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Abstract— Common goal of many computer vision and robotics
algorithms is to extract geometric information from the sensory
data. Due to noisy measurements and errors in matching or
segmentation, the available data are often corrupted with outliers.
In such instances robust estimation methods are employed for
the problem of parametric model estimation. In the presenceof
a large fraction of outliers sampling based methods are often the
preferred choice. Traditionally used RANSAC algorithm however
requires a large number of samples, prior knowledge of the
outlier ratio and an additional, difficult to obtain, inlier threshold
for hypothesis evaluation.

To tackle these problems we propose a novel efficient sampling
based method for the robust estimation of model parameters.
The method is based on the observation that for each data point,
the properties of the residual distribution with respect to the
generated hypotheses reveal whether the point is an outlieror
an inlier. The problem of inlier/outlier identification can then be
formulated as a classification problem. The proposed method
is demonstrated on motion estimation problems from image
correspondences with a large percentage of outliers (70%) on
both synthetic and real data and estimation of planar models
from range data. The method is shown to be of an order of
magnitude more efficient than currently existing methods and
does not require a prior knowledge of the outlier ratio and the
inlier threshold.

I. I NTRODUCTION

Many computer vision and robotics algorithms strive to
extract geometric information from the sensory data. This
includes images, laser range data, or ultrasound. The geometric
information is typically represented by a parametric model.
Frequently considered models are planar surfaces from the
segmented range data, camera pose from image correspon-
dences or range scans. In most scenarios the data, in addition
to the sensor noise, are corrupted with a significant fraction
of outliers, due to either measurement errors, mismatches in
correspondences or errors in segmentation. This rules out the
application of traditional least squares estimators and requires
resorting to robust estimation techniques.

In statistics community the efforts focused on obtaining
provably robust estimators characterized by their breakdown
point. 1 However the achievable breakdown points are usually
low and the techniques are very costly to implement in
practice. Estimators such as LMedS and LTS [10] can tolerate

1The breakdown point of an estimator corresponds to a smallest percentage
of outliers, which can cause arbitrarily large values of theestimator.

only 50% of outliers. Although it is desirable to design estima-
tors with a solid theoretical footing and provable breakdown
points, they often have a small bearing on practical problems,
which can be tackled reliably. Many of the practical problems
have been successfully approached either by sampling based
methods (e.g. RANSAC) or Hough Transform, which can
empirically tolerate high fractions of outliers.

Our work is motivated by the class of sampling based
methods, similar in the spirit to RANSAC algorithm2 in-
troduced by Fishler and Bolles [2]. When the fraction of
outliers is significant and the parametric model is complex,
standard RANSAC algorithm requires a large number of
samples and an additional, difficult to obtain, inlier threshold
for hypothesis evaluation. In the basic algorithm, individual
hypotheses generated by the sampling process are evaluated
with respect to all data points and ranked based on the number
of their inliers, searching for the best hypothesis. The number
of needed samples is related to the fraction of outliers which
is often not known a-priori. Although RANSAC can handle
more then 50% of outliers, as the fraction of outliers increases
it becomes prohibitively expensive.

The main contribution of this paper is a novel inlier identi-
fication scheme, where we propose to classify the data points
directly based on the generated hypotheses. The proposed
approach is very efficient, especially for data sets contaminated
with large fractions of outliers and eliminates the need for
a predefined inlier threshold (scale) and the prior knowledge
of the outlier ratio which determines the number of needed
samples.

In our work we are motivated and focus on the camera mo-
tion estimation problem from image correspondences between
two widely separated views. This problem is of great relevance
for vision based localization in large scale environments.In
particular in the context of the relative positioning or loop
closing tasks, the camera pose with respect to a known land-
mark has to be computed. As Figure 8 demonstrates, in large
scale urban environments, the straightforward feature matching
stage usually yields a large number of incorrect correspon-
dences. The need for robust estimation methods has been
previously explored in this context by several authors [11],
[9], [5], [7] and will be reviewed below.

2RANdom SAmple Consensus.



The rest of the paper is organized as follows. In Section 2
we briefly review the basic RANSAC algorithm and discuss
its drawbacks. Related work and partial improvements over
traditional RANSAC are discussed in Section 3. The proposed
hypothesis evaluation and inlier/outlier identification scheme
is described in Section 4 and demonstrated on synthetic data.
In Section 5 we present experiments on real data and Section
6 concludes the paper.

II. RANSAC ALGORITHM

The essence of the RANSAC algorithm is the generation
of multiple hypotheses by means of sampling of the data.
Given the minimal number of data pointsp needed to estimate
a parametric model and the fraction of outliersǫ, we can
compute the probabilityρ that givenm samples, at least one
of the samples is outlier free:

ρ = 1 − (1 − (1 − ǫ)p)m. (1)

In order to achieve a desired probability (confidence)ρ of an
outlier free hypothesis and provided that the outlier fraction
ǫ is known, one can compute from the above equation the
required number of samples:

M =

⌈

ln(1 − ρ)

ln(1 − (1 − ǫ)p)

⌉

. (2)

Given the determined number of samplesM (calculated based
on Equation 2), hypothesis model parameters are estimated for
each sample, followed by finding the support (e.g. the num-
ber of inliers) for each hypothesis. Alternatively, a stopping
criterion can be used to terminate the sampling if sufficient
percentage of inliers has been encountered. It has been shown
in [5] that the stopping times for the two strategies mentioned
above differ only by a multiplicative factor. In the second stage
the hypothesis with the largest support is chosen, and all its
inliers are used to refine the model parameters. More detailed
description of the RANSAC algorithm can be found in [14].
Alternative approach to hypothesis evaluation using spectral
graph partitioning techniques in the space of hypotheses gener-
ated by sampling has been proposed recently by [8]. Authors’
evaluation states that the number of hypotheses needed is on
the order ofO(M2), making it exponential in the number of
points needed to estimate the model (2 points per line), where
M is the number of considered hypotheses. As authors point
out, the complexity is similar to RANSAC and clustering is
done in the hypothesis space. By studying the distribution of
residuals, our method is much more efficient

The larger the sample sizep, it is less likely that the sample
is outlier free and more samples are needed to achieve the
target confidence. For illustration we show the number of
samples needed to estimate the fundamental matrix model for
displacement between two views. The fundamental matrix has
9 elements, but only 7 degrees of freedom.

When the data set contains50% of outliers, in order
to estimate the fundamental matrix using the linear 8-point
algorithm, 766 samples are needed to assure95% confidence
that one outlier free sample is obtained. The number of

Outlier percentageǫ 30% 40% 50% 60% 70%

7-point algorithm 35 106 382 1827 13696
8-point algorithm 51 177 766 4570 45658

TABLE I

THE THEORETICAL NUMBER OF SAMPLES REQUIRED TO ENSURE95%

CONFIDENCE THAT AT LEAST ONE OUTLIER FREE SAMPLE IS OBTAINED.

required samples goes to 1177 for99% confidence. As pointed
out by [12], the theoretical number of samples is wildly
optimistic. In practice, the number of samples required to
reach a good hypothesis is around an order of magnitude
more. The experiments in [5] also validated this rule. The
actual number of samples needed for 99% confidence is on
the order of 5000 (our simulations confirm this), which means
around 5000 hypotheses need to be evaluated. As shown in
Table I, when ǫ = 0.7, the number of required samples
is 45658. Consequently, the number of hypotheses to be
evaluated will be on the order of105. For each hypothesis,
standard RANSAC algorithm computes the residual for every
data point. Hence the computation increases linearly with the
number of data points. Most of the related work tries to
alleviate the efficiency problems related to a large number of
required samples, an expensive hypothesis evaluation stage and
the inlier threshold selection in various ways.

III. R ELATED WORK

Chum and Matas [5] suggested to improve the efficiency
of the standard RANSAC by a pre-evaluation, calledTd,d

test. It exploits the fact that for an erroneous model, only
a small number of data points needs to be evaluated. Ifd
randomly selected points pass theTd,d test the hypothesis is
not considered further. This enables the authors to increase the
efficiency of the hypothesis evaluation stage, but the number
of samples remains still large. In [6], the authors proposed
to select the sample sets of adjacent points based on the
assumption that inliers will tend to be closer to one another
than outliers and therefore increasing the probability of an
outlier free hypothesis. Guided sampling by quality of matches
was proposed by [12] and increased the chance of sampling
’good’ correspondences more often and hence generate good
hypotheses. Torr and Zisserman [13] have noticed that the
simple evaluation of hypotheses by their inlier count is faulty,
since it treats all the inliers equally (error terms for all inliers
are constant). Consequently, if the thresholdT used on residual
errors is not set appropriately, the final model estimate will
be poor. They suggested using log likelihood of the solution
as the support instead of number of inliers. Nister [7] has
demonstrated a preemptive RANSAC scheme which runs
in real time. The preemptive score is used to sequentially
remove bad hypotheses, until only the best hypothesis is
left or time budget is used out. The scheme was tested on
synthetic data with20% outliers. In real experiments the
points were tracked between individual frame of the video
sequence and contained small fraction of outliers. Additional
speed up was obtained by the use of the 5-point algorithm



assuming that the camera is calibrated in advance. The issue
of the threshold selection for the inlier identification hasbeen
addressed recently by [15]. They proposed an automatic scale
selection method for estimation of the scale of inliers’ noise
by analyzing the distribution of residuals of each hypothesis
and hence avoiding heuristic threshold selection used for inlier
classification. The inlier scale was estimated, using an iterative
mean shift algorithm for locating the modes in the residual
distribution. Although the approach was capable of handling
a large percentage of outliers (≈ 85% ) on a simple line
fitting examples, the efficiency related to the required number
of samples and additional overhead caused by iterative scale
estimation have not been addressed.

IV. T HE PROPOSED SCHEME

We are motivated by the motion estimation problem from
two widely separated views given image correspondences. In
this problem the model to be estimated is complex and the data
often contain a significant fraction of outliers. The presence
of the outliers is particularly pervasive in large scale outdoor
urban environments and it is due to a significant viewpoint
change, illumination changes and ambiguities due to repetitive
structures inherent to buildings. The set of correspondences
often contain more than50% outliers. As the Table 1 indicates
using the traditional RANSAC sampling techniques would
be prohibitively time consuming, in addition to the issues of
inlier threshold selection. Even though the automated threshold
selection method [15] can overcome some of the difficulties,it
introduces an additional overhead without reducing the number
of needed hypotheses.

Note that identification of inliers is at the core of RANSAC
algorithm. The final model parameters are then estimated
based on the identified inliers. Most of the sampling based
algorithms generate many hypotheses which guarantees that
with some confidence an outlier free hypothesis is encountered
in the set. As shown in Table I, this depends on the complexity
of the model and the outlier ratio, which is not known ahead
of time. The preemptive RANSAC [7] is the only exception
which uses a fixed number of samples (500-800), assuming the
outlier percentage is around 20% in a calibrated setting with
5-point algorithm. The idea of the search for good hypotheses
remains unchanged. Although this method has been show
to work well with video sequence (and hence lower outlier
ratios), it has not been extended to data containing more
outliers.

In the presented approach, instead of evaluating goodness
of individual hypotheses generated by the sampling process,
we evaluate the residuals of each data point with respect
to all hypotheses. The proposed method is based on the
observation, that for each data point the properties (higher
order statistics) of the distribution of residuals with respect
to generated hypotheses reveal whether the point is an outlier
or an inlier. The problem of inlier/outlier identification can
then be formulated as a classification problem. The presented
approach exploits the fact that even the hypotheses with
a small number of outliers contribute to the characteristic

kurtotic shape of inlier’s distribution. Hence the presented
method does not require per se a presence of an outlier free
hypothesis and a large number of samples is not necessary. The
approach in addition to its efficiency does not require prior
knowledge of the outliers percentage and doesn’t need any
threshold for identification of inlier’s support of the hypothesis.
We demonstrate the performance of the proposed method
on the problem of motion estimation, with varying outlier
percentages (up to70%) and show that we can correctly
identify the inliers over varying fractions of outliers with
fixed number of samples. In the next section we will describe
the approach and justify it on a simple example. Extensive
simulations and experiments on real images are presented in
Section 4.

A. Inlier identification procedure

We will describe the proposed method on an example of
estimation of the epipolar geometry between two views. Given
a set of correspondences{xi,x

′

i}C
i=1

between two views of the
same scene, our goal is to estimate the fundamental matrix
F . Similarly as in the standard RANSAC algorithm we first
use sampling to generate a set of hypotheses, in this case
fundamental matrices. This is achieved by sampling the set of
correspondences by selecting 8-point samples and estimating
F using the 8-point algorithm with normalization. At this stage
our method dramatically departs from the previously proposed
approaches. Instead of evaluating/scoring each hypothesis, we
look at the data points directly. For each data point (e.g.
correspondence) we study the distribution of residuals with
respect to all hypotheses. For a hypothesisFj instead of
considering algebraic residual error(ri

j)
2 = (xT

i Fjx
′

i)
2 we

use the so called Sampson distance which approximates the
reprojection error [3] and is defined as:

(ri
j)

2 =
(xT

i Fjx
′

i)
2

(Fjxi)21 + (Fjxi)22 + (FT
j x

′

i)
2

1
+ (F t

j x
′

i)
2

2

(3)

where (Fx)2k represents the square of thek-th entry of the
vector Fx. Figure 1(a) and Figure 1(b) show the typical
error distributions with respect to all generated hypotheses
for a data containing20% outliers. The data was generated
using a total of 200 3D points in general position with depth
variation of 1000 and projected into two views related by
general motion. The inliers were corrupted by a zero mean
Gaussian noise and standard deviation of 2 pixels, while the
outlier noise was assumed to be uniformly distributed in the
interval [−50,−20] ∪ [20, 50] pixels. Note that the residual
histograms of the inliers and outliers are very different. The
inliers typically have strong peaks close to 0, while the outliers
don’t. We will use this observation for classification of the
points to inliers and outliers based on nth order statistics of
their residual distributions. Outliers residual histograms can
also have high count in the first bin, because some hypotheses
are generated using the samples which contain the outlier
itself. For this reason the1st bin was set to 0 prior to the
computation of the statistics. The strong peak of inliers error
distributions comes from two sources: a particular inlier can be



included in several samples and it can be expected that several
good hypotheses yielding a low residual error are included
in the hypotheses set. In this example, with20% of outliers,
the probability that a sample of 8 pionts is outlier free is
0.88 ≈ 0.168. With 500 generated hypotheses, the expected
number of outlier free samples is then0.168×500 = 843.The
number of samples used to generate the hypotheses is set to
be N = 500. We examine this choice in more detail at the
end of this section. Considering the size of the image plane is
400× 600, the error histogram has 150 bins, representing the
Sampson error ranging from 0 to 149 (large enough to capture
the detail of the error distribution). We disregard errors greater
than 149.
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Fig. 1. Residual histogram for a true inlier (a) and a true outlier (b), ǫ =

0.2, with each bin corresponds to error in pixels (c): plot of skewness vs.
kurtosis computed for all residual distributions of the 200data points (red ’+’
represents inliers, while blue ’x’ represents outliers.)

1) Features characterizing the distributions:In order to
characterize the qualitative differences between the distribu-
tions of inliers and outliers depicted in Figure 1, several order
statistics can be used. Most commonly used are the lower
order statistics such as mean, standard deviation, skewness
and kurtosis. Our experiments show that the skewness and
kurtosis are very discriminative for the two kinds of residual
histograms. Skewnessγ measures the asymmetry of the data
around the sample meanµ and is defined as

γ =
E(x − µ)3

σ3
. (4)

Skewness of the normal distribution (or any perfectly symmet-
ric distribution) is zero. If the value of skewness is positive, the
data are spread out more to the right of the mean than to the
left. Kurtosisβ is the degree of peakedness of a distribution,
which in our case measures how outlier prone a distribution
is. Kurtosis is defined as:

β =
E(x − µ)4

σ4
. (5)

For the two histograms shown in Figure 1(a),(b), the kurtosis
and skewness for the inlier histogram are 24.4 and 4.6, while
for the outlier they are much smaller: 7.6 and 1.7 respectively.
These characteristics capture the fact that the inlier’s histogram
of residuals has much stronger peak than that of an outlier and
can be used as feature for further classification.

3The number of outlier free samples obeys a binomial distribution with N

trials and the probability of success is the probability that a sample is outlier
free.

We can plot the values of skewness and kurtosis for each
data point in 2D, as Figure 1(c) shows. Note that the kurtosis
and skewness are correlated, thus it’s not necessary to use the
two statistics together. In our case only the kurtosis is used for
identifying the inliers, making the classification more efficient.
From the plot, we can see that the inliers and outliers have
different values of skewness and kurtosis. Hence they can be
easily separated, either by k-means clustering algorithm or we
can simply rank the points in the order of decreasing kurtosis
and consider the topk points to be inliers. Notice that the true
inliers have kurtosis with much larger variance than the true
outliers. Consequently, some true inliers will be misclassified
as outliers after the grouping. This however will not cause a
problem for the model estimation, because enough true inliers
are identified. In case a small number of true outliers is
included in the identified inliers set, RANSAC algorithm can
be applied for this inliers set. The computational demands are
very low, since the outlier percentage is small in this case with
no more than10% outliers as our experiments show. In our
experiments we found that using 20 samples was enough to
obtain a good hypothesis.

The inlier identification scheme for the case of fundamental
matrix estimation is summarized below.

Algorithm 1 Inliers identifications procedure
1) Given the initial set ofC correspondences, randomly

selectN 8-point samples and generateN fundamental
matrix hypotheses{Fj}, j = 1, 2 . . . , N .

2) For each correspondence (data point), compute its Samp-
son error(rj

i )
2 with regard to each hypothesis.

3) For each correspondence, estimate its residual distri-
bution by constructing the histogram ofN residuals
associated with it. The histogram is used to evaluate
whether the correspondence is an inlier or an outlier.

4) For C histograms, of residuals compute the value of
kurtosisβk to characterize each of them. In this stage
each correspondence is represented by a point in the 1D
kurtosis space.

5) Use k-means clustering algorithm to cluster the data into
two groups, which are identified inliers and outliers or
simply rank the points by their kurtosis value.

Note that the proposed scheme doesn’t need a prede-
fined threshold for inliers. The RANSAC schemes require a
thresholdT to determine whether a data point is an inlier.
T is a sensitive parameter and can affect the performance
dramatically.

B. Asymptotic running time analysis

Note the steps 3, 4, and 5 of Algorithm 1 require ex-
tra computation compared to standard RANSAC. GivenN
samples andC correspondences, constructing the histograms
takes O(N × C) and computing the value of kurtosis for
each takesO(N × C) multiplications; k-means clustering in
one dimension is very efficient. Together, the computation
time these steps require is less than the second hypothesis



evaluation stage of standard RANSAC which requiresO(N ×
C) matrix multiplication. In our experiments the number
of samplesN was set to be 500. We have also evaluated
the sensitivity of our method with respect to the number
of samples and obtained repeatable performance for varying
outlier ratio when the number of samples varied between 400
to 1000. Note that this is an improvement of an order of
magnitude compared to the work reported in [5]. Just for
comparison, the standard RANSAC requiresO(N×C) matrix
multiplications to evaluate all hypotheses. Without knowing
outlier percentage a-priori, number of samplesN has to be set
conservatively, e.g.M = 30000 to handle60% outliers [16].
Hence the presented approach is more efficient than standard
RANSAC, especially when the outlier ratio is high.

C. Justification based on synthetic data

We have shown in Section IV-A a conceptual example that
the inliers can be identified directly. In the following section
we will demonstrate the feasibility of our approach based on
synthetic experiments. 200 correspondences were generated
by projecting random cloud of 200 3D points, placed 1000
units of focal length in front of the camera, with the depth
variation of 2000. The two views were related by general
motion of translation around x-axis and rotation around y-axis
of the camera frame. All the correspondences are corrupted
by Gaussian noise (standard deviation was 1 pixel). Another
200 random correspondences were uniformly distributed in
the image plane, yielding an outlier ratio ofǫ = 0.5. As
Figure 2(a) and Figure 2(b) show, the residual distributions for
an inlier and outlier are rather different. In this case (ǫ = 50%).
Note that the residual distribution of an inlier is well peaked
unimodal distribution, where the mode is close to 0. On the
other hand, the distribution of an outlier is more spread out
and has multiple modes.
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Fig. 2. Residual distribution for a true inlier (a) and a trueoutlier (b),
ǫ = 0.5, (c) kurtosis values of 400 residual distributions one for each point,
x-axis corresponds to the point index andy-axis to the corresponding kurtosis
value.

Figure 2(c) shows kurtosis of all 400 data points (correspon-
dences). For better visibility, the data are organized as 200
inliers followed by 200 outliers, withx axis being the point
index. Note that the inliers and outliers have quite different
kurtosis. In this case we have achieved the true positive rate
of 138/200 = 68% and false positive rate2/200 = 1%.
The inlier identification performs fairly well with this heavily
contaminated data set.

As the percentage of outliers increases, it can be expected
that the peak of inliers’ residual histogram becomes lower and
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Fig. 3. This figure shows how the kurtosis value changes with different
portion of outliers. Mean and95% confidence interval of inliers’ kurtosis
are shown in red, mean and95% confidence interval of outliers’ kurtosis are
shown in blue.

eventually undistinguishable from the outlier’s histogram. It’s
interesting to see to what extent our approach can tolerate
outliers. We tried to study the separability of inliers fromthe
data containing different percentage of outliers. The number
of inliers is fixed to be 200 obtained by projecting 200 random
3D points into two widely separated views, while the number
of outliers varies to obtain the desired outlier ratio. Figure 3
illustrates the changing kurtosis value. The motion and 3D
structure are set the same as in Figure 1. We can see that
the kurtosis value of outliers is always small, because they
have no significant peaks. The kurtosis of inliers is much
larger at first, meaning their error distributions do have strong
peaks. Then it decreases as more outliers are added, due to
the fact that the outliers are present in a larger number of
hypotheses, yielding more dispersed peaks of residuals. When
the fraction of outliersǫ is less than0.6, the mean of kurtosis
computed based on inliers is above95% confidence interval of
that of outliers. Therefore, the kurtosis of a residual histogram
associated with inliers and outliers are statistically different,
and the inlier group obtained through k-means clustering
is very unlikely to contain true outliers. When the outlier
percentage increases further but no more than0.7, the mean
of inliers’ kurtosis is close to the upper bound of that of
outliers’. In this case, the inlier cluster obtained from k-means
may contain some true outliers, but the percentage will be
much lower than in the original data. As we mentioned before,
an additional step of standard RANSAC on the group of
identified inliers can yield correct model parameters with a
small number of samples. When the outlier percentage grows
further to0.75, inliers and outliers become indistinguishable.
Figure depicts the separation of inliers and outliers in the
skewness/kurtosis space as the outlier ratio increases. The
settings for the experiment were the same as in Figure 1. This
indicates that the proposed approach cannot tolerate more than
75% outliers. In theory the standard RANSAC does not have
such limitation as long as enough samples are evaluated. When



the outlier ratioǫ is too high, the required number of samples
is so large that it’s impractical to work with in practice. As
mentioned in Section 2, whenǫ = 0.7, the required number
of samples is on the order of a half million, which is too
large. The proposed method has a similar working range for
the outlier ratio in practice as the standard RANSAC, only that
it is much more efficient. Note that the limitation is obtained
based on the estimation of fundamental matrix, which requires
at least 7 data points. If the model to be estimated is simpler,
for instance affine model which requires only 3 data points
to estimate, more outliers can be tolerated. The reason is that
the required number of samples would decrease dramatically
in this case based on the relationship in Equation 2. We will
demonstrate this using a simulated example of plane fitting.
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(a) ǫ = 0.4.
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(b) ǫ = 0.6.

Fig. 4. Plots of kurtosis vs. skewness for different outlierpercentage.

1) Plane fitting in 3D space:Figure 5 shows 500 3D data
points, where 100 points lie in a plane and are corrupted by
Gaussian noise (σ = 1) and the remaining 400 outliers are
uniformly distributed in the space. 108 points are identified as
inliers only 10% of which are false positives.
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0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

20

skewness

ku
rt

os
is

n
r
un=500 outlieRratio=0.800000

(c) Plot of skewness vs. kurtosis com-
puted for all residual distributions.
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(d) Inlier/Outlier identification result.

Fig. 5. Fitting 3D plane with80% outliers.

2) Number of samples:Since the method uses all the
hypotheses, it is difficult to establish a bound on the num-
ber of samples related to a desired confidence as done in
standard RANSAC. We study this relationship in simulation
by measuring the separability of the inliers and outliers as
a function of the number of samples. The Jeffries-Matusita
distance measure of separability is used to assess how well
two classes may be separated. Assuming that the two classes
can be represented by normal distributions withN(µi, Ci) and
N(µj , Cj) the Jeffries-Matusita distance is computed as

JMij =
√

2(1 − e−α) (6)

where

α =
1

8
(µi−µj)

T

(

2

Ci + Cj

)

(µi−µj)+
1

2
ln

(

1

2
|Ci + Cj |
√

|Ci||Cj |

)

The Jeffries-Matusita distance has an upper bound of
1.414(

√
2), and a lower bound of 0. When the calculated dis-

tance has a value of the upper bound, the signatures can be said
to be totally separable, while the signatures are inseparable
when the calculated distance is0. We experimented to see how
the number of samples affects the performance characterized
using JM distance. If outliers and inliers are totally separable,
their JM distance would be 1.414. On the other hand, if they
are tangled together and inseparable, the distance would be0.
For a given outlier ratio, we ran 100 trials of the proposed
method and estimated the two clusters based on their kurtosis
measure. Mean and standard deviation for both outliers and
inliers were obtained in each run. Then we used the average of
those means and standard deviations to compute JM distance
for the particular number of samples. Figure 6 shows the
simulation for data with different outlier ratios. As shown, the
separability improves when the number of samples increases.
However, after 500 samples, the separability wouldn’t improve
much as the number of samples increases.

In the case of lower outlier ratios smaller number of samples
is sufficient. However lowering the number of samples further
will affect the quality of the skewness and kurtosis estimates.
Since we would like to have a method which works for a
range of outlier ratios we choose the number of samples which
has been shown in simulation (Figure 6) to provide a good
separation of outliers and inliers for high outlier ratios.

Additional simulations and experiments examining the ef-
fect of the number of outliers in each sample as well as
reliability of the method depending on the separation of two
residual distributions can be found in [17]. The presented
approach exploits the fact that even the hypotheses with
a small number of outliers contribute to the characteristic
kurtotic shape of inlier’s distribution.

V. EXPERIMENTS WITH REAL DATA

The proposed scheme was tested with real correspondences
sets obtained from a wide baseline matching experiments.
The putative correspondences were initiated by matching of
SIFT keypoints [4]. Two keypoints are matched when the
distance between the two SIFT keypoint descriptor is less



Fig. 6. The JM distance changes with the number of samples. Note that it
increases little after 500 samples. The graphs are plotted for different outlier
ration Sigma = 0.4,0.5,0.6 and 0.7.

than some thresholdτ . We ran extensive experiments with
correspondence sets containing different portion of outliers.
We tested the method in urban environment using a wide
baseline matching between two views In addition to a large
change of viewpoint between the views, these scenes contain
many repetitive structures, making the problem of finding cor-
respondences by means of matching local feature descriptors
highly ambiguous. Our focus is on the inlier identification
capability of the proposed scheme. The identified inliers are
not refined with additional RANSAC, so they might still
contain few true outliers for severely contaminated data sets.

When the percentage of outliers is low, our approach can
identify inliers and outliers directly almost without a mis-
take. The low percentage of outliers can also be handled by
RANSAC without an excessive computational overhead. We
emphasize that our approach is suitable for correspondence
sets with a significant portion of outliers of more than40%.
Three examples are shown in Figures 8, 7 and 9. The identified
inlier sets include most of the true inliers with a very few
outliers.

It is known that the distance thresholdτ used for matching
the SIFT keypoint descriptors affects the number of matches.
Loose threshold results in many false correspondences. If the
threshold is set too tight, hardly any matches could be found.
Our work suggest a straightforward way to handle this: set
a relatively loose threshold to obtain initial set of correspon-
dences and apply the proposed scheme to identify the true
inliers. The presented approach was evaluated on the data set
of outdoors street level images used in ICCV Vision Contest
provided at (http://research.microsoft.com/iccv2005/Contest/).
The goal of the contest was to compute GPS locations of a
set of unlabeled images, given a set of views tagged with GPS
coordinates. This required, given a new unlabeled query view
to compute the pose of the camera with respect to the two

(a) identified inliers. (b) identified outliers.

Fig. 7. 750 correspondences are initiated with around50% outliers. 364
inliers are identified without false positive.

(a) identified inliers. (b) identified outliers.

Fig. 8. 383 correspondences are initiated with approximately 60% outliers.
93 inliers are identified with only 1 false positive. Note thefirst left door in
the left image corresponds to second left door in the right image.

nearest labeled reference views and triangulate the obtained
position. The presented approach was used in a winning entry
in the contest and reported superior performance and efficiency
compared to other methods. The absolute computation time as
well as accuracy of the localization method compared to the
ground truth can be found at [1].

VI. CONCLUSION AND FUTURE WORK

In this paper we proposed a new inlier identification scheme
for robust estimation problems. We have demonstrated that it
can efficiently handle data sets containing significant level of
outliers. Inliers can be identified directly without looking for
good hypothesis, thus avoiding the need for large number of
samples, which is required for the standard RANSAC algo-
rithm. In addition to the efficiency of the proposed approach,
we have also eliminated the need for sensitive threshold selec-
tion for the outlier identification as well as the need for prior



(a) Pair of images. (b) identified inliers.

Fig. 9. Two frames of the widely used Corridor sequence (bt.001 and bt.006),
obtained from http://www.robots.ox.ac.uk/ vgg/data/. Outlier percentage is
over 50%. 134 inliers are identified with no false positive.

knowledge about the percentage of outliers. We would like
to emphasize that the proposed method is especially suitable
for the data with a large number of outliers as demonstrated
in our application and often encountered in wide baseline
matching. The proposed scheme was tested extensively with
both synthetic and real data. We plan to refine the inlier
identification step in the future, by replacing the k-means
clustering by its probabilistic version and hence obtaining the
probability of being an inlier for each data point. We are also
in the process of carrying out more extensive experiments
with different distributions of outliers, in order to assesthe
generality of the presented method.
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