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Abstract— Despite all the dynamics methods effectively used space given a task in Cartesian space, which is well known as
in robotics control, few tackle the intricacies of the human jnverse dynamics. This problem turns out to be quite diffjcul
musculoskeletal system itself. During movements, a huge amountpacause the musculoskeletal system typically has many more

of energy can be stored passively in the biomechanics of the .
muscle system. Controlling such a system in a way that takes degrees of freedom (DOFs) than the task constraints at hand.

advantage of the stored energy has lead to the Equilibrium-point Among the inverse dynamics methods, one approach is to
hypothesis (EPH). In this paper, we propose a two-phase model study movement control as a formal optimization problem as

based on the EPH. Our model is simple and general enough exemplified in [18] [13] [22]. Some researchers tried to solv

to be extended to various motions over all body parts. In the e same problem by adding constraints to the redundancy as
first phase, gradient descent is used to obtain one kinematics .

endpoint in joint space, given a task in Cartesian space. In the In [2_1] [25] [19]. MO_St of those approaches Ca_n only.be am)“e
second phase where the movements are actually executed, we ust® simple robots with known geometry and in static environ-
damped springs to simulate muscles to drive the limb joints. The ments. Few models are eligible to be used in robot systems as

model is demonstrated by a humanoid doing walking, reaching, complicated as humans in dynamic environments. The inverse
and grasping. dynamics calculation for an anthropomorphic robot with enor
than 30 DOFs requires extremely high computation.

Contrary to the inverse dynamics force control model,

Humans and other primates can easily perform a widgguilibrium Point Hypothesis is another theoretical frame
variety of tasks without much knowledge about themselvegork used by a lot of researchers in human motor control.
and the environment. This contrasts with the current sthte Beldman [6] [7] pioneered the EPH that limb movements
robotics: even for a robot to reach to a position with naturgbuld be achieved by shifting the limb postures represeased
poses can be a research topic, much less for the robot to beegsilibrium points from one position to another. Researghe
dexterous and intelligent as humans. The current stateearth put forward the theory and proposed many more ’dialects’
for humanoids is not much of an improvement. For examplef EPH [3] [4] [10]. The central idea of EPH spring mod-
our research uses a virtual humanoid from Boston Dynamiets discriminates movement planning from execution. Motor
Inc. Although the virtual guy can perform a repository oplanning is to program the movement tasks by choosing a
motions, it is not an adaptive and intelligent agent. Theoea succession of discrete equilibrium points(EPs). Once ethes
lies in the fact that the virtual guy is simply playing bacleth points are chosen, in the execution phase the muscle spring
motion data captured from humans. When it encounters newstem moves without further direction under CNS control.
environments or tasks, it does not have the ability to plam ne Whether it is EPH or inverse dynamics that really con-
movements. Even within the method of playing back capturéals human movements is a subject of controversy. Many
motion data, mismatch and unrealistic movements are highlysearchers argue against the EPH by providing experimenta
possible due to various reasons as sensor errors, catibragvidence [12] [16]. Feldman and other researchers defended
errors, and other metric difference between the virtual ehodthe EPH in various reference [5] [8] [9]. With all those dedmt
and real humans. most of EPH researchers’ attention has been attracted dewar

The issue of motor control is also unresolved in humaproving the validity of the theory. Little research has been
biology. One of the central questions of studying human movdirected to study how humans choose those EPs for a given
ments is how the Central Nervous System (CNS) calculates thsk. Less work is devoted to demonstrate how the simple EPH
motor commands to drive the limb. One proposal, derived fromechanism can be applied to control human motions. In this
robotics, is that the brain computes inverse dynamicsieolsit paper, we propose a two-phase control model based on the idea
In movement control, the task is usually described in Cates of the EPH. Given a task in Cartesian space, we first develop a
space, which is different from the actual space where tieotor simulation model to plan the EPs in joint space, which
motor commands are executed. Therefore, a proper cooedingpecifically addresses how the EPs are calculated to achieve
transformation is required to find the solution in the joina particular motor goal. During the movement execution,

I. INTRODUCTION



damped springs are used to simulate muscles to actuallg driunction f, which maps© onto X, i.e., every hand location

the movements. We demonstrate that the model is a generat X can be written asf(¢) for at least oned € ©, and

model that can unify the control of various motions, such avery # maps to a certain: € X. The objective function is

reaching, walking and hand movements. defined as the distance from current end effector posifi@h
The next section describes the details of the model in the the destination:” as in Equ. (1).

context of a simple reaching task. Section Ill demonstriage t

humanoid doing a diverse of complex motions. Finally we

Dy __ D _ ¢ 2
conclude the paper and discuss avenues for future work. r(0,27) = Z;(f% £i(8)) @

Il. MODEL DESCRIPTION Bringing the hand to the destination consists of repeatedly

Our model suggests that human movements can be plangechputing gradient of the objective function and changhm t
in segments, and each segment has an equilibrium endp@osture a small amount for each step until the hand reaches
in joint configuration. Before the movements are initiatedhe destination. The gradient function in Equ. (2) is a vecto
the endpoint is calculated using the motor planning modehd each component specifies how much to change each joint
elaborated below, and then used to set muscle lengths, etbdefalue to bring the hand closer to the targéts a scaling factor
as damped springs’ natural lengths, for movement executida adjust the amount of changes of each time sfg(6)) is
During movement planning, the lest amount of necessary Effg Jacobian matrix.

is calculated for a motor task. For example, in simple vaimt (x — £(0)) x J(f(0))
arm movements, only final EP is probably required. But in do = —p3 > - (2)
more complicated movements as obstacle avoidance, more \/Ei:l('ri — fi(0))?

than one EPs are necessary. Movements are generatedayyegenerate the results of [23] in the left subfigure of Fig.
gradually shifting from one segment EP to the next. 2. The connected lines are the postures obtained by doing

A. Motor planning gradient descent to the object'ive function for each step, an
Given a task in Cartesian space, the first step of our mo QF green curve gives the trajectory generated. There are at
bace, b east two factors that make their method nonbiologicalstir

is to get a kinematics solution in joint space. To do so, anec he traiecto oes throuah a bia curve and follows a line
suggestion has been to steer to the end point using gradier% : Y9 9 9

L ; : going back to the destination, which is not what we observe
descent of an objective function that expresses variatidheo in human reaching movements. Second. the end posture shown
distance between the current handtip position to the castim g ' . P

[23]. Although we were able to replicate their results iri1n bold blue lines does not fit with the human posture in the

X : ) . o me task.
our experience this method is delicate and very sensitive gme tas
its various parameter settings. Besides, their pure gnadie

descent method can have unrealistic trajectories as shown i 20 20

Fig. 2. However, it serves as the starting point for our métho = g M

which uses the gradient method, not to actually control the < — 2

movement execution, but instead in simulation to genenade e 3-30 5-30

configurations in joint space that are then used by subsequen & %

processing stages. 2 =
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Fig. 2. End posture planning. A) left: gradients of the dist function for
each time step. B) right: energy optimization steps to get gadigtic end
point.

To solve the final posture problem, we take the idea of
energy minimization. The same idea has been studied by [1]
[17], but different from the use of energy in our method.
We minimize the potential energy during the planning phase,
instead of the kinetic energy which will not be availableilunt
the movements begin. We assume that the potential energy is a

Consider a three joint limb moving in a vertical plane akast proportional to the energy required for the movements
shown in Fig. 1. LetX, the task space, be the set of pointsven if it does not represent the exact energy consumption
that can be reached by the arm in the plane. Betthe during the execution. We define another cost function given
configuration space or joint space, be a subsedf and in Equ. (3) using Lagrange multiplier method for the coristra
it specifies all the possible postures. There exists a vectiptimization problem. The goal is to minimize the first part,

Fig. 1. Reaching task in a 2D space with a 3 DOF system.



which is the potential energy, while keeping the second, pad’(@,é) is a3 x 3 matrix of centrifugal and Coriolis effects,
which constraints the end effector to the destination, to k&6) is a3 x 1 vector of gravitations, 6, andd are vectors
zero. The right figure of Fig. 2 illustrates how the joinbf joint values, velocities and accelerations.
configurations gradually changing from the unrealistic tme In inverse dynamics methods, for each time step, certain
the final biological end posture shown in red bold lines.  torques are computed to drive the limb to move along a
D lanned trajectory represented as a series of joint valedsc-
E(0) = Mgh(6) + A(f(0) — 27) (3) ﬁies and acjcelergtiorlss. This involves a consi(JjerabIe anaiu
where, M is the total mass of the limbu(0) is the height computation even in a simple 3 DOF system. In our model, the
of the limb’s center of gravity (COG), and it is a function ofjoint space solution obtained during the planning phasaasl|
the current limb configuratiod. ¢ is the gravity parameter. the ready determination of the spring natural lengths. As fa
The term of Mgh(f) is the potential energy of the limbas the spring length is not equal to the natural length, ®rce
system.f(6) is the current end effector position, and’ is are generated to attract the joint configurations to the end
the destination is the parameter for the constraint functiorpoint. Comparing to the inverse dynamics methods, springs

in Lagrange multiplier method [2]. take charge of the movement control once the natural lengths
B. Sporing model are set and generate proper torques to drive the limb to the
' 9 destination.

Human movements are driven by the flexion and extensionye design the spring-muscle setting based on the human

of muscles. Among the models to describe muscle propertiggysculoskeletal system. Human muscles usually attacheto th
one widely-used model is proposed by Hill [14] [15]. A musclgyo segments of a joint to control the flexion or extension
produces two kinds of forces, elastic and viscous. The syp the joint, and several muscles are used to control one
of those two forces composes the muscle’s total force. Thggree of freedom in human. Instead of using all the biogic
passive element of a muscle has an elastic property and gafiscles, we use an abstraction of the actual muscle system.
be simply modeled as a spring. The elastic force variestjrecone simplified spring setting is attached to the middle of
with the distance that is enlonged from its resting lengthe T the segments, and each spring controls both the flexion and
formula is given in Equ. (4): extension for one degree of freedom. Fig. 3 shows the spring-
F.=Kx(-1) 4) muscle setting for a three joint limb moving in a 2D space.
Each spring functions as in Equ. (6), where two parameftérs
where, I. is the elastic forcel,. and/ are the spring’s resting and B can be used to adjust the movement performance. Other
length and actual length, respectively. is called the spring pjacements of the springs will also be feasible as far aall t
constant or stiffness. _ ~ degrees of freedom is controlled by at least one spring, and
The molecular structure of a muscle causes it to displgyyn't affect the movement performance. Spring placements
a property of viscosity, that is, the resistance to movesThian also follow the human anatomical muscle settings, and
resistive force is like a shock absorber [20]. If you push will involve more computations in determining the spring
the piston sitting over a fluid in an encapsulated bucket, Hh@tural lengths for the planned EPs. With other spring-fieusc
shock absorber will resist by a tension Bf that depends on piacements, the springs will have different natural lesgth
the viscosity B of the fluid. The faster you push the piStO”corresponding to the same EP and the parametei® aind
the stronger resistant force the fluid generates. The oglatip change as well to generate the same movements.
between the speed of pushing and the force can be written irbursimp”ﬁed spring-muscle model captures the main scope

Equ. (5) . of movements generated by the human’s biological muscle
F, =B xl () system. It can be viewed as the first step to functionally

where,  is the velocity of the spring length. Combining theStudy the human movement control scheme. Once we solve

function of both the muscle length and its rate of changing ¥§fious movements, how the biological muscles are combined
represented in Equ. (6). to achieve the same movements as if only the abstract spring-

. muscle system is in control can be studied as a subproblem.
F=Kx(-1;)+Bxl (6) In human system, the motor commands the brain directs to
where K and B are the spring stiffness and viscosity paranih€ motor system can be more complicated than the abstract
eters respectively. spring-muscle settings of our model. Even if this is the case
we cannot deny that the brain might plan the movements in
a higher and more abstract level. Then, the brain or spinal
The dynamics system of the limb system in Fig. 1 can lmrd maps the functional patterns (abstract muscles) to the
usually expressed in Equ. (7). activation patterns of actual muscles.

T=1(0)0+C(6,0)0 + G(0) @)

wherer is a3 x 1 vector of torques applied to shoulder, elboow The reaching movement is activated by setting the spring
and wrist,/ (6) is a3 x 3 matrix representing the kinetic energynatural lengths corresponding to the EP. To avoid sudden

C. Movement execution



configuration and spring setting is given in Fig. 3. Fig. 5wb0
four snapshots of the arm moving from the initial position
to the destination. In the simulation, we use constant gprin
stiffness K and viscosityB during the process of reaching.
Different sets of parameters will generate different réagh
movements. Currently we manually adjust the and B to
simulate the realistic reaching. To further study how close
simulation is to human reaching, we captured some human
Fig. 3. Three damped springs controlling a 3 DOF system movement data in the same task and compare them to the
simulation results. Fig. 7 presents the reaching trajgcsod
) , speed profiles comparison. Solid lines are the captured huma
moyements when changing the spring natural lengths fro ta, and the dashed lines are the model prediction. We get
the initial values,.; to the end valudgp, we take several fairly good fitting of the two, and the model generates the
steps to gradually do the adjustments as in Equ. (8). tuning curves in speed profiles typically observed in human
() =lnie+ext t=1,2,---,T reaching movements.

€= w ®) Reaching with avoidance is always an important topic of

research. In our model, reaching with obstacle avoidance fo

where,l;,;; andlgp are the spring initial and end point natura | b v imol d by addi
lengths./(¢) is the spring natural lengths setting at time step simple cases can be easily imp emented by a Ing oné more
P during planning. In the planar movements as in Fig. 6,

is the amount of changes applied to the spring natural len ; L C
N g PP pring gt e 3D via point is chosen beyond certain distance from the

for each time stepl is the number of steps to gradually bstacle. Motor blanni lorithm i gt lculateERe
change the spring natural lengths setting from initial one postacie. Motor planning aigorithm 1S used fo calculate

the EP. UsuallyT' is set to be shorter than the movement timd!? 0INt space with respect to the via point. We use a simple
planar obstacle avoidance example to illustrate the flktibi

[1l. HUMANOID SIMULATION of our model. For complex movements in 3D space, this
We build a 33 DOF humanoid as in Fig. 4. Each leg hagorithm does not guarantee to avoid the obstacle, bethese
three joints: hip, knee and ankle, and each joint has one D®ther part of the arm might collide with the obstacle. Furthe
Each arm has six DOFs, three DOFs for the shoulder, ofisdy to apply the model to more complicate obstacle avoid-
for the elbow and the other two for the wrist. Torso has or@ce instances is on our future work list. Then movements
DOF for leaning forward or backward. Currently, the head i@re achieved by setting the two EPs consecutively. Thaois, f
not involved in the movement control. The humanoid has of&ch time step, we monitor the difference between the curren

hand with 14 DOFs. posture to the desired EP. When the current limb posture

gets close enough to the first EP, the spring natural lengths

head corresponding to the next EP are set. The limb continues the

ould cervical movements from the first EP till the actual posture arrives at
shoulaer

the second EP. This control mechanism works for movements
involving multiple EPs.
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A. Reaching Fig. 7. Model simulation and human movement comparison. (a) dedtef
This part shows the simulation results of the illustratiofiecto- (b) speed profiles.
example of 3 DOF limb reaching in a 2D space. The limb
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Fig. 5. Reaching movement executed.

Fig. 6. Reaching movement while avoiding the desk.

B. Walking in Fig. 8. Those four EPs are extracted after analyzing the
Walking i vel died h tobi d v human walking data from Boston Dynamics Inc. Other EPs
alking Is an extensively studied research topic, an mr'oslightly different than what we choose are also possibleesi

algorithms and ”f‘?de's are available. I-!owever , most of th.oﬁgople also have different walking styles. We choose theesam
models are specific to control only walking. This part expai mplified spring-muscle setting as in the reaching siniat

. S
agL?:gnmary way to extend the general EP model to ContrE\ach leg has three damped springs to control the contraction

and extension of the hip, knee and ankle. Natural and rialist

In our model, walking can be grouped into two categoriegsa|king is generated by setting the spring natural lengtbf
The first one is regular walking on an even floor withouf,e EP to the next.

turning or obstacles. This kind of walking scheme is quite
consistent and does not require motor planning to calculate
the specific position to put the foot on. Humans control the
movements within the body coordinates. The second category|
involves walking with respect to goals or objects extringic
human body, such as obstacle avoidance, turning, stepping
walking on uneven floor etc. This kind of walking requires the
motor planning phase to calculate the leg joint configuretio .
corresponding to the Cartesian space goals. Actually the
first category of walking can be viewed as a specific case |
of the second one, as the regular walking always involves
the planning for the same EPs so that humans remember Fig. 8. Four EPs for one cycle of walking
those EPs and can directly apply them. The general way to
choose those EPs for the second category of walking is the
motor planning algorithm introduced in section II-A, given
the humanoids knows where the next step should be. Taking
the obstacle avoidance in walking as an example, there exigiring walking simulation, one technical difficulty is to é
several ways to calculate the leg configurations according the humanoid’s balance along the walking direction. When the
different situations of the obstacle. If the obstacle is alsm springs pull the robot’s legs forward, the torso is alwaygykd
box, one way is to plan the front foot onto the obstacle teehind, since the body has no outsider force to provide the
step over it. The other way is to define a via point abovierward speed. The robot always ends up falling backwards.
the obstacle and plan the leg to move over the obstacle g solve this problem by instantly pushing the back foot on
a position in front of it. If the obstacle is huge, the robothe ground. The counterforce from the ground will provide
has to walk around it. The planning of this situation invalvethe body a forward speed. In the implementation, the pushing
specifying the foot steps along certain path bypassing thgce is produced by setting the back ankle’s spring natural
obstacle. length to a larger value for a short period, when the front
So far, we have implemented the first category of walkindgoot gets contact with the ground. This way, the body’s COG
One cycle of walking can be represented by four EPs ahifts from the back foot to the front. Another interesting




Fig. 9. Humanoid walking with coordinated whole body movememtse upper and lower figures show walking from different védew

phenomenon we discover is that when a larger force is set ohthe finger springs.
the back foot so that two legs are pushed above the ground, th€ig. 10 shows the hand grasping a cylinder, and releasing
walking simulation can be turned into a running model. Evein This is a simple demonstration of the model applied to
if we did not further study the details of turning the walkinghe hand doing grasping and manipulation. The hand is a
into running, it is obvious that this model is ready to cohtrasimplified version of human hand. The goal of this part is
running motions. Fig. 9 shows the snapshots of the humanaeddillustrate that our EP based model is general and simple
walking. enough to be applied to the hand control. To synthesize more
Till this point, we only implemented the first category ofcomplex hand and objects interactions, we need to build the
walking without disturbance from the outside, so that thieand closer to human hand by adding a heading rotation to
balance is not a problem now. Walking on uneven floogach finger, and two more rotations to the thumb. Grasping and
obstacle avoidance, turning, climbing steps etc. are aurdu manipulation of sphere, cubic or other kinds of objects can b
planes. Those walking might introduce another challengirigiplemented easily based on this EP model. The grasping and
problem of dynamic balance. One possible solution is tanipulating of the cylinder is a simple demonstration vahic
redefine certain balance modules that can be activated undees not require much planning of the finger positions on the
different situations. For example, small disturbance may Imbject but setting the EPs into the object. In other casese mo
balanced by stronger spring stiffness. Sometimes a backwatanning beyond setting the EPs inside the ojbect might be
or forward stepping might be necessary to avoid falling downecessary. For example, if the hand grasps the cylinder from
When falling is not avoidable any more, the humanoids migttie top, fingers should evenly spread around the cylincer to

want to minimize the hurt by hand reaction. get more stable manipulation. Comparing to the traditional
precise finger position planning for rigid hand manipulatio
C. Hand movements the EP model gives more flexiblilty for the finger position

In this part, we demonstrate the model to control the hafgnning because the spongy spring-muscle system is able to
grasping and manipulation of objects. We build a 14 Dofzompromlse some noise and errors durlng the manlpulatlon.
hand as in Fig. 4, where thumb has 2 DOFs and the rest of
fingers each has 3 DOFs. Grasping based on the EP model is
much easier than traditional robotics methods, where geeci IV. CONCLUSION AND FUTURE WORK
finger positions on the object need to be planned ahead of .
time. Fuentes [11] used different predefined grasping plaﬁ\s Conclusion
for different types of regular objects, and a genetic altoni We discuss the limitations of traditional inverse dynamics
to plan the finger tip positions on an irregular object. In ounethods applying to an anthropomorphic robot to generate
case, grasping can be done by setting the finger EPs into toenplex behaviors in a physical world. Based on equilibrium
object, and the general motor planning algorithm is appligmbint hypothesis, we develop a two-phase control modelishat
to calculate joint configuration. On one hand, this strategyeneral enough to control a diversity of motions involvinty a
can greatly simplify the planning computation compared fearts of human body. Our major contribution is in presenting
Fuentes’ planning algorithms. On the other hand, it pravid@ovel human movement control model that can unify various
the necessary force and friction to manipulate the obje@rwhboth simple and complex human motions. Besides, our model
the finger tips get contact with the object. How much contaate inspired from findings of human movement research, and
force to exert on the object can be adjusted by the stiffdiésscan serve as a candidate to further study human movements.



Fig. 10. Humanoid reaching and grasping the object.
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