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Abstract— This paper describes a method for classifying the
traversability of terrain by combining unsupervised learning
of color models that predict scene geometry with supervised
learning of the relationship between geometric features and
traversability. A neural network is trained offline on hand-labeled
geometric features computed from stereo data. An online process
learns the association between color and geometry, enabling the
robot to assess the traversability of regions for which there is
little range information by estimating the geometry from the
color of the scene and passing this to the neural network.
This online process is continuous and extremely rapid, which
allows for quick adaptations to different lighting conditions and
terrain changes. The sensitivity of the traversability judgment is
further adjusted online by feedback from the robot’s bumper.
Terrain assessments from the color classifier are merged with
pure geometric classifications in an occupancy grid by computing
the intersection of the ray associated with a pixel with a ground
plane computed from the stereo range data. We present results
from DARPA-conducted tests that demonstrate its effectiveness
in a variety of outdoor environments.

I. INTRODUCTION

Autonomous navigation in outdoor environments requires

accurate and dense sensor data. In unstructured, natural set-

tings, where lighting conditions cannot be controlled and the

scene geometry is highly complex, stereovision often provides

neither. Given a noisy and sporadically sparse description

of the world, it is extremely difficult to formulate rules for

assessing the traversability of terrain that are robust to both

stereo artifacts and changes in environment type. The more

varied the terrain a robot must traverse, the more information

that is needed to distinguish terrain types. The higher the

dimensionality of the features used to distinguish terrain, the

harder it is to discern rules that broadly apply. Nonlinear

relationships crop up, and the human expert is overwhelmed.

Despite some of the successes of the rule-based approach

[1],[2], its limitations are substantial. Machine learning tech-

niques have shown the promise of being able to replace

the human expert’s struggle to find hand-coded rules that

generalize well with automated methods for discovering how

best to carve up the feature space into broadly applicable

classes [3],[4],[5]. Supervised learning, though still relying

on a human for labeling, is useful for classifying geometric

features that possess a reasonable level of invariance across

environments. The relationship between color and traversabil-

ity, however, can alter rapidly and dramatically due to changes

in lighting or terrain. Such substantial changes in the mapping

Fig. 1. The LAGR Test Platform

between features and classes often render supervised learning

too brittle. This lack of robustness can be addressed in part

by computing invariances in the color data prior to training

or training a set of classifiers that span the known space of

lighting and terrain conditions. Achieving the former is an

open problem in computer vision, while the latter is extremely

burdensome and still requires a judgment by the robot as to

which conditions obtain, and, hence, which classifier to use.

The alternative is to make use of online learning to adapt

to the fluctuations. Color information can augment geometric

assessments of terrain in a variety of ways. In [6], it is used to

filter out vegetation that would be considered an obstacle from

a purely geometric standpoint. It can also be used to provide

an independent classification of traversability, which is then

combined with the geometric classification. For example, [7]

computes separate geometric and color-based classifications of

terrain as road or non-road, using the color-based classification

to increase the confidence of the geometric classification when

they agree. A more monolithic approach can be found in [8],

where neural networks are trained on color and geometry

combined in a single feature vector. The color constancy

problem is tackled by training a set of classifiers on different

color models of the terrain.

Greater attention has recently been devoted to adaptive

methods for determining scene geometry from color informa-

tion. Much of this work can be found in the area of road-

following, where online and self-supervised techniques are



gaining prominence. For example, rather than attempting to

train a system in a supervised fashion to handle all road types,

[9] made use of the assumption that the vehicle starts on a

road and can therefore use the current appearance of the road

to detect future roads. A reverse optical flow technique is used

to trace back the current road appearance to how it appeared

in previous image frames in order to extract road templates

at various distances. The templates can be then matched with

distant possible road regions in the imagery.

The system described in [9] attempts to answer the question:

How did something judged traversable nearby look when it

was far away? It then makes use of the assumption that other

things that look similar far away will be traversable nearby.

Our approach is instead to judge the traversability of proximal

terrain on the basis of its geometry, learn the relationship

between proximal color and geometry, and make use of the as-

sumption that if proximal colors map to a particular geometry,

then distal colors will as well. This enables our system to fill in

proximal regions with terrain assessments using the geometry

predictions of the color models when there is little actual

geometric information available, as well as to extend the range

of our perception beyond that of stereo. This is extremely

beneficial in complex, unstructured environments where the

stereo range data may contain large gaps, particularly when

the robot is very close to an obstacle. The online learning of

the color/geometry relationship is rapid and ongoing, enabling

the system to adapt to lighting and terrain type changes without

explicitly addressing the color constancy problem. Seeding

the color learning system is unnecessary, and adaptation is

so rapid that a couple of seconds wait after starting the

robot is sufficient to develop a useful characterization of the

surroundings.

In the following three sections, we will provide a more

detailed explanation of our approach, examine results from

both DARPA-conducted tests and our own experiments, and

discuss possible future improvements to this work.

II. APPROACH

There are three major components of the terrain assessment

system: a supervised classifier that exclusively uses geometry

information, the unsupervised color learning module, and the

terrain assessment merging system that produces cost grids for

a planner. The supervised geometry classifier is trained on a

set of 8-dimensional vectors which characterize the geometry

in cells of a voxelized world filled with stereo range data.

The geometry classifier outputs its classification of the input

into one of four classes, which is then transformed into a

terrain cost. While the trained classifier is running on the

robot, statistics describing the relationship between the colors

of the points in the cell and the geometry vector for that cell

are accumulated. Once a sufficient amount of data has been

gathered, a cost for each pixel in the rectified reference stereo

image is determined using the geometry predicted by its color.

The position for a pixel’s cost is computed by intersecting

the pixel’s associated ray with the ground plane computed

from the stereo range data. This in itself would result in

large, erroneous cost regions in an occupancy grid caused

by the projection of vertical obstacles onto the ground plane.

Therefore, they are trimmed as described in section B before

being merged. Finally, pure geometric costs are merged into an

occupancy grid using a confidence metric described in section

C, and this is in turn merged with an occupancy grid filled

with color-predicted costs to enhance detection of obstacles

and extend the range of perception beyond viable stereo.

A. Supervised Learning of Terrain Traversability

Supervised learning techniques have proven their value in

relieving the human expert of the task of deducing com-

plex rules for terrain classification while still incorporating

the expert’s knowledge [10]. For this reason, we employ a

neural network to learn the relationship between geometry

and traversability. The human expert is asked only to judge

the traversability of stereo range data, something that humans

are quite good at. The labeling process consists of stepping

through logs collected from the two stereo pairs on the LAGR

robot [11]. The color range data is computed and placed in a

modified occupancy grid [12] consisting of 20cm x 20cm cells

with infinite height. The human expert is asked to assign one

of four cost classes (low, intermediate, high, or lethal) to the

data in each selected cell according to how difficult it would

be for the robot to traverse that cell. Lethal cells are those that

the robot cannot traverse.

Once the labeling process is complete, eight geometric

features are computed for each labeled cell. Because some of

these features rely on the identification of a ground plane, we

first compute a robust plane fit using RANSAC to those points

that fall between two planes emanating from the vehicle’s

control point (center of the front wheels on the ground) at

15 degree angles above and below a flat ground plane. Also,

for each 3D point from a stereo pair, a ray trace through the

grid is computed, placing the point and the ray pass-throughs

in the appropriate cells. The eight geometric features that are

then computed within each of the cells are as follows:

1) Height V ariation: The difference between the mini-

mum and maximum heights of points in a cell.

2) Terrain Slope: The slope of a RANSAC plane fit to

the points in the cell relative to a flat world.

3) Point Count (PC): The raw number of points within

a cell adjusted to compensate for the increased lateral

spread of the points at greater ranges.

4) Point Count Above the Ground P lane (PCGP ):
The number of points that fall 10 cm above the computed

ground plane, again adjusted for range.

5) Density: The ratio of points in the cell to the sum of

points and pass-throughs for that cell.

6) Mean V ertical Distance (MeanZ): The mean ver-

tical distance of the points 10 cm or more above the

ground plane to the ground plane.

7) Standard Deviation of V ertical Distance (StdZ):
The standard deviation of the vertical distances of the

points 10 cm or more above the ground plane to the

ground plane.



8) Percent of Points above Ground P lane (NGP ):
The percentage of points 10 cm above the ground plane

out of the total number of points within a cell.

The ray-trace is undertaken for each 3D point within 10m of

the robot’s control point (CP), although the grid extends only

5.5m from the CP. This ensures that the densities at the limits

of our usable range are not automatically 1.0, but rather more

truly reflect visual penetrability.

Having accumulated a set of 4000 labeled cells, we train a

multi-layer perceptron (MLP) with one hidden layer to output

the correct cost class given the input 8-dimensional geometric

feature vector. The MLP is trained by means of the Conjugate

Gradient algorithm using the NETLAB package from Sussex

University. The inputs are adjusted to be zero mean with unit

variance. The hyperbolic tangent activation function is used for

the hidden layer, while the output layer uses a logistic function.

The cost of a cell, ranging from 25-255, is computed as the

scaled sum of the activations of the output neurons, divided by

the sum of the activations. The scale factors for the neurons

are 25, 100, 150, and 255, corresponding to low, intermediate,

high, and lethal class neurons respectively.

Once trained, the MLP is incorporated into a log playback

tool and used to augment the original training set. The human

expert steps through logs, adding instances where the MLP

misclassified cells. Of particular interest are those cells where

mismatches in stereo happen to fall. These false matches

occur often when there are regular geometric structures in the

background, such as buildings or lines of trees. They generally

produce small clusters of range data above the ground plane,

confounding some geometric features such as height variation.

The goal is to teach the MLP to assign a cost class more

indicative of the rest of the geometry of the cell, rather than

be thrown off by the false matches.

Because we interface with the Carnegie Mellon-supplied

path planner, which makes an absolute distinction between

lethal and non-lethal obstacles, we introduce a lethality thresh-

old for our MLP-produced costs. This is an arbitrary figure

at first, set by observing the values produced in logs and

the behavior of the robot on test runs. However, given that

the robot is equipped with a bumper sensor, we can adjust

the threshold in light of this feedback. Whenever the bumper

is triggered, the system looks at the set of cells that could

have plausibly been responsible for the event given the robot’s

position when it happened, singling out the most expensive

cell as determined by the MLP as the culprit. The threshold

is adjusted downward to ensure that a similarly expensive cell

will be considered lethal in the future. Because the blame-

assignment process is not perfect, we set a lower limit on this

threshold to constrain this parameter to a plausible range.

B. Predicting Geometry from Color

Given a grid filled with geometric feature vectors and

a set of colored 3D points that give rise to those feature

measurements, we can set about creating a predictive model

that maps color inputs to geometric features. It is common of

late to choose parametric or semi-parametric models of color

for scene interpretation. For example, [13] uses a Mixture of

Gaussians to model road appearance for a robot driving on

unpaved roads. Because we have little reason to believe that a

particular parameterized model such as a Mixture of Gaussians

faithfully captures the color/geometry relationship found in

the sort of unstructured, outdoor environments involved in the

LAGR program, and because we have no lack of examples

(up to 600,000 samples a second) with which to build a non-

parametric model, we have opted for the latter.

The choice of mapping color to geometry rather than

directly to cost was motivated by two considerations. First, we

expect to find a greater averaging effect when mapping color to

cost that will result in poorer discrimination of obstacles. For

some geometric features, such as height or slope, we would

expect the neural network to learn fairly sharp boundaries

between classes corresponding to small changes in the feature

value around a threshold. Suppose now that we take several

feature measurements for a color, most of which are above

the threshold, but a few are below. The cost for this color, if

determined directly, will be the average of the outputs of the

neural network run on the individual measurements, which

will be a blend of obstacle and non-obstacle costs. On the

other hand, the mean geometric feature vector for this color,

when run through the neural network, will preserve the sharp

distinction so long as its elements remain above the learned

threshold. Of course, it is possible to produce a step-change

in the opposite direction in the cost of a color computed from

predicted geometry with enough feature measurements that

lie below the learned threshold. Determining cost from color-

predicted geometry means that when we are wrong, we are

more dramatically wrong. It is more important, however, to

pick out as many lethal obstacles as possible, so the degree to

which the system is wrong in classifying the type of obstacle is

of less consequence. Results provided in Section III.C. confirm

not only the learning of sharper distinctions in cost computed

from color-predicted geometry, but also its more accurate fit

to cost computed directly from measured geometry than that

provided by cost mapped directly to color.

Our second motivation for mapping color to geometry was

to preserve the ability to change our interpretation of geometric

features online and have this reinterpretation be immediately

applicable to color. This is directed toward future work on

online learning where the neural network does not provide the

only interpretation of geometry.

We have chosen to build the color predictive models of

geometry using 16 3D histograms, two for each of the 8

geometric features. The histograms are indexed using intensity

normalized red and green values as well as intensity itself.

The first two dimensions are quantized into 64 bins, while the

intensity dimension is quantized into 16 bins, yielding 65536

bins. A pair of histograms maintain a maximum likelihood

estimate of the mean and standard deviation for each of

the geometric features. The histogram bin HRI,GI,I
µj

storing

the estimated mean value for feature j indexed to color



(RI, GI, I) is computed as follows:

HRI,GI,I
µj

= µ̂
RI,GI,I
j (1)

µ̂
RI,GI,I
j =

1

N

N
∑

i=1

x
RI,GI,I
j (2)

where x
RI,GI,I
j is the measurement for feature j for a point

with color (RI, GI, I) and N is the total number of measure-

ments of j for color (RI, GI, I). Similarly, for the estimated

standard deviation of feature j indexed to color (RI, GI, I),
we have:

HRI,GI,I
σj

=

√

√

√

√

1

N

N
∑

i=1

(xRI,GI,I
j − µ̂

RI,GI,I
j )2 (3)

With a data rate of 600,000 samples a second, there are on

average 9 updates per bin per second, enabling rapid and dense

populating of the histograms.

Once the histograms have been populated with an acceptable

number of samples, the geometry prediction module begins

filling in its own map of the environment. This is accomplished

by looping over the rectified stereo reference image (in this

case, the rectified image from the right camera) and retrieving

the maximum likelihood estimate of the mean for each com-

ponent v
RI,GI,I
j of the geometric feature vector ~vRI,GI,I by

using the intensity normalized color values for each pixel in

the image as indices into the histograms:

v
RI,GI,I
j = HRI,GI,I

µj
(4)

Once the predicted geometric feature vector has been assem-

bled for a pixel, it is passed to the MLP to produce a cost.

Costs for pixels for which there exists a range value computed

from stereo can be placed directly into the color cost grid. The

3D position associated with a pixel that has no corresponding

stereo range measure can be estimated using the known pose

of the camera and intersecting the ray through the camera

center and the pixel with the estimated ground plane.

Simply adding to the grid all of the costs from pixels whose

positions are determined by ground plane intersection has a

serious side-effect. Pixels on vertical objects are by definition

not on the ground plane. By assuming that they are, we create

large regions of possibly high cost that resemble shadows of

the objects. These cost shadows can block off valid routes

that the robot would otherwise explore. There are many ways

that one might trim the excess cost regions. We have opted

for a simple, fast method of tracing along each column in the

image from the bottom to the top looking for the first group

of high costs. The assumption is that this is the base of an

obstacle, so only these first high costs are placed in the grid.

This still produces a cost shadow for an object that is not

perfectly vertical along its outside edge. In future work, we

will be examining alternatives to this simple approach.

Fig. 2. Confidences in Stereo FOV

C. Merging Costs

The merging of costs occurs at two levels: (1) within a

particular grid over the course of time as new assessments are

made, and (2) between the stereo and the color-predicted grids.

Merging within the stereo grid is governed by a confidence

metric that takes into account the position of an updated

cell within the stereo field-of-view. The color-predicted grid

updates by simply overwriting cell data with the most recent

information. Merging between these two grids is determined

by a set of simple heuristics. Recent work in outdoor robotics

[2],[4] using occupancy grids has highlighted the need for

stable terrain assessments over time. If a robot’s perception

system makes rapid, substantial changes in its judgment of cost

for a particular region in its grid, there can be corresponding

dramatic changes in its desired path. If these changes occur

as the robot is moving, the robot can be drawn along a path

which is merely the result of sampling from two competing

paths. If these paths pass on either side of an obstacle, the

robot might be led toward the obstacle for a period of time as

its changing terrain assessments cause an oscillation in which

path is chosen.

One cause of unstable perceptual judgments is the variability

of stereo matching results, particularly in outdoor environ-

ments. This is less a problem of mismatches than one of not

finding matches at all. Stereo algorithms fail to find matches

in the presence of complex shaped objects in part because no

fixed relationship between the shapes of the correlation win-

dows in two images can capture the true distortion of shapes

of the objects in the images [14]. As the robot approaches an

object, the viewpoints of the two cameras become increasingly

different (reflected in the increasing disparity), and occlusion

effects begin to dominate. However, as the distance to the

object becomes greater and stereo range error increases as a

second-order function of the range, we encounter a different

problem, namely that the computed 3D points are increasingly

placed in the wrong grid cells. This leads to the conclusion

that there is a (possibly optimal) distance at which distortion

and occlusion effects are limited but range accuracy is still

acceptable. We have attempted to empirically determine this

optimal range from logged stereo data and have placed it at

about 2m from the cameras. We have also noted a degrading

of stereo matching as the correlation windows are moved

toward the edges of the field-of-view, due in part to the poorer

quality of the images near the boundaries. The confidence

metric incorporates these two constraints by multiplying an



exponential function of lateral displacement from the center

of the stereo FOV by a function of range that has a maximum

at 2m and drops off according to the square of the difference

in range from 2m. It is expressed as follows (where x is the

lateral offset from the center of the stereo FOV ϑ, r is the

range from the stereo camera, and p is the distance of the

beginning of the stereo FOV from the stereo camera):

Confidence(x, r) =
G(F (r), x)

U(r)
(5)

U(a) =

{

(3.0 − a)2 if a ≤ 2.0
(a − 1.0)2 if a > 2.0

(6)

G(a, b) = exp

(

−
b2

a2

)

(7)

F (a) = 2.0(a − p)tan

(

ϑ

2

)

(8)

Equation 8 expresses the width of the stereo FOV at the given

range. Figure 2 illustrates the distribution of confidences in

the stereo FOV, with grayscale value encoding confidence. An

update to a cell within the stereo grid that has a confidence

value equal to or greater than the confidence of the current

cell data can overwrite that cell.

The color-predicted grid will likely contain data both in

regions that overlap with the stereo grid and regions that lie

beyond the range of stereo. The costs from the latter regions

are written directly into a merged grid, as are the regions

of the stereo grid that do not overlap with filled regions in

the color-predicted grid. Corresponding cells in the stereo and

color-predicted grids that contain data in each are merged as

follows: if the height variation from the stereo grid is above a

threshold and the color-predicted cost is greater than the cost

from stereo, update the merged cell with the color-predicted

cost.

The reason for this update rule is that we only wish to

enhance the costs in regions where stereo has some data

that indicates the presence of an obstacle. Ruling out color-

predicted updates to regions where stereo is normally useful

but no data is present is done to avoid labeling with high cost

portions of the ground that yield no stereo due to shadows,

image saturation, or lack of texture.

III. RESULTS

A. Test Platform and Procedure

Each participant in the Learning Applied to Ground

Robotics program was supplied with two small robots de-

veloped by Carnegie Mellon University shown in Figure 1.

They are differential drive vehicles with rear caster wheels. A

WAAS enabled GPS provides position updates at 1 Hz, which

are combined with odometry and the output of an inertial

measurement unit (IMU) in an extended kalman filter (EKF).

Sensors include two IR range finders and two stereo heads. The

stereo baseline for each stereo pair is 11cm and the focal length

is 4mm. The two heads are rotated toward the center of the

vehicle by 20 degrees and tilted downward by 15 degrees. The

Fig. 3. Examples of LGT Courses

horizontal FOV spanned by both stereo heads is 101 degrees.

Baseline software from Carnegie Mellon includes a planner,

a controller, a perception module, a pose estimation system,

and a stereo library from PointGrey. Except for the controller,

teams could replace any of these components. We opted to

replace only the perception module with our own software as

described here.

The teams participating in the program provide the LAGR

Government Team (LGT) with a flash disk containing their

executables before each test. The LGT has identical robotic

platforms to those of the participants, and so can simply plug

in the teams’ flash disks and conduct tests at sites selected by

the LGT. Participants are generally unaware of the exact nature

of the test courses, so there is little opportunity for tuning

a system for particular terrain. Courses have been reused for

subsequent tests, though generally with modification. The goal

of each test is to navigate the robot from a given start point

to a given end point as set by the LGT prior to the test and

not revealed to the participants. Each team has three runs per

test. Figure 3 offers a sampling of some of the test sites.

After each test, the LGT provides the teams with data logged

from the test. The LGT scores each run on the basis of the

time taken to reach the goal, and, if the robot fails to do so in

the allotted time, the remaining distance to the goal. Failure

to reach the goal is significantly penalized; driving fast has

a considerable reward. The course lengths have ranged from

50-140 meters. The system described here has been the top

performer according to the LGT’s metric, averaged over all

tests, and in terms of total number of successful runs. This

is in spite of the fact that our system tends to drive slowly

because of the speed-control logic in the baseline planner that

ramps down speed in the presence of obstacles.

B. Neural Network-based Terrain Classification

To quantify the classification performance of the neural

network, we computed the 4-fold cross validation score using

the training set, evaluating several different network con-

figurations. We also computed this score for a number of

alternative classifiers. These alternative classifiers are naive

Bayes, k-nearest neighbors (k=7), Parzen windows, the Fisher

linear discriminant, and two SVMS, one using a 3rd degree



Fig. 4. Four-fold Cross Validation Error Score

Fig. 5. Neural Network Terrain Classification (Grayscale maps to cost)

polynomial kernel, the other a gaussian kernel. As shown

in Figure 4, the gaussian kernel SVM provides the best

performance (13.1% error), slightly better than the neural

networks (14.5-15% error) and the polynomial kernel SVM

(14.4% error). However, both the gaussian and polynomial

kernel SVMs required an excessive number of support vectors

(750 and 1000 respectively). This in turn meant that using an

SVM to classify a scene added significant lag when compared

to the processing time of the neural networks (100 ms versus

2 ms to classify stereo snapshots from the right and left stereo

heads). The slight gain in classification performance did not

justify the considerable additional computational requirements.

Figure 5 provides a qualitative illustration of the effective-

ness of the network on typical test terrain. Increasing grayscale

values map to increasing cost. The network has proven to

be extremely proficient at distinguishing terrain that a human

expert would deem traversable but a naive measurement such

as mere height variation would characterize as lethal. The

robot averages less than one bumper hit per run over the course

of government testing. It has also been demonstrated to be very

robust to the presence of stereo artifacts.

C. Feature Saliency Analysis

Measurements of height and slope obtained from range data

are undoubtedly the most widely used features for classifying

terrain traversability for outdoor robots. In fact, these two fea-

TABLE I

OCD FEATURE SALIENCY

Data
Set

Feature

Height Slope PC PCGP Density MeanZ StdZ NGP

Full 0.77 0.87 0.44 0.37 0.21 1.0 0.26 0.21

Outlier 0.57 0.36 0.05 0.66 0.88 1.0 0.06 0.09

tures, either individually or in combination, are often deemed

sufficient for determining traversability. Because our feature

set includes elements beyond height and slope, we wished to

determine the importance of these additional features within

the neural net context. To do this, we have computed the

saliency of each feature using the method of Optimal Cell

Damage (OCD)[15], a feature-pruning algorithm inspired by

the weight-pruning method of Optimal Brain Damage [16].

Optimal Brain Damage uses the Hessian matrix H to deter-

mine the weight saliency S(wj), which is the change in the

training error that would occur if weight wj were set to zero:

S(wj) =
1

2

w2
j

H−1
jj

=
1

2

∂2J

∂w2
j

w2
j (9)

where

J =
1

2

N
∑

i=1

(ti − zi)
2 (10)

is the sum-squared-error between the targets ti and outputs zi

over the N elements of the training data. The saliency of an

input variable, S(i), offers a measure of how the training error

would change if the ith variable were eliminated. It can be

computed as the sum of the saliencies of the weights fanning

out from the corresponding input unit i:

S(i) =
∑

j∈fan−out(i)

S(wj). (11)

We have divided the computed input variable saliencies by the

maximum to give a range of 0-1. The Full dataset of Table I

confirms that height and slope are the most important features

for classifying traversability by our neural network. However,

the remaining features have fairly strong saliencies and we

would expect a noticeable increase in error if they were to

be eliminated. Their importance is further confirmed by an

analysis of feature saliency over those training examples that

were included to improve robustness to stereo noise, shown

in the Outlier dataset of Table I. The relative saliencies of

density and PCGP are greatly increased, while those of slope

and raw height have diminished.

D. Cost Enhancement from Color-predicted Geometry

Analysis of datasets from the LAGR program indicate that,

on average, approximately 15-20% of the possible range data

is lost due to failure to find a stereo match. This measure has

a very high variance, with near complete matching in open

terrain and almost total failure (up to 90% missing) when



TABLE II

ACCURACY OF COST PREDICTIONS USING GEOMETRIC COST AS

BASELINE

Test Set Mean Absolute Difference from Baseline Cost

Color-predicted
Geometric Cost

Direct Color-
predicted Cost

N.H. Forest 46.9 52.3

Virginia Brush 58.2 67.3

Texas Woods 67.9 83.6

close to obstacles. It is in the latter case that cost enhancement

from color-predictions can make a dramatic difference in robot

behavior, highlighting why emphasis should be placed on the

accuracy of predicting obstacles.

To measure the effectiveness of color-predicted geometry

cost enhancement, and to determine its worth relative to cost

enhancement using a direct color-to-cost mapping, we have

selected three datasets from the LAGR tests that represent very

different environments and computed the mean difference of

the costs computed by each method from those provided by the

neural network. Because of our focus on finding obstacles, we

look strictly at points lying above the ground plane. For each

3D point in a stereo image, we compute the geometry within

its map cell and pass this to the neural network to determine a

baseline cost. We then compute the absolute difference of this

cost and the cost learned directly from color-cost associations,

collecting a running total of these differences. Similarly, we

compute the absolute difference between the baseline cost

and that computed from color-predicted geometry. Using this

measure, Table II illustrates that cost from color-predicted

geometry is 10-20% more accurate than direct color-predicted

cost.

Figure 6 offers a qualitative illustration of the typical color-

predicted cost labeling of Viriginia brush. Increasing grayscale

levels map to increasing cost. Obstacles in Figure 6 are

clearly labeled as high cost. Figure 7 shows the merging

of cost assessments in Figure 6, which clearly enhances the

detection of obstacles. The red circles pick out the same bush

in all three grids, showing the increase of its cost due to

the color-predicted assessment. Testing has shown that the

color-predicted cost enhancement can save the robot from

collision with obstacles that are too close for adequate stereo

measurements. This can happen often in cases where the robot

makes a point turn in the midst of obstacles that it has not

yet seen from its previous point of view (e.g., in a maze).

We have also argued that using color-predicted geometry

can preserve step-changes in the cost function that would

be smoothed out using direct color-cost predictions. To find

the presence of these step-changes, at the end of runs we

computed a final cost histogram, indexed by color, from the

geometry histograms. To do this, we looked at every color

index and extracted the corresponding 8 features from their

histograms, passed these feature vectors to the neural network

Fig. 6. Color-predicted cost in test 7 (Grayscale maps to cost)

Fig. 7. Merging of costs shown in Figure 6

to compute a cost, then placed the cost in a new histogram

indexed by the color. We then compared this histogram to

the cost histogram representing the direct color-cost mapping.

As expected, cost histograms derived from color-predicted

geometry show prominent steps changes in cost, whereas the

direct color-cost mappings display smooth surfaces. Figure

8 shows the cost histogram from direct color-cost mapping

plotted against normalized red and green for a particular

intensity level (red and green values are discretized into 64

bins). Figure 9 shows the same mapping for cost from color-

predicted geometry for the same dataset. The differences in

color-cost mapping between these two examples—smooth in

the former, step-changes in the latter—can be found across

intensity levels and across datasets.

E. Color-based Long Range Vision

To try to quantify the effects of color-based long range

vision on robot behavior, we constructed a haybail cul-de-

sac in otherwise open terrain. The robot is placed 25m away,

near two haybails in view of the cameras. Ten runs were

conducted using long range vision, and ten without. The goal

was placed 20m beyond the cul-de-sac such that the direct

path of the robot led into the cul-de-sac. All ten runs using

long range vision avoided the cul-de-sac, all tens runs without

it went directly into the cul-de-sac. On average, the cul-de-sac

was fully detected by long range vision at a range of 15m.

Figure 10 offers a qualitative assessment of long range color-

predicted cost labeling in a more natural environment, showing

the corresponding regions in the image and grid.

IV. CONCLUSION

We have presented an unsupervised method for learning

color-based predictions of scene geometry that improves the

terrain classification provided by a neural network trained to

assess the traversability of unstructured, natural environments



Fig. 8. Cost from direct color-cost mapping

Fig. 9. Cost from color-predicted geometry

for a small mobile robot. The neural network is trained on

eight-dimensional feature vectors representing measurements

beyond height and slope, a departure from much of current

terrain classification schemes for outdoor robots. The unsuper-

vised learning method employs a non-parametric representa-

tion to capture the relationship between color and geometry in

the scene. Imagery can then be used to enhance the geometric

classification by filling-in in the near range when stereo fails

to find matches and by adding in long range updates. Cost

from color is computed by retrieving the color-predictions of

geometry and classifying these with the neural network. Pixel

positions are determined by ground plane projection in the

absence of range data.

This system offers rapid, online, and adaptive classification

of scenery without requiring a correct guess as to the under-

Fig. 10. Long Range Color-predicted Cost with corresponding image regions

lying form of the distribution of colors in an environment.

Learning geometry rather than cost from color provides the

flexibility of being able to change the interpretation of geom-

etry on the fly while preserving past learning.

We have demonstrated in DARPA-conducted tests the effi-

cacy of this method for terrain classification and mobile robot

navigation. These tests were conducted over a wide range

of environments and lighting conditions using both artificial

and natural obstacles. Our system has been the top overall

performer in average score and times to goal over the course

of these tests.
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