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Abstract—We consider the control of programmable self- Motor
assembling systems whose dynamics are governed by stochastic
reaction-diffusion dynamics. In our system, particles may de-
cide the outcomes of reactions initiated by the environment, Movable magnets
thereby steering the global system to produce a desired assem-
bly type. We describe a method that automatically generates
a program maximizing yield based on tuning the rates of | S
experimentally determined reaction pathways. We demonstrate ' T Chassis
the method using theoretical examples and with a robotic
testbed. Finally, we present, in the form of a graph gram-
mar, a communication protocol that implements the generated
programs in a distributed manner.
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I. INTRODUCTION

Self-assembly is a phenomenon in whichsaup of i o ]
paricles spontaneously airange themselves into a canerff L, T pedtammable ert meshanim ncldes o power toane
structure. Self-assembly is ubiquitous in nature. For eXmarts do not move themselves. They float on an air table and aredmix
ample, virus capsids, cell-membranes and tissues are @idomly by airjets along the perimeter.
self-assembled from smaller components in a completely
distributed fashion. Self-assembly is beginning to finavigsy
into engineering, harnessed using a variety of technaogiéandomly collide and bind to each other. Once bound, the
such as DNA [1], [2], PDMS [3], MEMs [4] and robots [5], parts may communicate with each other and, at some future
[6], [7]. time, may decide to detach from each other. Besides that, the

Self-assembly comes in, roughly, two flavors: passive arfearts simply diffuse through the environment. Neverthegles
active. In passive self-assembly, particles interact ming Wwe are able to program the system to form pre-specified
to geometry or surface chemistry and tend toward a thermghapes, as illustrated in Figure 2.
dynamic equilibrium at which the system is assembled. For Here we explain how to program particles so that the yield
example, phospholipids stick to each other along hydrophef a desired assembly type at equilibrium is maximized. We
bic regions to form membranes. In active self-assembly, ttéescribe a model of the system based on chemical kinetics
particles can somehow decide in what interactions to partakhat includes the effect of programming the interactions.
For example, proteins in cells may underganformational We then pose a general optimization problem in which
switching that changes the outcomes of their subsequemaximizing a certain function of the equilibrium state oéth
interactions in very specific ways. Markov Process describing the system results in optimél sel

This paper is about the active model. The systems wassembly programs. Finally, we describe how the results of
consider are still dominated by thermodynamics, so thdlhe optimization (a vector of probabilities) can be encoded
structures form and decay according to natural rates. THeto a communications protocol for the robotic parts. This
particles merely steer the dynamics of the system by disagxtends our earlier work from the nondeterministic sefting
lowing or slowing some of the reaction pathways in whichwherein we guarantee only that the desired assembly is
they participate. We believe this model may apply to d@eachable and stable, to the stochastic setting. We give
wide variety of phenomena in which reaction pathway tuningeveral examples, including the application of the ideas to
occurs. For example, directed evolution is routinely used tthe programmable parts system.
tune metabolic pathways [8].

Besides exploring a number of theoretical models of
programmed self-assembly, we have built a self-assemblingThe present paper owes much to the work of Hosokawa,
system consisting of a number of very simple robotic partShimoyama and Miura who describe their macroscale self-
(Figure 1) [5]. When mixed on an air-hockey table, the partassembling system using models from chemical kinetics [9].

This work is partially supported by NSF Grant #034798HAREER: Their system consisted of passive triangular parts in acasrt
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Af A VAN A A when all the entries of’ are non-negative. In this case,
J DQ A, £k s is said to beapplicableto v.
> o 4 I D 5% SS] When a reaction describes the combination of two com-
v D9 o 5 ﬁ % ponents, it is called dorward reaction. When it describes
> oq < @@ @ the degradation of a component into smaller components,
<AV then it is called aeverse reactionThe inverseof a forward

(@) (b) (©) reactiona is a~! = —a. The sets of forward and reverse

_ o actions applicable to a macrostateare denotedF(v) and
Fig. 2. (a) The programmable parts are initially unattach&)l. After R tivel

random mixing, the parts form hexagons by rejecting certaidibg events (V)’ respep Ively.
and accepting others according to their programming. (c) Besan be The matrix A = (a; ... a) whose columns are all the
r%%rogramntﬂﬁd to kf)?rm O]Eher assembly tt)r/]pesy ?uih as C,ha_msgfgbg forward reaction types in a given system is calledftievard
addresses the problem of programming the parts to maximize . . . . - .
the desired assembly type. reaction matrix(or stoichiometric matrix). The matrix A

is thereverse reaction matrix

. . . B. Rates
built by several groups, that either float on an air table

[10], [5] or even are suspended in oil [7]. The design of Each reactioma has associated with it atochastic rate

such robots borrows heavily from other types of moduIa?onSta!mk(a) that describes the rate at which the re_action oc-
robots [11], [12]. We also believe that these ideas will b&Urs given that the reactants (those components with vegati
applicable to micro- and nano-scale self-assembly pm@erﬁntrles ina) have encountered each_ other. Typically, these
[3], [1]. This work is aimed at building a comprehensiveates must bg measured from experiments (as, for example,
dynamical systems model and programming discipline fof/€ describe in Section IV-B). o

these systems and builds upon the grammatical approachl e multiplicity M (v, a) of the reactiona in macrostate
described in Section VIl and in [13], [14]. The combination¥ 1S the number of ways in whicla can occur inv.

of standard ideas from chemical kinetics [15], the notiofof €xample, the multiplicity of the reactioa defined

of programmable reactions (Section V) and optimizatioy Equation (2) evaluated in the macrostatedefined by
(Section V1) is new, to the best of our knowledge. Beside§auation (1) isv(1)v(2) = 10-5 = 50, there being 50 ways
the grammatical approach, the most relevant work toward uff Which a component of typ€’, and a component of type
derstanding self-assembly “programs” in a stochastiérgett C2 can be chosen iw to react according ta. If a is not

is nucleic acid design [16], where the free-energy landscagPPlicable tov, then M (v, a) is zero. _

associated with DNA hybridization reactions is engineered 1Ne rate of the reactionv — v + a is defined by

_The present work differs in that we suppose that local K(v,a) = k(a)M(v, a).

interactions are controllable, whereas in the DNA work the

initial oligo sequences are the programmable elements. The vector-valued functionK ; and K, defined by

I1l. THE STOCHASTIC MODEL OF SELF-ASSEMBLY K;(v) = (K(v,a1),.., K(v,az))"
A. Macrostates and Reactions and
A componentis a connected group of particles. The K, (v) = (K(v,a7 "), ... K(v,a; )T,

self-assembly of a component occurs when two small
components combine. We denote the set ofcalinponent
typesin a system byC = {C},C5, Cs,...}. The number of
component types may be either finite or countably infinite.
macrostatedescribes the number of each type of componet. Dynamics
in the system at a given time. Formally, a macrostaie a

function from( to the natural numbers. We write macrostate§e
as vectors, for example,

%hereal, ..., a are the forward reactions of a given system,
are called theforward and reverse rate function®f the
Eystem, respectively.

A system given by an initial macrostate,, a forward
action matrixA and the forward and reverse rate functions
K; and K,, describes a stochastic system. We interpret a
v=(10520..)7 (1) System as either a continuous-time, discrete-state Markov
process or as a set of mass action kinetics equations. The
to denote the state in which there dcomponents of type former is useful for systems with relatively small numbers
C4, 5 component of types, 2 components of typ€'s an  of particles and is also useful for obtaining the rates of a

no components of any other type. system experimentally [6]. The latter is useful for systems
A reaction is a vector that describes an assembly owith large numbers of particles and is useful for evaluating
disassembly event as in, for example, the average performance of a system.

T a) Markov ProcessThe interpretation of the system as
a=(-1 -110..), @) a Markov Process uses tivaster Equationfrom chemical
which describes the reaction tygg + Cs — Cs. Theresult kin_etics [17]. The states are _the possible macrostates
of a reactiona in the macrostate’ is which we enumerate using a simple (although computation-
ally intensive) algorithm: Letvy be the initial macrostate
v =v+a (n 00 ..)T. Apply each actiom; in the system tov, to



obtain new macrostates,...v,. To each of those, apply all 1 A 7 A 13 @ 1986 2 % ﬁ
the actions again to obtain a (possibly) new set of macmestat
and so on. Continue this process until &l macrostates 2 NV 8 AN 14 ANN 0 B0\ 26% 32 @
have been enumerated. In the systems we examine here,
reactions do not create new mass, and thus this procedure 3 22 o &0, 15 8805 21 804 4 g
will terminate. It is useful to defineS = (vo vy ... vn),
the || x N dimensional matrix of reachable macrostates. * “77 2070 180y 22 2 @
In general, there ar®(2™) macrostates for a system with 5 1 17 5
n particles andO(n) component types. Nevertheless, this R 4 % PR
formulation is quite useful for understanding small syssem 6 % 12 Qw18 % 2 % 0 %
or fragments of larger systems.

Let z;(t) be the probability that the system is in macrostaté&ig- 3. The indexing scheme for the smaller components that aram ih
v, at timet. The rate at which; transitions toz; is given the programmable parts system.

by

Qi = Z K(vi,a) + Z K(v;,—a) can locallydecidewhether or not to bind according to their
»J . . . .

vj=vi+a vi=vi—a programming. In this section, we consideaitural systems
in which interacting partalwaysdecide to bind.

We consider two examples. The first, a simple model
of polymerization, is primarily for purposes of illustrati.
The second, therogrammable partsdeals with our testbed
robots.

where a ranges over all forward reactions applicablevtp
and which result inv;. The diagonal elementq, ; are the
negative sum of the elemen€y; ,, for k£ # i. The average
behavior of the system is then given by

o T

x=Q'x, A. Polymerization
which is Kolmogorov's Forward Equation [18, pp. 85-86]. A The first example deals with simple labeled acyclic graphs
steady state distribution of the system is obtained by Bglvi with degree at most two. Thus, the components of the system
QTx = 0 and is denotedk(co). Because each reaction is gre
reversablex(oo) is typically unique in these problems. The C, ={P, Py, P3,P,,..P,},

product
v — Sx where P; denotes a path of length We suppose there are

' n parts in total, so the largest object that can be buil,js
gives the expected number of each component type asgach forward reaction either joins two pathg; (- P; —
function of time. P;;;) or breaks a pathK,; — P; + P;). For example,

The dynamicsx described byQ” should be thought of assuming there are six parts (or that only components up to
as the average behavior of many experiments. Individug|ze six are permitted), the reaction matrix is

trajectories of the system must be obtained through simu-
lation, usingGillespie’s method [17]. In this paper, we will -2 -1 -1 -1 -10 0 0 0

A ; i -10 0 0 -2 -1 -1 0
be primarily concerned with the steady state behaxig®)
and leave the control of the transient behaviors to a latex — 1 -0 0 0 -0 -2

0 1 -1 0 1 0 -1 0

paper.

b) Mass Action Kinetics:In the interpretation of the 0 0 1 -10 1 0 0
system using mass action kinetics, we supposevhiate R 0 0 0 O 1 0 0 1 1
represents the concentration of componet the system. A reasonable model for the rates is to suppose that each
We also typically useM(v,a) = i* instead ofi(i — 1) forward actiona occurs at the rate:(a), and its reverse
for the multiplicity of forward reactions involving the s@m occurs at the raté(a=') = k(a)e <, wheree > 0 is the
component type. The equation describing the behavior is energy of a bond. To construct examples, we will choose the

v=A-(Ki(v) - K. (v)). forward rates randomly.

(el

This is, in general, a nonlinear equation for which onlyB- The Programmable Parts

numerical solutions can be obtained. It is interesting tteno The components in the programmable parts system are
that finding the steady state of the mass action kineticnnected triangular sub-tilings of the plane. We index the
requires solving the nonlinea¥ = 0, while finding the smaller components for easy reference, as shown in Figure 3.
steady state of Kolmogorov's equation requires finding the To determine the rates for reactions between pro-
null-space of the high-dimensional linear operafpf. Both grammable part components, we use a high-fidelity

yield the same information about the steady state. mechanics-based simulation of the system [6] and fit the
stochastic process described by the Master Equation to the
IV. NATURAL SYSTEMS data. We repeat the essential details here for completeness

The components i€ we consider are each composed of We fix the average kinetic energy of the parts (i.e. the
some number of parts. When two components interact, thégmperaturg at K,,. = 5 x 107%J, which is the kinetic
do so via one part from each component, and these two paesergy measured from experiments using the actual robots



1 + 2 — 3 0.00679+ 0.00028 Each rate was obtained from between 500 and 1000 observed
1+ 1 - 2 0.0112+ 0.0006 simulated reactions. Simulations of the stochastic system
1 + > — 10 0.0110+ 0.0012 described by just the rates and using Gillespie’s method
1 + 3 —~ 6 0.00261+ 0.00025 [17] match the full-mechanics-based simulations of the pro
2+ 2 — 6 0.00304+ 0.00034 grammable parts and experiments using the actual testbed
2 + 3 —~ 10 0.006384 0.00082 robots.
2 + 5 —~ 19 0.001824 0.00050
3 + 3 —~ 19 0.00118+ 0.00020 V. PROGRAMMED SYSTEMS
1 + 10 — 19  0.00187+ 0.00090 In a programmed system, two interacting components may
6 - 1 + 3 0.000951+ 0.00024 decidewhat to do after binding. For example, suppose the
2 - 1 4+ 1 0.000133+ 0.000130 goal is to make copies aP; in the polymerization example.
4 — 1 + 3 0.00110+ 0.00021 If a P, and aP, interact, they should temporarily form a
4 — 2 + 2 0.001114 0.00035 P,. Then the parts making up th&, should shed aP,
Fig. 4. Some of the 272 kinetic rate constants we measured for tHeaving a P;. Suppose thak.,,,, is the rate at which the
programmable part system witt parts, p = 5parts/m? and Kaye = arts decide and communicate what to do. Thennteiral

5 x 10~4 J. The initial macrostate for each approximation is chosen s . .
that there are an approximately equal number offtinevard reactants (see eactionP, + P, — P, becomes the programmed reaction

Figure 3 for a listing of the reactant types). The errors in ilite constants pathway
for the reverse reactions are in general larger because wena fewer Po+P,—~ P, —~Ps+ P
reverse reactions. Note that the error bars do not accourdrfors in the

measurement of the physical properties of the programmable. part or simply

Py + P, — P3+ Py,

in the laboratory. We also fix a density pf= 5 parts/m? when we assume that.,,, > k;. We describe a com-
that (1) approximately matches the physical testbed and (B)unications protocol that implements programmed reastion
comes from a parameter regime where the reaction-diffusiarsing the language ajraph grammarg13] in Section VII.
model is valid [6], [17]. The simulations us€ = pA = 10 We write a for a reaction that has been programmed. In
parts. the above example, we have changed the fifth reaction in the
As an example, supposeis the reactionl + 2 — 3. To  polymerization example from
determine the raté(a) for a single part (component type T
1) combining with a “dimer” (component type 2) to form a a;=(0 -2 01.)
“trimer” (component type 3), we choose a macrostate of thg
form as=(1 -2 1 0 ..)7.
Vo = (N1 NQ 00 )T

More generally, we may wish to consider all possible ways

with Ny single parts andV, dimers. We rum simulations  to break apart?;. There are five possibilities:

from random initial positions and with the initial velo&8

chosen from a Gaussian distribution with mean equal to 121y 4: P +25
K 4 /m, Wherem is the mass of a part. As soon as a reaction 2: P+ P 5:4P
occurs, in this case eithér+2 — 3 or2 — 1+ 1, we restart 3:2P;
the simulation with a new random initial conditioe do Defineq, ; to be the probability that the parts decide to use
not reset the time when we restart the simulation the jth option in the above list after the natural reaction
Suppose that the times at which a reactionccurs are  produces aP,. The resulting programmed reaction can be
T(a) — (tl,tg, ...,tr>. written as
~ T T
The hypothesis (from the assumption that the system is a ° ~ —(02000...)" +¢42(00010 ...)
Markov Process) is that the intervalst; = t;.; — t; are + @2(10100...) " +q302000...)"
distributed according to a Poisson waiting process withrmea + @4(21000 ... JEE q15(40000 ... )r

A =1/k(a). We thus arrive at the estimate i
where " ¢, ; = 1. Each programmed action therefore has

k(a) ~ 1 < 1 std(AY) ) the form
NiNy \ (At) — /n{At)? a; =a;o+ Z Qre,j 5
where (At) is the average waiting interval for the reaction J

andstd(At) is its standard deviation. Note that IV, is the where actiona; is assumed to produce componéntthe
multiplicity M (vg,a). Said differently, the approximate rate index j ranges over the options of how to break-up compo-
constant is the rate at which the reaction occurs starting aentk, anda; o describes the components consumed by the
v divided by the multiplicity of the reaction ivy. From reaction.
the same set of simulations, we also obtain an approximationlf A is the natural (un-programmed) reaction matrix then
of the ratek(2 — 1+ 1) from the timesr(2 — 1+ 1). we write A4 for the reaction matrix programmed with the
In Figure 4 we list the rates obtained from simulatiorprobabilities q. Notice that the rates of the programmed
for a number of the most primitive reactions of the systenmactions are identical to the rates of the natural reactions.



Also notice that components still decay according to thé. The Polymerization Example

natural reverse reactions inA. This is easily seen in the Suppose the goal is to maximize the number of compo-
new equation describing the mass action kinetics nents of typeP;. Any reaction resulting in something larger
v = ;&q Ki(v) — A K, (v). 3) than P, will be broken into aP, and some other component.

) ) Furthermore, we need only consider components upisto
In the interpretation of the system as a Markov Process, Wehce larger components could only result in combinations

have that the matrixQ is now parameterized by the vector ¢ components involvingP;, j > 4, which either should
q and the averaged dynamics become not participate in reactions (in the case Bf) or should
x=Q(q)x. (4) break-down into aPy and some smaller component. The

. programmed reaction matrix is
The off-diagonal elements d(q) are

—2+2g22 —14g¢g32+3g33 —1 0 —1+42g22
Qa)i,; = Z Gpr K (v, a) + Z K(v;,—a) q2,1 —1+gs.2 0 0 ¢
Vj=Vitag,otak, vVj=vi—a A = 0 43,1 -1 00
a 0 0 1 0 1
where the first sum ranges over &lland! such thatv; is 0 0 0 0 -1
obtained fromv; by using thel*” option for breaking up the 0 0 0 0 0
productC,, of forward reactionay,. 0 1 2¢as 22,2
VI. OPTIMAL PROGRAMS 52 j 51 T a2 32,21
We wish to find a probability vectog so that a cost/ 110 1 ’
is optimized subject to the constrainEj ¢i;,; = 1 and the 6o 0 0 0
dynamics. We will use the Markov Chain interpretation of U 0
the rates so that the resulting optimization problem isdine and should be compared to the natural reaction matrior
For the self-assembly problem, let six parts shown in Section IV-A.
c=(0...010...0)7 As an example, suppose that the rdtgéa) are 3, 3, 5, 4,

_ _ _ 4,3, 1, 5 and 4, taken in the same order as the actions appear
be the|C| x 1 dimensional vector with zeros everywherein A. The reverse rates are determined using a bond energy
except in thenth place. To maximize the yield of component: — 1. Starting with the macrostate, = (600000 0)

m we we maximize the function gives 11 states. In this case, the optimal probabilities are
J =c’Sx 11
. aosem . a4 =(g2.1,92.2,43.1, 43,2, 43,3)" = (5, ok 1,0,0)7,
subject toQ”x = 0 and the constraints S _
which gives an average yield 6f72 components of typé,

> =1 at equilibrium.

J In this example, the obvious (and suboptimal) choice
for all 7. This problem can be recast as a bilinear progranmay seem to beg = (1 0 1 0 0)”, where one keeps
ming problem and solved (locally) with existing softwarecomponents of type”, when they form. We call this the
[19]. The solution can be obtained in polynomial time in thegreedychoice. However, in this example (due to the choice
number of probabilities iry and the dimensio®V + 1 of x,  of reaction rates), components of typg form quickly and
which unfortunately is usually quite large. require an additionaP; to becomeP;s. Figure 5 shows the

The optimal probabilities in Equation 3 determine thdransient responses for the optimal and greedy assignment o
usefulnesof each component ig. Obviously, the desired probabilities.
componenti should be formed after a natural reactionRemark: This formulation depends on the number of parts
whenever possible, by detaching sub-components. The sissumed to be present initially in the system, since each
components may need to be further dismantled, depending gRoice forn results in a differens and therefore. How-
the other rates. For example, suppose the result of a natuggler, we have noticed empirically that: (1) the probaleititi
reactiona can be broken into the desired componémind g resulting from different choices aof are often the same
another componeni. It may be that the rates of forward or nearly the same; and (2) when the probabilities found via
reactions involvingj are low or zero — sg is adead-end optimization using different values farare plugged in to the
component. In that case, componenshould be broken- mass action kinetics equations (which assume a continuum
down further. of parts), the resulting equilibria are very close. We hape t

When the goal is to maximize the yield of theth report on these interesting phenomena more completely in a
component, each reaction is programmed as follows. If thater paper.

result of the natural reaction contains theh component

as a sub-component, then keep that component and releBseThe Programmable Parts Example

and dismantle the remaining components. If the result of the To illustrate the optimization method with the pro-
natural reaction does not contain theh component, simply grammable parts, we consider the problem of assembling
dismantle the result of the reaction. In the examples belowgxagons (9 in Figure 3). The goal is to use the large set
we only consider how to dismantle components whose siz# rate data (Figure 4) intelligently to make the best hexago

is less than or equal to the size of theh component. forming program possible.



vield due to the different assumptions on how communications
are modeled compared to the somewhat slow communication

0.7 e
0.6f rate in the actual robots.
0-5 VII. A UNIVERSAL GRAPH GRAMMAR
041 IMPLEMENTATION
0.3 To implement programmed assembly actions with robotic
0.2} 1] (optimal) parts, we have designed a communications protocol that
oab/ - IP] (greedy) keeps each robot up-to-date about the component-type it is a
‘ , part of and the role it takes in that component. The protocol
1 2 3 4 is easily expressed asgaaph grammar13], which is a set
® of rules of the formL — R where L and R are simple
Fig. 5. The expected number of components of tyeas a function of |abeled graphsIf the some part of the system matches the
time for the optimal and greedy choices gf graph L it can be replaced by the gragh in a distributed

manner.
When an assembly event occurs, the topology of the robot

A hexagon is grown fr_om compon;an(él, O%' C3 C5  network changes, and the robots usegraph recognizer
and 1. One may also wish to allow “scaffold” assemblies;>; ' [21] protocol to determine the new topology. We have
like Cs and hope they later react with, for exampleCa  yjified the notion of a graph recognizer to also include
to form a component that contains a hexagon. There aj&,mation concerning theole that each node takes in the
hundreds of other component types that can result fro
interactions among this small set of component types and e e describe the protocol for the polymerization ex-
we have measured hundreds of non-zero reaction rates gt ,1e \we priefly discuss the protocol for the programmable
these interactions. This results in a very lar@ematrix. oo \which is similar, but considerably more tedious to
Furthermore, for each component type that does not contgisqripe

a hexagon as a sub-component, one has a choice of how to
break it down according tq. A. Polymerization Protocol

However, much can be gleaned from smaller subproblems. a¢ 4| times, each robot in the system hagahel of the
For example, we ha_ve noticed in expenments taab  form (i,j,0) wherei,j € N record the component type
hardly ever reacts with other assemblies. The framewott,§ role andsr € ¥ is a symbol used to store temporary
above allows us to determine the optimal way to handle th@formation. Initially, all robots are disconnected, aratke
appearance of’;o: We consider how to break'y, into the  pas the label(1, 1,.), meaning that each has role 1 in a

following six options: component of type 1. The symbol “” is used to indicate a
resting state. A chain of, say, four robots in a resting state

1:Cho 4:C3+4+ 204
2:Cs+Cy 5:Cy+3C has the form
3:03+02 625017 (4717')_(4727')_(4737')_(4747').

E|%V:zggcévetha:ss?;ztesggece?r(\),\l,):b&gtéeﬁ{,geldj irl]’om’e}?gr We suppose that the protocol executes at a mug:h hig_her
escions tat create sub componens of t and the 1% (7, 1S T frvard g everse s e vt
Lerﬁgttﬁz;ﬁfggcﬂgtsh; ;%%Cr?ggstrg/eﬁgénp%g;atsgtﬁ:gnm Bh the labels described_ belo_w to resolve conflicts wherein
parts and enumerating the states according to the proceduvrve(:) upd.ates are happening simultaneously. )
described in Section I11-C results 26 states and &6 x 26~ (Formation) When two components; and P interact,
dimensionalQ(q) matrix. they form P, .. This could happen in four different ways,
Running our optimization code on this problem using thélepending on which ends interact. For example, suppose they
measured reaction rates givgs » = 1 and all other options bind via the robots labeled, i, .) and(k;, k, .). The following
equal to zerd, We also ran the optimization assuming othefules manage the recognition of the new situation. In the firs
values forn, and obtained the same value &prFor example, Tule, we require that < k£ and in the second and third rules,
with 16 partsQ is 136 x 136 dimensional. we require that # k.
To test the approach, we compared the optimal versus the (i,4,.) (k,k,.)

- (i+kk+1,9) —(G+kk
greedy choice using the mass action kinetics model of the (i) — (k.1 ) ithk+Lg)=(i+kks)
%,7,8) — 3 Uy e -

(
(i,j, ) - (273 - 173)
(k7l+ 179) - (kala )
(k k).

dynamics, the high-fidelity simulation and the robot tedtbe
The results are shown in Figure 6. The data agree quali- (¢,7,.) — (k,,9)
tatively, with the details in, for example, time scale diffe (k,k,g)

lT(_J ensure thatQ(q) admits only one stationary distribution and is The interpretation of, for example, the first rule, is: If som
physically realistic [18, ch. 5], we have assumed that themmyreactions oot labeled(i, i, .) interacts with a robot labeletk, k, .),
that we did not observe in collecting data nevertheless mavezero rate . .
then they bind and change their labelqte-k, k+1, g) and

constants, which we have taken to be an order of magnitudeesltvan ) . d
the slowest measured rate. (i + k, k, s) respectively. The symbolg and thes initiate a



— —(33) (44.)— — —
—(2)— (7589 — (745)— (43.) — —

3.1,.) — (7.6,g9)— — — (7.3.5)— (4,2,) — _
(7,7.8)— — — — — (7.25)— (4.1,.) —
@)
Fig. 7.

This robot flips a g-biased coined

C— to decide how to break the component.
(5.1s) —

(5.1,2:2)— (52.) — — — _ 53— (5.4 —
— (22.2:22)— (53.) — - — — (5.3b)  (5,4h)—
(21,2::)—(54.) — — (5.2.)— (33f) (21— (55.)
— (222::)— (55.) | (51.)— (3.2)) — — @220
— (L1-) | (31— — —
(b) (c)

Examples of the universal grammar in action. (a) Tworchaind. Theformation rulesupdate the labels of the robots to reflect the size of the

new component and their roles in it. (b) A newly formé&y dismantles itself using thdestruction rulesnto 2P, + P;. (c) A Ps is broken by some
external force and the robots adjust their labels to refleetrtew situation using thencontrolled break rules

V]‘) (a)
1
)
0.6 //,/
e )
V,, (optimal)
el T Viy (greedy)
/l/
J
02t [/
k
//,
200 400 600 800 1000 1200 1400 t
Vl‘) (h)

0.8

0.6

04

Vyo (greedy)

02

t
500 1000 1500 2000

0.8
0.6

0.4

0 e e Vio (greedy)

100 200 300 400 t

Fig. 6. Comparison of the optimal choice and the greedy chacédw
to dismantleC1p when assembling”19. (@) Mass action kinetics with
an initial concentration of nine parts per square meter. (h¢ &verage
of 256 trajectories from a high-fidelity mechanics-based &atmn of the
robots starting with nine parts. (c) Data averaged over 1fs rof our
programmable parts testbed with nine parts and the universahrgar.
The data was collected using an overhead camera and subseqtterare
analysis of the video data. The different time scales aréylithee to different
communication rates: immediate in (a), fast in (b) and somewloat &
(c), the actual experiment.

cascade of rule applications to the rest of the robots in the
chain, as illustrated in Figure 7(a). The rules describhmg t
update resulting from the chains combining vial,.) and
(k,k,.) etc., are similar.

(Destruction) When a chain is first formed, it must be
dismantled into smaller, more useful components according
to the probabilitiesq; ; determined by the optimization
described in Section VI. We appoint the node labéled , s)

to make this choice by using a random number generator.
If the node chooses to break the chain into parts of size
p1, - Pr, then it throws a rule of the form

(k717$) - (k717h : t)

where h = p; andt = {po,...,pr—1} IS a head-tail
description of the list of part sizes (as used in functional
programming, for example). We then have the following
rules.

(g t) — (K1,

—

(hyj,.)—(hyj+1,h:t) h#j

(i,h,h:t) — (k,1,.) (h,h,.) (hd(t),1,hd(t) : rest(t))
(h,h,h : @) (h,h,.).

Notice that the second rule deletes an edge (or breaks a bond)

in a controlled way to execute the required dismantling.
These rules are illustrated in Figure 7(b).

(Uncontrolled Breaks) When a reverse reaction occurs nat-

urally, a chain is broken into two smaller chains. A graph
grammar rule that models this is

(iaj")_(i7j+17~) - (Z’]ab) (i’j"i'lab)

where the symbob denotes the fact that the part has just
broken a bond. This rule is not part of the communications
protocol. Rather, the robots can sense when their neighbors
disappear, and they set the third component of their labels t
“b" accordingly. We then use one other symbagf;,"to mean
“fixed” in the following rules torecoverfrom the break. The
first three repair the states of the lower half of a brokenrchai

(i’j_l')_(i7j’b) (iaj_L')_(jajvf)
(i’j_l?')_(kajaf) (kaj_laj)_(kajv')
(k,1, 1) (k,1,.).

The second three repair the upper half.

—\

N

—\

AN

—\

(4,7,0) — (4,5 +1,) —= (G—5+1,1,f)—(@G4+1,.)
(i’jvf)_(kalv') - (ivjv')_(ivj"_laf)
(4,4, f) — (i,4,.).



B. Programmable Parts Protocol

The programmable parts use a very similar protocol to1]
implement programmed reactions, which we discuss briefly.
The two main complications are: (1) The programmable part
can form components more complicated than paths; and (2)
the role of each face of each part must be identified. Th 3
first complication can be handled by maintaining a spanning
tree of each component as components form and adapting
the rules in the previous subsection to trees. The seconid!
complication requires the use of rules of the form

5
N (5]
/a

<
<

(6]
where a ...l are compound labels such as those used in
the previous subsection. The grey triangles indicate hovy
the triangular labeled graphs are embedded in the plane.
Rule sets for programmable parts are still graph grammarg,,
However, the orientation of the triangles must be mainthine
in rule application, slightly complicating the formalisras
described elsewhere [13].

VIIl. DISCUSSION

The main contributions of this paper are (1) careful model[-m]
ing of programmed stochastic self-assembly in the language
of kinetics; (2) the recognition that, in our systems, loca
interaction rules simply accept, reject or redirect bigdin
events initiated by the environment; (3) a formulation af th [12]
problem that allows us to find interaction rules that result i
optimum performance; and (4) the application of these ideas
to a variety of examples, including our experimental tegtbel13]
for which we have meticulously measured natural kinetie rat
constants as input into the optimization problem. [14]

We believe that our notion of reaction pathway tuning
can be applied to a variety of systems (we are investigatir[gs]
directed self-assembly at other scales in our lab) and using
a variety of objective functions that not only optimize yigl
but also the overall rate, the strength of a desired pathwé%f]
for a particular component, the probability of oscillatson
robustness to model-uncertainty, etc. In the future, wa pldl7]
to explore and extend these ideas. 18]

The main drawback of the approach is that the complexity
of the optimization problem, while polynomial in the size of[19]
Q, is exponential in the number of component types. Nevel?
theless, for the issues we encounter with the programmable
parts testbed, solving small problems is quite insightful,
In the future, we plan to improve our implementation of 2l
the optimization problem (which presently is not nearly as
efficient as it could be) to handle much larger instances and
explore approximation methods that give, perhaps, subopti
mal solutions, but do so quickly.

(9]
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