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Abstract— Despite all the dynamics methods effectively used
in robotics control, few tackle the intricacies of the human
musculoskeletal system itself. During movements, a huge amount
of energy can be stored passively in the biomechanics of the
muscle system. Controlling such a system in a way that takes
advantage of the stored energy has lead to the Equilibrium-point
hypothesis (EPH). In this paper, we propose a two-phase model
based on the EPH. Our model is simple and general enough
to be extended to various motions over all body parts. In the
first phase, gradient descent is used to obtain one kinematics
endpoint in joint space, given a task in Cartesian space. In the
second phase where the movements are actually executed, we use
damped springs to simulate muscles to drive the limb joints. The
model is demonstrated by a humanoid doing walking, reaching,
and grasping.

I. I NTRODUCTION

Humans and other primates can easily perform a wide
variety of tasks without much knowledge about themselves
and the environment. This contrasts with the current state of
robotics: even for a robot to reach to a position with natural
poses can be a research topic, much less for the robot to be as
dexterous and intelligent as humans. The current state of the art
for humanoids is not much of an improvement. For example,
our research uses a virtual humanoid from Boston Dynamics
Inc. Although the virtual guy can perform a repository of
motions, it is not an adaptive and intelligent agent. The reason
lies in the fact that the virtual guy is simply playing back the
motion data captured from humans. When it encounters new
environments or tasks, it does not have the ability to plan new
movements. Even within the method of playing back captured
motion data, mismatch and unrealistic movements are highly
possible due to various reasons as sensor errors, calibration
errors, and other metric difference between the virtual model
and real humans.

The issue of motor control is also unresolved in human
biology. One of the central questions of studying human move-
ments is how the Central Nervous System (CNS) calculates the
motor commands to drive the limb. One proposal, derived from
robotics, is that the brain computes inverse dynamics solutions.
In movement control, the task is usually described in Cartesian
space, which is different from the actual space where the
motor commands are executed. Therefore, a proper coordinate
transformation is required to find the solution in the joint

space given a task in Cartesian space, which is well known as
inverse dynamics. This problem turns out to be quite difficult,
because the musculoskeletal system typically has many more
degrees of freedom (DOFs) than the task constraints at hand.
Among the inverse dynamics methods, one approach is to
study movement control as a formal optimization problem as
exemplified in [18] [13] [22]. Some researchers tried to solve
the same problem by adding constraints to the redundancy as
in [21] [25] [19]. Most of those approaches can only be applied
to simple robots with known geometry and in static environ-
ments. Few models are eligible to be used in robot systems as
complicated as humans in dynamic environments. The inverse
dynamics calculation for an anthropomorphic robot with more
than 30 DOFs requires extremely high computation.

Contrary to the inverse dynamics force control model,
Equilibrium Point Hypothesis is another theoretical frame-
work used by a lot of researchers in human motor control.
Feldman [6] [7] pioneered the EPH that limb movements
could be achieved by shifting the limb postures representedas
equilibrium points from one position to another. Researchers
put forward the theory and proposed many more ’dialects’
of EPH [3] [4] [10]. The central idea of EPH spring mod-
els discriminates movement planning from execution. Motor
planning is to program the movement tasks by choosing a
succession of discrete equilibrium points(EPs). Once these
points are chosen, in the execution phase the muscle spring
system moves without further direction under CNS control.

Whether it is EPH or inverse dynamics that really con-
trols human movements is a subject of controversy. Many
researchers argue against the EPH by providing experimental
evidence [12] [16]. Feldman and other researchers defended
the EPH in various reference [5] [8] [9]. With all those debates,
most of EPH researchers’ attention has been attracted towards
proving the validity of the theory. Little research has been
directed to study how humans choose those EPs for a given
task. Less work is devoted to demonstrate how the simple EPH
mechanism can be applied to control human motions. In this
paper, we propose a two-phase control model based on the idea
of the EPH. Given a task in Cartesian space, we first develop a
motor simulation model to plan the EPs in joint space, which
specifically addresses how the EPs are calculated to achieve
a particular motor goal. During the movement execution,



damped springs are used to simulate muscles to actually drive
the movements. We demonstrate that the model is a general
model that can unify the control of various motions, such as
reaching, walking and hand movements.

The next section describes the details of the model in the
context of a simple reaching task. Section III demonstrate the
humanoid doing a diverse of complex motions. Finally we
conclude the paper and discuss avenues for future work.

II. M ODEL DESCRIPTION

Our model suggests that human movements can be planned
in segments, and each segment has an equilibrium endpoint
in joint configuration. Before the movements are initiated,
the endpoint is calculated using the motor planning model
elaborated below, and then used to set muscle lengths, modeled
as damped springs’ natural lengths, for movement execution.
During movement planning, the lest amount of necessary EPs
is calculated for a motor task. For example, in simple voluntary
arm movements, only final EP is probably required. But in
more complicated movements as obstacle avoidance, more
than one EPs are necessary. Movements are generated by
gradually shifting from one segment EP to the next.

A. Motor planning

Given a task in Cartesian space, the first step of our model
is to get a kinematics solution in joint space. To do so, a recent
suggestion has been to steer to the end point using gradient
descent of an objective function that expresses variation of the
distance between the current handtip position to the destination
[23]. Although we were able to replicate their results, in
our experience this method is delicate and very sensitive to
its various parameter settings. Besides, their pure gradient
descent method can have unrealistic trajectories as shown in
Fig. 2. However, it serves as the starting point for our method
which uses the gradient method, not to actually control the
movement execution, but instead in simulation to generate end
configurations in joint space that are then used by subsequent
processing stages.
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Fig. 1. Reaching task in a 2D space with a 3 DOF system.

Consider a three joint limb moving in a vertical plane as
shown in Fig. 1. LetX, the task space, be the set of points
that can be reached by the arm in the plane. LetΘ, the
configuration space or joint space, be a subset ofR3, and
it specifies all the possible postures. There exists a vector

function f , which mapsΘ onto X, i.e., every hand location
x ∈ X can be written asf(θ) for at least oneθ ∈ Θ, and
every θ maps to a certainx ∈ X. The objective function is
defined as the distance from current end effector positionf(θ)
to the destinationxD as in Equ. (1).

r(θ, xD) =

√

√

√

√

2
∑

i=1

(xD

i
− fi(θ))2 (1)

Bringing the hand to the destination consists of repeatedly
computing gradient of the objective function and changing the
posture a small amount for each step until the hand reaches
the destination. The gradient function in Equ. (2) is a vector,
and each component specifies how much to change each joint
value to bring the hand closer to the target.β is a scaling factor
to adjust the amount of changes of each time step.J(f(θ)) is
the Jacobian matrix.

dθ = −β
(x − f(θ)) × J(f(θ))
√

∑2
i=1(x

D

i
− fi(θ))2

(2)

We regenerate the results of [23] in the left subfigure of Fig.
2. The connected lines are the postures obtained by doing
gradient descent to the objective function for each step, and
the green curve gives the trajectory generated. There are at
least two factors that make their method nonbiological. First,
the trajectory goes through a big curve and follows a line
going back to the destination, which is not what we observe
in human reaching movements. Second, the end posture shown
in bold blue lines does not fit with the human posture in the
same task.
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Fig. 2. End posture planning. A) left: gradients of the distance function for
each time step. B) right: energy optimization steps to get the realistic end
point.

To solve the final posture problem, we take the idea of
energy minimization. The same idea has been studied by [1]
[17], but different from the use of energy in our method.
We minimize the potential energy during the planning phase,
instead of the kinetic energy which will not be available until
the movements begin. We assume that the potential energy is at
least proportional to the energy required for the movements,
even if it does not represent the exact energy consumption
during the execution. We define another cost function given
in Equ. (3) using Lagrange multiplier method for the constraint
optimization problem. The goal is to minimize the first part,



which is the potential energy, while keeping the second part,
which constraints the end effector to the destination, to be
zero. The right figure of Fig. 2 illustrates how the joint
configurations gradually changing from the unrealistic oneto
the final biological end posture shown in red bold lines.

E(θ) = Mgh(θ) + λ(f(θ) − xD) (3)

where, M is the total mass of the limb.h(θ) is the height
of the limb’s center of gravity (COG), and it is a function of
the current limb configurationθ. g is the gravity parameter.
The term of Mgh(θ) is the potential energy of the limb
system.f(θ) is the current end effector position, andxD is
the destination.λ is the parameter for the constraint function
in Lagrange multiplier method [2].

B. Spring model

Human movements are driven by the flexion and extension
of muscles. Among the models to describe muscle properties,
one widely-used model is proposed by Hill [14] [15]. A muscle
produces two kinds of forces, elastic and viscous. The sum
of those two forces composes the muscle’s total force. The
passive element of a muscle has an elastic property and can
be simply modeled as a spring. The elastic force varies directly
with the distance that is enlonged from its resting length. The
formula is given in Equ. (4):

Fe = K × (l − lr) (4)

where,Fe is the elastic force,lr and l are the spring’s resting
length and actual length, respectively.K is called the spring
constant or stiffness.

The molecular structure of a muscle causes it to display
a property of viscosity, that is, the resistance to move. This
resistive force is like a shock absorber [20]. If you push
the piston sitting over a fluid in an encapsulated bucket, the
shock absorber will resist by a tension ofFv that depends on
the viscosityB of the fluid. The faster you push the piston,
the stronger resistant force the fluid generates. The relation
between the speed of pushing and the force can be written in
Equ. (5)

Fv = B × l̇ (5)

where, l̇ is the velocity of the spring length. Combining the
two properties, the force produced by an active muscle is a
function of both the muscle length and its rate of changing as
represented in Equ. (6).

F = K × (l − lr) + B × l̇ (6)

whereK andB are the spring stiffness and viscosity param-
eters respectively.

C. Movement execution

The dynamics system of the limb system in Fig. 1 can be
usually expressed in Equ. (7).

τ = I(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) (7)

whereτ is a3×1 vector of torques applied to shoulder, elbow
and wrist,I(θ) is a3×3 matrix representing the kinetic energy,

C(θ, θ̇) is a 3 × 3 matrix of centrifugal and Coriolis effects,
G(θ) is a 3 × 1 vector of gravitation.θ, θ̇, and θ̈ are vectors
of joint values, velocities and accelerations.

In inverse dynamics methods, for each time step, certain
torques are computed to drive the limb to move along a
planned trajectory represented as a series of joint values,veloc-
ities and accelerations. This involves a considerable amount of
computation even in a simple 3 DOF system. In our model, the
joint space solution obtained during the planning phase allows
the ready determination of the spring natural lengths. As far
as the spring length is not equal to the natural length, forces
are generated to attract the joint configurations to the end
point. Comparing to the inverse dynamics methods, springs
take charge of the movement control once the natural lengths
are set and generate proper torques to drive the limb to the
destination.

We design the spring-muscle setting based on the human
musculoskeletal system. Human muscles usually attach to the
two segments of a joint to control the flexion or extension
of the joint, and several muscles are used to control one
degree of freedom in human. Instead of using all the biological
muscles, we use an abstraction of the actual muscle system.
One simplified spring setting is attached to the middle of
the segments, and each spring controls both the flexion and
extension for one degree of freedom. Fig. 3 shows the spring-
muscle setting for a three joint limb moving in a 2D space.
Each spring functions as in Equ. (6), where two parametersK

andB can be used to adjust the movement performance. Other
placements of the springs will also be feasible as far as all the
degrees of freedom is controlled by at least one spring, and
won’t affect the movement performance. Spring placements
can also follow the human anatomical muscle settings, and
it will involve more computations in determining the spring
natural lengths for the planned EPs. With other spring-muscle
placements, the springs will have different natural lengths
corresponding to the same EP and the parameters ofK and
B change as well to generate the same movements.

Our simplified spring-muscle model captures the main scope
of movements generated by the human’s biological muscle
system. It can be viewed as the first step to functionally
study the human movement control scheme. Once we solve
how the simplified spring-muscle model is used to control
various movements, how the biological muscles are combined
to achieve the same movements as if only the abstract spring-
muscle system is in control can be studied as a subproblem.
In human system, the motor commands the brain directs to
the motor system can be more complicated than the abstract
spring-muscle settings of our model. Even if this is the case,
we cannot deny that the brain might plan the movements in
a higher and more abstract level. Then, the brain or spinal
cord maps the functional patterns (abstract muscles) to the
activation patterns of actual muscles.

The reaching movement is activated by setting the spring
natural lengths corresponding to the EP. To avoid sudden



X0

θ1

l1

θ2

l2

l3
θ3

Fig. 3. Three damped springs controlling a 3 DOF system

movements when changing the spring natural lengths from
the initial valueslinit to the end valuelEP , we take several
steps to gradually do the adjustments as in Equ. (8).

l(t) = linit + ǫ × t t = 1, 2, · · · , T

ǫ = (lEP −linit)
T

(8)

where,linit andlEP are the spring initial and end point natural
lengths.l(t) is the spring natural lengths setting at time stept.
ǫ is the amount of changes applied to the spring natural lengths
for each time step.T is the number of steps to gradually
change the spring natural lengths setting from initial one to
the EP. Usually,T is set to be shorter than the movement time.

III. H UMANOID SIMULATION

We build a 33 DOF humanoid as in Fig. 4. Each leg has
three joints: hip, knee and ankle, and each joint has one DOF.
Each arm has six DOFs, three DOFs for the shoulder, one
for the elbow and the other two for the wrist. Torso has one
DOF for leaning forward or backward. Currently, the head is
not involved in the movement control. The humanoid has one
hand with 14 DOFs.
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Fig. 4. Humanoid skeleton structure.

A. Reaching

This part shows the simulation results of the illustration
example of 3 DOF limb reaching in a 2D space. The limb

configuration and spring setting is given in Fig. 3. Fig. 5 shows
four snapshots of the arm moving from the initial position
to the destination. In the simulation, we use constant spring
stiffnessK and viscosityB during the process of reaching.
Different sets of parameters will generate different reaching
movements. Currently we manually adjust theK and B to
simulate the realistic reaching. To further study how closeour
simulation is to human reaching, we captured some human
movement data in the same task and compare them to the
simulation results. Fig. 7 presents the reaching trajectory and
speed profiles comparison. Solid lines are the captured human
data, and the dashed lines are the model prediction. We get
fairly good fitting of the two, and the model generates the
tuning curves in speed profiles typically observed in human
reaching movements.

Reaching with avoidance is always an important topic of
research. In our model, reaching with obstacle avoidance for
simple cases can be easily implemented by adding one more
EP during planning. In the planar movements as in Fig. 6,
the 3D via point is chosen beyond certain distance from the
obstacle. Motor planning algorithm is used to calculate theEP
in joint space with respect to the via point. We use a simple
planar obstacle avoidance example to illustrate the flexibility
of our model. For complex movements in 3D space, this
algorithm does not guarantee to avoid the obstacle, becausethe
other part of the arm might collide with the obstacle. Further
study to apply the model to more complicate obstacle avoid-
ance instances is on our future work list. Then movements
are achieved by setting the two EPs consecutively. That is, for
each time step, we monitor the difference between the current
posture to the desired EP. When the current limb posture
gets close enough to the first EP, the spring natural lengths
corresponding to the next EP are set. The limb continues the
movements from the first EP till the actual posture arrives at
the second EP. This control mechanism works for movements
involving multiple EPs.

0 10 20 30 40 50
−70

−50

−30

−10

10

Magnitue(cm)

M
ag

ni
tu

e(
cm

)

Human data
Model data

0 0.5 1.0 1.5 2.0
−0.2

0   

0.2

0.4

0.6

Time(s)

X
 V

el
oc

ity
 (

m
/s

)

0 0.5 1.0 1.5 2.0
−0.2

0   

0.2

0.4

0.6

Time (s)

Y
 V

el
oc

ity
 (

m
/s

)

Human data
Model data

(a) (b)

Fig. 7. Model simulation and human movement comparison. (a) end effector
trajectory. (b) speed profiles.



Fig. 5. Reaching movement executed.

Fig. 6. Reaching movement while avoiding the desk.

B. Walking

Walking is an extensively studied research topic, and various
algorithms and models are available. However, most of those
models are specific to control only walking. This part explains
a preliminary way to extend the general EP model to control
walking.

In our model, walking can be grouped into two categories.
The first one is regular walking on an even floor without
turning or obstacles. This kind of walking scheme is quite
consistent and does not require motor planning to calculate
the specific position to put the foot on. Humans control the
movements within the body coordinates. The second category
involves walking with respect to goals or objects extrinsicto
human body, such as obstacle avoidance, turning, stepping,
walking on uneven floor etc. This kind of walking requires the
motor planning phase to calculate the leg joint configurations
corresponding to the Cartesian space goals. Actually the
first category of walking can be viewed as a specific case
of the second one, as the regular walking always involves
the planning for the same EPs so that humans remember
those EPs and can directly apply them. The general way to
choose those EPs for the second category of walking is the
motor planning algorithm introduced in section II-A, given
the humanoids knows where the next step should be. Taking
the obstacle avoidance in walking as an example, there exist
several ways to calculate the leg configurations according to
different situations of the obstacle. If the obstacle is a small
box, one way is to plan the front foot onto the obstacle to
step over it. The other way is to define a via point above
the obstacle and plan the leg to move over the obstacle to
a position in front of it. If the obstacle is huge, the robot
has to walk around it. The planning of this situation involves
specifying the foot steps along certain path bypassing the
obstacle.

So far, we have implemented the first category of walking.
One cycle of walking can be represented by four EPs as

in Fig. 8. Those four EPs are extracted after analyzing the
human walking data from Boston Dynamics Inc. Other EPs
slightly different than what we choose are also possible, since
people also have different walking styles. We choose the same
simplified spring-muscle setting as in the reaching simulation.
Each leg has three damped springs to control the contraction
and extension of the hip, knee and ankle. Natural and realistic
walking is generated by setting the spring natural lengths from
one EP to the next.

I                                                          II                                                       III                                             IV
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Fig. 8. Four EPs for one cycle of walking

During walking simulation, one technical difficulty is to keep
the humanoid’s balance along the walking direction. When the
springs pull the robot’s legs forward, the torso is always legged
behind, since the body has no outsider force to provide the
forward speed. The robot always ends up falling backwards.
We solve this problem by instantly pushing the back foot on
the ground. The counterforce from the ground will provide
the body a forward speed. In the implementation, the pushing
force is produced by setting the back ankle’s spring natural
length to a larger value for a short period, when the front
foot gets contact with the ground. This way, the body’s COG
shifts from the back foot to the front. Another interesting



Fig. 9. Humanoid walking with coordinated whole body movements. The upper and lower figures show walking from different views.

phenomenon we discover is that when a larger force is set on
the back foot so that two legs are pushed above the ground, the
walking simulation can be turned into a running model. Even
if we did not further study the details of turning the walking
into running, it is obvious that this model is ready to control
running motions. Fig. 9 shows the snapshots of the humanoid
walking.

Till this point, we only implemented the first category of
walking without disturbance from the outside, so that the
balance is not a problem now. Walking on uneven floor,
obstacle avoidance, turning, climbing steps etc. are our future
planes. Those walking might introduce another challenging
problem of dynamic balance. One possible solution is to
redefine certain balance modules that can be activated under
different situations. For example, small disturbance may be
balanced by stronger spring stiffness. Sometimes a backward
or forward stepping might be necessary to avoid falling down.
When falling is not avoidable any more, the humanoids might
want to minimize the hurt by hand reaction.

C. Hand movements

In this part, we demonstrate the model to control the hand
grasping and manipulation of objects. We build a 14 DOF
hand as in Fig. 4, where thumb has 2 DOFs and the rest of
fingers each has 3 DOFs. Grasping based on the EP model is
much easier than traditional robotics methods, where precise
finger positions on the object need to be planned ahead of
time. Fuentes [11] used different predefined grasping plans
for different types of regular objects, and a genetic algorithm
to plan the finger tip positions on an irregular object. In our
case, grasping can be done by setting the finger EPs into the
object, and the general motor planning algorithm is applied
to calculate joint configuration. On one hand, this strategy
can greatly simplify the planning computation compared to
Fuentes’ planning algorithms. On the other hand, it provides
the necessary force and friction to manipulate the object when
the finger tips get contact with the object. How much contact
force to exert on the object can be adjusted by the stiffnessK

of the finger springs.
Fig. 10 shows the hand grasping a cylinder, and releasing

it. This is a simple demonstration of the model applied to
the hand doing grasping and manipulation. The hand is a
simplified version of human hand. The goal of this part is
to illustrate that our EP based model is general and simple
enough to be applied to the hand control. To synthesize more
complex hand and objects interactions, we need to build the
hand closer to human hand by adding a heading rotation to
each finger, and two more rotations to the thumb. Grasping and
manipulation of sphere, cubic or other kinds of objects can be
implemented easily based on this EP model. The grasping and
manipulating of the cylinder is a simple demonstration which
does not require much planning of the finger positions on the
object but setting the EPs into the object. In other cases, more
planning beyond setting the EPs inside the ojbect might be
necessary. For example, if the hand grasps the cylinder from
the top, fingers should evenly spread around the cylincer to
get more stable manipulation. Comparing to the traditional
precise finger position planning for rigid hand manipulation,
the EP model gives more flexiblilty for the finger position
planning because the spongy spring-muscle system is able to
compromise some noise and errors during the manipulation.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

We discuss the limitations of traditional inverse dynamics
methods applying to an anthropomorphic robot to generate
complex behaviors in a physical world. Based on equilibrium-
point hypothesis, we develop a two-phase control model thatis
general enough to control a diversity of motions involving any
parts of human body. Our major contribution is in presentinga
novel human movement control model that can unify various
both simple and complex human motions. Besides, our model
are inspired from findings of human movement research, and
can serve as a candidate to further study human movements.



Fig. 10. Humanoid reaching and grasping the object.

Till this point, most of human control models are restrictedto
simple movements in 2D space within very small scope. To
further study human motions, models that can accommodate
large movements in 3D space is indispensable for a complete
understanding of the human movement system. Thus our
model can be viewed as a test-bed to human movement
research, as well as a humanoid robot to demonstrate its
capability.

From the aspect of both robotics and human movement
modeling, one of the biggest advantage of the EP based model
is their low computation requirement. For example, electro-
mechanical systems that use direct servoing, such as ATR’s
SARCOS system, require rates as high as 10KHz to implement
inverse control methods, while cortical neurons’ signaling is
typically in the range of 10 to 100 Hz. Thus any biologically
plausible method of control should respect the low sampling
rates available. The only computation of the EP model is
to choose a succession of discrete EPs. Once these points
are chosen, the muscle spring system moves without further
guidance under the control.

B. Future work

Till this point, we only build a prototype of the control
model, and scratch the surface of the research that can be done
based on the model. With the graphics humanoid, we want
to build motor movement units, such as protective stepping
and arm reaction when falling down, different rising after
a fall, balancing etc. Learning algorithms can be attempted
to learn the mapping between the state space to the action
control. Such algorithm can make use of constraint satisfaction
techniques that exploit libraries of human movement data
[24]. The humanoid will be studied how to autonomously
react to dynamic environments. Another direction can be
motor learning. Instead of the traditional motor learning of
trajectories or dynamics, we can have robot learn the EPs from
observing the teacher’s behaviors. For example, for a mimic
robot to repeat the demonstrator’s reaching movement, the
only parameters it has to learn are the end posture and spring
parameters. This greatly reduces the amount of information
and computation conveyed to the learner, and simplifies the
process.
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