main drawback of the approach is that the complexity
of the optimization problem, while polynomial in the size of
Q, is exponential in the number of component types. Never-
theless, for the issues we encounter with the programmable
parts testbed, solving small problems is quite insightful.
In the future, we plan to improve our implementation of
the optimization problem (which presently is not nearly as
efficient as it could be) to handle much larger instances and
explore approximation methods that give, perhaps, subopti-
mal solutions, but do so quickly.

Acknowledgments

This work is partially supported by NSF Grant #0347955:
CAREER: Programmed Robotic Self-Assembly. S. Burden is
also partially supported by aMary Gates Undergraduate
Research Training Fellowship. We are indebted to Mehran
Mesbahi for his helpful suggestions regarding solving the
optimization problem in Section VI.

REFERENCES

[1] E. Winfree. Algorithmic self-assembly of DNA: Theoretical motiva-
tions and 2D assembly experiments.Journal of Biomolecular Structure
and Dynamics, 11(2):263–270, May 2000.

[2] R. C. Mucic, J. J. Storhoff, C. A. Mirkin, and R. L. Letsinger. DNA-
directed synthesis of binary nanoparticle network materials. Journal
of the American Chemical Society, 120:12674–12675, 1998.

[3] N. Bowden, A. Terfort, J. Carbeck, and G. M. Whitesides. Self-
assembly of mesoscale objects into ordered two-dimensional arrays.
Science, 276(11):233–235, April 1997.

[4] A. Greiner, J. Lienemann, J. G. Korvink, X. Xiong, Y. Hanein, and
K. F. Böhringer. Capillary forces in micro-fluidic self-assembly.
In Fifth International Conference on Modeling and Simulationof
Microsystems (MSM’02), pages 22–25, April 2002.

[5] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp,
and T. Nguyen. Self-organizing programmable parts. InInternational
Conference on Intelligent Robots and Systems. IEEE/RSJ Robotics and
Automation Society, 2005.

[6] Nils Napp, Sam Burden, and Eric Klavins. The statisticaldynamics
of programmed robotic self-assembly. InInternational Conference on
Robotics and Automation, 2006. Submitted.

[7] P. White, V. Zykov, J. Bongard, and H. Lipson. Three dimensional
stochastic reconfiguration of modular robots. InProceedings of
Robotics Science and Systems, Boston, MA, June 2005.

[8] H. Alper, C. Fischer, E. Nevoigt, and G. Stephanopoulos.Tuning
genetic control through promoter engineering.PNAS, 102(36):12678–
12683, 2005.

[9] K. Hosokawa, I. Shimoyama, and H. Miura. Dynamics of self-
assembling systems: Analogy with chemical kinetics.Artifical Life,
1(4):413–427, 1994.

[10] P. J. White, K. Kopanski, and H. Lipson. Stochastic self-reconfigurable
cellular robotics. InProceedings of the International Conference on
Robotics and Automation, New Orleans, LA, 2004.

[11] D. Rus and M. Vona. Crystalline robots: Self-reconfiguration with
compressible unit module.Autonomous Robots, 10(1):107–124, Jan-
uary 2001.

[12] J. Suh, S. Homans, and M. Yim. Telecubes: Mechanical design of a
module for self-reconfigurable robotics. InIEEE International Con-
ference on Robotics and Automation, pages 4095–4101, Washington,
D.C., May 2002.

[13] E. Klavins, R. Ghrist, and D. Lipsky. A grammatical approach to self-
organizing robotic systems.IEEE Transactions on Automatic Control,
51(6):949–962, June 2006.

[14] K. Saitou. Conformational switching in self-assemblingmechanical
systems.IEEE Transactions on Robotics and Automation, 15(3):510–
520, 1999.

[15] M. Fienberg. The existence and uniqueness of steady states for a class
of chemical reaction networks.Archive for Rational Mechanics and
Analysis, 132:311–370, 1995.

[16] R. M. Dirks, M. Lin, E. Winfree, and N.A. Pierce. Paradigms
for computational nucleic acid design.Nucleic Acids Research,
32(4):1392–1403, 2004.

[17] D. T. Gillespie. Exact stochastic simulation of coupledchemical
reactions.Journal of Physical Chemistry, 81:2340–2361, 1977.

[18] D.W. Strook. An Introduction to Markov Processes. Springer-Verlag,
2005.

[19] PENOPT. http://www.penopt.com/.
[20] I. Litovsky, Y. Métevier, and W. Zielonka. The power and limitations

of local computations on graphs and networks. InGraph-theoretic
Concepts in Computer Science, volume 657 of Lecture Notes in
Computer Science, pages 333–345. Springer-Verlag, 1992.

[21] B. Courcelle and Y. Ḿetivier. Coverings and minors: Application to
local computations in graphs.European Journal of Combinatorics,
15:127–138, 1994.

