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Abstract— Common goal of many computer vision and robotics only 50% of outliers. Although it is desirable to design esti
algorithms s to extract geometric information from the sersory  tors with a solid theoretical footing and provable breakdow
data. Due to noisy measurements and errors in matching or points, they often have a small bearing on practical problem

segmentation, the available data are often corrupted with otliers. . . .
In such instances robust estimation methods are employed fo Which can be tackled reliably. Many of the practical probtem

the problem of parametric model estimation. In the presenceof have been successfully approached either by sampling based
a large fraction of outliers sampling based methods are ofiethe methods (e.g. RANSAC) or Hough Transform, which can
preferred choice. Traditionally used RANSAC algorithm however  empirically tolerate high fractions of outliers.

requires a large number of samples, prior knowledge of the Our work is motivated by the class of sampling based

tli i d dditional, difficult to obtain, inlier threshold - . I . .
?Our ﬁpr:tﬁzgg esgﬂati('):fna eyl to obtain, infier thresho methods, similar in the spirit to RANSAC algorithf in-

To tackle these problems we propose a novel efficient samptin troduced by Fishler and Bolles [2]. When the fraction of
based method for the robust estimation of model parameters. outliers is significant and the parametric model is complex,
The method is based on the observation that for each data pain  standard RANSAC algorithm requires a large number of
the properties of the residual distribution with respect to the samples and an additional, difficult to obtain, inlier thmels

generated hypotheses reveal whether the point is an outlieor . . . . —
an inlier. The problem of inlier/outlier identification can then be for hypothesis evaluation. In the basic algorithm, inda

formulated as a classification problem. The proposed method hypotheses generated by the sampling process are evaluated
is demonstrated on motion estimation problems from image with respect to all data points and ranked based on the number
correspondences with a large percentage of outliers7(%) on  of their inliers, searching for the best hypothesis. The bem

both synthetic and real data and estimation of planar models ¢ naeded samples is related to the fraction of outliers whic

from range data. The method is shown to be of an order of . .
magnitude more efficient than currently existing methods ad is often not known a-priori. Although RANSAC can handle

does not require a prior knowledge of the outlier ratio and the more then 50% of outliers, as the fraction of outliers inse=a

inlier threshold. it becomes prohibitively expensive.
The main contribution of this paper is a novel inlier identi-
|. INTRODUCTION fication scheme, where we propose to classify the data points

Many computer vision and robotics algorithms strive tgirectly based on the generated hypotheses. The proposed
extract geometric information from the sensory data. ThPProachis very efficient, especially for data sets comated
includes images, laser range data, or ultrasound. The geomeVith Iarg_e fra_cnpns of outliers and eliminates .the need for
information is typically represented by a parametric mode? Predefined inlier threshold (scale) and the prior knowéedg
Frequently considered models are planar surfaces from #fethe outlier ratio which determines the number of needed
segmented range data, camera pose from image corresfgHoPIes.
dences or range scans. In most scenarios the data, in additio!n our work we are motivated and focus on the camera mo-
to the sensor noise, are corrupted with a significant fractigon estimation problem from image correspondences betwee
of outliers, due to either measurement errors, mismatanestWo widely separated views. This problem is of great releean
correspondences or errors in segmentation. This rulesheut for vision based localization in large scale environmehts.
application of traditional least squares estimators andires Particular in the context of the relative positioning or oo
resorting to robust estimation techniques. closing tasks, the camera pose with respect to a known land-

In statistics community the efforts focused on obtainingl@rk has to be computed. As Figure 8 demonstrates, in large
provably robust estimators characterized by their breakdo Scale urban environments, the straightforward featureinzg
point. 1 However the achievable breakdown points are usuafj@ge usually yields a large number of incorrect correspon-
low and the techniques are very costly to implement f€nces. The need f_or rqbust estimation methods has been
practice. Estimators such as LMedS and LTS [10] can tolerdtfeViously explored in this context by several authors [11]

[9], [5], [7] and will be reviewed below.

1The breakdown point of an estimator corresponds to a srhakgsentage
of outliers, which can cause arbitrarily large values of ¢isémator. °RANdom SAmple Consensus.



. . . Outlier percentage 30%  40% 50%  60% 70%
D
Thg rest of .the paper is organized as foII_ows. In Se_ctlon 7-point algorkAm 5 106 387 1807 13694
we briefly review the basic RANSAC algorithm and discuss 8-point algorithm 51 177 766 4570 45658
its drawbacks. Related work and partial improvements over TABLE |

traditional RANSAC are discussed in Section 3. The proposeq,,c r1eorETICAL NUMBER OF SAMPLES REQUIRED TO ENSURE5%
hypOtheSiS evaluation and inlier/ou“ier identiﬁcati(ﬂ:heme CONFIDENCE THAT AT LEAST ONE OUTLIER FREE SAMPLE IS OBTAINED
is described in Section 4 and demonstrated on synthetic data
In Section 5 we present experiments on real data and Section
6 concludes the paper.
required samples goes to 1177 §9% confidence. As pointed
Il. RANSAC ALGORITHM out by [12], the theoretical number of samples is wildly
The essence of the RANSAC algorithm is the generatigiptimistic. In practice, the number of samples required to
of multiple hypotheses by means of sampling of the datéach a good hypothesis is around an order of magnitude
Given the minimal number of data poinisieeded to estimate more. The experiments in [5] also validated this rule. The
a parametric model and the fraction of outlierswe can actual number of samples needed for 99% confidence is on
compute the probability that givenm samples, at least onethe order of 5000 (our simulations confirm this), which means
of the samples is outlier free: around 5000 hypotheses need to be evaluated. As shown in
p=1—(1—(1—eP)m 1) Table I, whene = 0.7, the number of required samples
is 45658. Consequently, the number of hypotheses to be
In order to achieve a desired probability (confidence)f an evaluated will be on the order dfo®. For each hypothesis,
outlier free hypothesis and provided that the outlier fact standard RANSAC algorithm computes the residual for every
¢ is known, one can compute from the above equation thlata point. Hence the computation increases linearly vi¢h t

required number of samples: number of data points. Most of the related work tries to
alleviate the efficiency problems related to a large numlfer o
In(l—p) ) . : .
M = m (2) required samples, an expensive hypothesis evaluatioe atat)
n — — €

the inlier threshold selection in various ways.
Given the determined number of samplgs(calculated based
on Equation 2), hypothesis model parameters are estimated f
each sample, followed by finding the support (e.g. the num-Chum and Matas [5] suggested to improve the efficiency
ber of inliers) for each hypothesis. Alternatively, a stimgp of the standard RANSAC by a pre-evaluation, call&g,
criterion can be used to terminate the sampling if sufficietgst. It exploits the fact that for an erroneous model, only
percentage of inliers has been encountered. It has beemshawsmall number of data points needs to be evaluated. If
in [5] that the stopping times for the two strategies mergibn randomly selected points pass tffig; test the hypothesis is
above differ only by a multiplicative factor. In the secortdge not considered further. This enables the authors to inertrees
the hypothesis with the largest support is chosen, andsall éfficiency of the hypothesis evaluation stage, but the numbe
inliers are used to refine the model parameters. More ddtailef samples remains still large. In [6], the authors proposed
description of the RANSAC algorithm can be found in [14]to select the sample sets of adjacent points based on the
Alternative approach to hypothesis evaluation using spkctassumption that inliers will tend to be closer to one another
graph partitioning techniques in the space of hypothesesrge than outliers and therefore increasing the probability of a
ated by sampling has been proposed recently by [8]. Authomsitlier free hypothesis. Guided sampling by quality of rhat
evaluation states that the number of hypotheses needed isnas proposed by [12] and increased the chance of sampling
the order ofO(M?), making it exponential in the number of'good’ correspondences more often and hence generate good
points needed to estimate the model (2 points per line), evhdrypotheses. Torr and Zisserman [13] have noticed that the
M is the number of considered hypotheses. As authors pogitnple evaluation of hypotheses by their inlier count idtiau
out, the complexity is similar to RANSAC and clustering isince it treats all the inliers equally (error terms for aliers
done in the hypothesis space. By studying the distribution are constant). Consequently, if the threstbldsed on residual
residuals, our method is much more efficient errors is not set appropriately, the final model estimaté wil
The larger the sample size it is less likely that the sample be poor. They suggested using log likelihood of the solution
is outlier free and more samples are needed to achieve #wthe support instead of number of inliers. Nister [7] has
target confidence. For illustration we show the number demonstrated a preemptive RANSAC scheme which runs
samples needed to estimate the fundamental matrix model iforreal time. The preemptive score is used to sequentially
displacement between two views. The fundamental matrix hasnove bad hypotheses, until only the best hypothesis is
9 elements, but only 7 degrees of freedom. left or time budget is used out. The scheme was tested on
When the data set contain®% of outliers, in order synthetic data with20% outliers. In real experiments the
to estimate the fundamental matrix using the linear 8-poipbints were tracked between individual frame of the video
algorithm, 766 samples are needed to as9ifé confidence sequence and contained small fraction of outliers. Addiio
that one outlier free sample is obtained. The number speed up was obtained by the use of the 5-point algorithm
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assuming that the camera is calibrated in advance. The iskuetotic shape of inlier's distribution. Hence the preseht

of the threshold selection for the inlier identification hesen method does not require per se a presence of an outlier free
addressed recently by [15]. They proposed an automatie sdaypothesis and a large number of samples is not necessay. Th
selection method for estimation of the scale of inliers’seoi approach in addition to its efficiency does not require prior
by analyzing the distribution of residuals of each hypahesknowledge of the outliers percentage and doesn’t need any
and hence avoiding heuristic threshold selection usedfigri threshold for identification of inlier's support of the hythesis.
classification. The inlier scale was estimated, using aatitee We demonstrate the performance of the proposed method
mean shift algorithm for locating the modes in the residuah the problem of motion estimation, with varying outlier
distribution. Although the approach was capable of hagdlipercentages (up td0%) and show that we can correctly

a large percentage of outliersz(85% ) on a simple line identify the inliers over varying fractions of outliers Wwit
fitting examples, the efficiency related to the required nembfixed number of samples. In the next section we will describe
of samples and additional overhead caused by iterative scéile approach and justify it on a simple example. Extensive
estimation have not been addressed. simulations and experiments on real images are presented in

Section 4.
IV. THE PROPOSED SCHEME

We are motivated by the motion estimation problem froﬁ%" Inlier identification procedure

two widely separated views given image correspondences. InVe will describe the proposed method on an example of
this problem the model to be estimated is complex and the d&giimation of the epipolar geometry between two views. Give
often contain a significant fraction of outliers. The pre=en @ set of correspondencés;, x;}_; between two views of the
of the outliers is particularly pervasive in large scaledmar Same scene, our goal is to estimate the fundamental matrix
urban environments and it is due to a significant viewpoirt. Similarly as in the standard RANSAC algorithm we first
change, illumination changes and ambiguities due to riymeti Use sampling to generate a set of hypotheses, in this case
structures inherent to buildings. The set of corresponeendundamental matrices. This is achieved by sampling thefset o
often contain more thah0% outliers. As the Table 1 indicatescorrespondences by selecting 8-point samples and estgnati
using the traditional RANSAC sampling techniques would’ using the 8-point algorithm with normalization. At this géa
be prohibitively time consuming, in addition to the issudés @ur method dramatically departs from the previously prepos
inlier threshold selection. Even though the automatedstiolel  approaches. Instead of evaluating/scoring each hypsthesi
selection method [15] can overcome some of the difficulites,|0ok at the data points directly. For each data point (e.g.
introduces an additional overhead without reducing thelyerm correspondence) we study the distribution of residual wit
of needed hypotheses. respect to all hypotheses. For a hypotheE_i,»s instead of
Note that identification of inliers is at the core of RANSAcconsidering algebraic residual errr!)? = (x] Fjx})* we
algorithm. The final model parameters are then estimatge the so called Sampson distance which approximates the
based on the identified inliers. Most of the sampling baségprojection error [3] and is defined as:
algorithms generate many hypotheses which guarantees that( e (xT Fyx!)?
with some confidence an outlier free hypothesis is encoedter ri)t = 5 5 V) YAV
in the set. As shown in Table I, this depends on the complexity (Fyxi)i + (Fyxi)s + (Fy )i + (Fyx)s
of the model and the outlier ratio, which is not known aheadhere (Fx)? represents the square of theth entry of the
of time. The preemptive RANSAC [7] is the only exceptiorvector F'x. Figure 1(a) and Figure 1(b) show the typical
which uses a fixed number of samples (500-800), assuming #reor distributions with respect to all generated hypodkses
outlier percentage is around 20% in a calibrated setting witor a data containin@0% outliers. The data was generated
5-point algorithm. The idea of the search for good hypotiesesing a total of 200 3D points in general position with depth
remains unchanged. Although this method has been sheariation of 1000 and projected into two views related by
to work well with video sequence (and hence lower outliegeneral motion. The inliers were corrupted by a zero mean
ratios), it has not been extended to data containing mdBaussian noise and standard deviation of 2 pixels, while the
outliers. outlier noise was assumed to be uniformly distributed in the
In the presented approach, instead of evaluating goodnagerval [—50, —20] U [20, 50] pixels. Note that the residual
of individual hypotheses generated by the sampling procebsstograms of the inliers and outliers are very differertteT
we evaluate the residuals of each data point with respéaliers typically have strong peaks close to 0, while thdierg
to all hypotheses. The proposed method is based on than't. We will use this observation for classification of the
observation, that for each data point the properties (mighmoints to inliers and outliers based off*rorder statistics of
order statistics) of the distribution of residuals with pest their residual distributions. Outliers residual histagsacan
to generated hypotheses reveal whether the point is areoutlso have high count in the first bin, because some hypotheses
or an inlier. The problem of inlier/outlier identificatioras are generated using the samples which contain the outlier
then be formulated as a classification problem. The predenitself. For this reason thes’ bin was set to 0 prior to the
approach exploits the fact that even the hypotheses witbhmputation of the statistics. The strong peak of inliersrer
a small number of outliers contribute to the characteristitistributions comes from two sources: a particular inli@n be
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included in several samples and it can be expected thatadever We can plot the values of skewness and kurtosis for each
good hypotheses yielding a low residual error are includeta point in 2D, as Figure 1(c) shows. Note that the kurtosis
in the hypotheses set. In this example, witit% of outliers, and skewness are correlated, thus it's not necessary these t
the probability that a sample of 8 pionts is outlier free isvo statistics together. In our case only the kurtosis isldee
0.8% ~ 0.168. With 500 generated hypotheses, the expectéentifying the inliers, making the classification more @éfint.
number of outlier free samples is theri 68 x 500 = 843.The From the plot, we can see that the inliers and outliers have
number of samples used to generate the hypotheses is sdlifferent values of skewness and kurtosis. Hence they can be
be N = 500. We examine this choice in more detail at theasily separated, either by k-means clustering algorithmeo
end of this section. Considering the size of the image planecian simply rank the points in the order of decreasing kustosi
400 x 600, the error histogram has 150 bins, representing tlaad consider the top points to be inliers. Notice that the true
Sampson error ranging from 0 to 149 (large enough to captunéiers have kurtosis with much larger variance than the tru
the detail of the error distribution). We disregard errarsager outliers. Consequently, some true inliers will be misdfées
than 149. as outliers after the grouping. This however will not cause a
problem for the model estimation, because enough truerénlie
are identified. In case a small number of true outliers is
included in the identified inliers set, RANSAC algorithm can
x’ be applied for this inliers set. The computational demamds a
e very low, since the outlier percentage is small in this caile w
no more thanl0% outliers as our experiments show. In our
experiments we found that using 20 samples was enough to
obtain a good hypothesis.

The inlier identification scheme for the case of fundamental
matrix estimation is summarized below.

@) (b) ©

Fig. 1. Residual histogram for a true inlier (a) and a trudieutb), ¢ =

0.2, with each bin corresponds to error in pixels (c): plot ofvekess vs.
kurtosis computed for all residual distributions of the 2{2@a points (red '+’
represents inliers, while blue 'x’ represents outliers.)

Algorithm 1 Inliers identifications procedure

1) Given the initial set ofC' correspondences, randomly
select N 8-point samples and generalé fundamental

1) Features characterizing the distributiondn order to

characterize the qualitative differences between theilolist

tions of inliers and outliers depicted in Figure 1, severadien 2)
statistics can be used. Most commonly used are the lower
order statistics such as mean, standard deviation, skewnes3)
and kurtosis. Our experiments show that the skewness and
kurtosis are very discriminative for the two kinds of restu
histograms. Skewness measures the asymmetry of the data

around the sample meanand is defined as 4)

E(z — p)®
B @
Skewness of the normal distribution (or any perfectly symame 5)
ric distribution) is zero. If the value of skewness is pasifithe

data are spread out more to the right of the mean than to the

matrix hypothese$F;},j =1,2...,N.

For each correspondence (data point), compute its Samp-
son error(r? )? with regard to each hypothesis.

For each correspondence, estimate its residual distri-
bution by constructing the histogram d¥ residuals
associated with it. The histogram is used to evaluate
whether the correspondence is an inlier or an outlier.
For C histograms, of residuals compute the value of
kurtosis 8, to characterize each of them. In this stage
each correspondence is represented by a point in the 1D
kurtosis space.

Use k-means clustering algorithm to cluster the data into
two groups, which are identified inliers and outliers or
simply rank the points by their kurtosis value.

left. Kurtosisg is the degree of peakedness of a distributior,
which in our case measures how outlier prone a distribution
is. Kurtosis is defined as:

Note that the proposed scheme doesn't need a prede-

fined threshold for inliers. The RANSAC schemes require a

T — )
5:M_ (5)

g

For the two histograms shown in Figure 1(a),(b), the kux;tosﬁj

thresholdT' to determine whether a data point is an inlier.
T is a sensitive parameter and can affect the performance
ramatically.

and skewness for the inlier histogram are 24.4 and 4.6, white Asymptotic running time analysis

for the outlier they are much smaller: 7.6 and 1.7 respdgtive Note the steps 3, 4, and 5 of Algorithm 1 require ex-
These characteristics capture the fact that the inliestogram 4 computation compared to standard RANSAC. Gién

of residuals has much stronger peak than that of an outletr agymples and” correspondences, constructing the histograms

can be used as feature for further classification.

3The number of outlier free samples obeys a binomial digiohuwith N
trials and the probability of success is the probabilityt thdample is outlier
free.

takes O(N x C) and computing the value of kurtosis for
each takeD(N x C) multiplications; k-means clustering in
one dimension is very efficient. Together, the computation
time these steps require is less than the second hypothesis



Mean of kurtosis (computed based on error distribution) for inliers and outliers, bounded by their 95% confidence ir
80

evaluation stage of standard RANSAC which requitdsv x

C') matrix multiplication. In our experiments the number ol - i

of samplesN was set to be 500. We have also evaluated % *T“H
the sensitivity of our method with respect to the number  * . Latervondctouers
of samples and obtained repeatable performance for varying =f

outlier ratio when the number of samples varied between 400
to 1000. Note that this is an improvement of an order of

magnitude compared to the work reported in [5]. Just for

comparison, the standard RANSAC requi®sV x C') matrix 20
multiplications to evaluate all hypotheses. Without knogvi
outlier percentage a-priori, number of samplédas to be set
conservatively, e.gM = 30000 to handle60% outliers [16].

Hence the presented approach is more efficient than standarc » o~ o 5 T - %
RANSAC, especially when the outlier ratio is high. recentees

Kurtosis value
N
]
T

w
38
T

e . Fig. 3. This figure shows how the kurtosis value changes wiffiereint
C. Justification based on synthetic data portion of outliers. Mean an®5% confidence interval of inliers’ kurtosis

We have shown in Section IV-A a conceptual example thate shown in red, mean aid % confidence interval of outliers’ kurtosis are
the inliers can be identified directly. In the following seet S"oWn in blue.
we will demonstrate the feasibility of our approach based on
synthetic experiments. 200 correspondences were gederate

by projecting random cloud of 200 3D points, placed 1008entually undistinguishable from the outlier’s histagrdt’s
units of focal length in front of the camera, with the deptthteresting to see to what extent our approach can tolerate
variation of 2000. The two views were related by genergytiers. We tried to study the separability of inliers frahe
motion of translation around x-axis and rotation aroun&ig-a yaia containing different percentage of outliers. The nemb
of the camera frame. All the correspondences are corrupgdniers is fixed to be 200 obtained by projecting 200 random
by Gaussian noise (standard deviation was 1 pixel). Anothgh noints into two widely separated views, while the number
200 random correspondences were uniformly distributed @ oytliers varies to obtain the desired outlier ratio. Fig3
the image plane, yielding an outlier ratio ef = 0.5. As jjystrates the changing kurtosis value. The motion and 3D
Figure 2(a) and Figure 2(b) show, the residual distribuifn  grycture are set the same as in Figure 1. We can see that
an inlier and outlier are rather different. In this case=(50%). the kurtosis value of outliers is always small, because they
Note that the residual distribution of an inlier is well pedk pave no significant peaks. The kurtosis of inliers is much
unimodal distribution, where the mode is close to 0. On thgyger at first, meaning their error distributions do haversy
other hand, the distribution of an outlier is more spread ogbaks. Then it decreases as more outliers are added, due to
and has multiple modes. the fact that the outliers are present in a larger number of
hypotheses, yielding more dispersed peaks of residualenWh
the fraction of outliers is less thar0.6, the mean of kurtosis
computed based on inliers is abd¥&% confidence interval of
that of outliers. Therefore, the kurtosis of a residualdgsam
associated with inliers and outliers are statisticallyfeddnt,
‘ and the inlier group obtained through k-means clustering
oo T T o T T s very unlikely to contain true outliers. When the outlier
() (b) (©) .
percentage increases further but no more than the mean
Fig. 2. Residual distribution for a true inlier (a) and a traetlier (b), Of inliers’ kurtosis is close to the upper bound of that of
e = 0.5, (c) kurtosis values of 400 residual distributions one factepoint, gytliers’. In this case, the inlier cluster obtained fronrmieans
z-axis corresponds to the point index am@xis to the corresponding kurtosis . . .
value. may contain some true outliers, but the percentage will be
much lower than in the original data. As we mentioned before,
Figure 2(c) shows kurtosis of all 400 data points (correspoan additional step of standard RANSAC on the group of
dences). For better visibility, the data are organized & 2i@lentified inliers can yield correct model parameters with a
inliers followed by 200 outliers, withx axis being the point small number of samples. When the outlier percentage grows
index. Note that the inliers and outliers have quite diffiere further to0.75, inliers and outliers become indistinguishable.
kurtosis. In this case we have achieved the true positive r&tigure depicts the separation of inliers and outliers in the
of 138/200 = 68% and false positive rat@/200 = 1%. skewness/kurtosis space as the outlier ratio increases. Th
The inlier identification performs fairly well with this hedy  settings for the experiment were the same as in Figure 1. This
contaminated data set. indicates that the proposed approach cannot tolerate ane t
As the percentage of outliers increases, it can be expect@d outliers. In theory the standard RANSAC does not have
that the peak of inliers’ residual histogram becomes lower asuch limitation as long as enough samples are evaluateda Whe




the outlier ratioe is too high, the required number of samples 2) Number of samplessSince the method uses all the

is so large that it's impractical to work with in practice. Ashypotheses, it is difficult to establish a bound on the num-
mentioned in Section 2, when= 0.7, the required number ber of samples related to a desired confidence as done in
of samples is on the order of a half million, which is tostandard RANSAC. We study this relationship in simulation
large. The proposed method has a similar working range foy measuring the separability of the inliers and outliers as
the outlier ratio in practice as the standard RANSAC, onéittha function of the number of samples. The Jeffries-Matusita
it is much more efficient. Note that the limitation is obtainedistance measure of separability is used to assess how well
based on the estimation of fundamental matrix, which reguirtwo classes may be separated. Assuming that the two classes
at least 7 data points. If the model to be estimated is simplean be represented by normal distributions witty;, C;) and

for instance affine model which requires only 3 data point§(y;, C;) the Jeffries-Matusita distance is computed as

to estimate, more outliers can be tolerated. The reasorats th
the required number of samples would decrease dramatically IMij = v/2(1 - e7®) 6

in this case based on the relationship in Equation 2. We Wilhere

demonstrate this using a simulated example of plane f|tt|ng(.y - l( T < 5 ) - .)+lln %ICi +0l

ST e ) TR viena

) Y : The Jeffries-Matusita distance has an upper bound of
‘;"' , S 1.414(v/2), and a lower bound of 0. When the calculated dis-

: | L tance has a value of the upper bound, the signatures cantbe sai
to be totally separable, while the signatures are inseparab
when the calculated distancelisWe experimented to see how
the number of samples affects the performance charaaterize
using JM distance. If outliers and inliers are totally seyde,
their JM distance would be 1.414. On the other hand, if they
are tangled together and inseparable, the distance would be

Fig. 4. Plots of kurtosis vs. skewness for different outercentage. ~ FOr a given outlier ratio, we ran 100 trials of the proposed

method and estimated the two clusters based on their ksrtosi

1) Plane fitting in 3D spaceFigure 5 shows 500 3D datameasure. Mean and standard deviation for both outliers and
points, where 100 points lie in a plane and are corrupted hbyiers were obtained in each run. Then we used the average of
Gaussian noises(= 1) and the remaining 400 outliers arethose means and standard deviations to compute JM distance
uniformly distributed in the space. 108 points are iderdifis for the particular number of samples. Figure 6 shows the
inliers only 10% of which are false positives. simulation for data with different outlier ratios. As showthe
separability improves when the number of samples increases
However, after 500 samples, the separability wouldn't iover
much as the number of samples increases.

In the case of lower outlier ratios smaller number of samples
is sufficient. However lowering the number of samples furthe
will affect the quality of the skewness and kurtosis estasat
Since we would like to have a method which works for a
range of outlier ratios we choose the number of samples which
has been shown in simulation (Figure 6) to provide a good
—T . & ) g separation of outliers and inliers for high outlier ratios.

(a) One view of the data. (b) Another view of the data. Additional simulations and experiments examining the ef-

sz fect of the number of outliers in each sample as well as
reliability of the method depending on the separation of two
residual distributions can be found in [17]. The presented
approach exploits the fact that even the hypotheses with
a small number of outliers contribute to the characteristic
kurtotic shape of inlier’s distribution.

V. EXPERIMENTS WITH REAL DATA

The proposed scheme was tested with real correspondences
sets obtained from a wide baseline matching experiments.
The putative correspondences were initiated by matching of
SIFT keypoints [4]. Two keypoints are matched when the
Fig. 5. Fitting 3D plane witr80% outliers. distance between the two SIFT keypoint descriptor is less

2 25 3 35 )
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(c) Plot of skewness vs. kurtosis cdfh- Inlier/Outlier identification result.
puted for all residual distributions.
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Number of samples Fig. 7. 750 correspondences are initiated with aro&0t outliers. 364

inliers are identified without false positive.

N

Fig. 6. The JM distance changes with the number of samplet that it
increases little after 500 samples. The graphs are plottedifferent outlier
ration Sigma = 0.4,0.5,0.6 and 0.7.

than some threshold. We ran extensive experiments with
correspondence sets containing different portion of ersli

We tested the method in urban environment using a wid™
baseline matching between two views In addition to a larg =

change of viewpoint between the views, these scenes contz \\\\\\s\\\
\ \

many repetitive structures, making the problem of finding co . &
respondences by means of matching local feature des®iptcg:
highly ambiguous. Our focus is on the inlier identification j
capability of the proposed scheme. The identified inliees ar
not refined with additional RANSAC, so they might still
contain few true outliers for severely contaminated data. se

When the percentage of outliers is low, our approach can
identify inliers and outliers directly almost without a mis
take. The low percentage of outliers can also be handled By. 8. 383 correspondences are initiated with approxiyate% outliers.
RANSAC without an excessive computational overhead é inliers are identified with only 1 false positive. Note tlirst left door in

. . . ' “the left image corresponds to second left door in the righegen
emphasize that our approach is suitable for correspondence

sets with a significant portion of outliers of more th&b{%.

Three examples are shown in Figures 8, 7 and 9. The identifigghrest labeled reference views and triangulate the atain
|nI|e_r sets include most of the true inliers with a very fe"bosition. The presented approach was used in a winning entry
outliers. in the contest and reported superior performance and effigie

It is known that the distance threshatdused for matching compared to other methods. The absolute computation time as
the SIFT keypoint descriptors affects the number of matchggell as accuracy of the localization method compared to the
Loose threshold results in many false correspondenceself ground truth can be found at [1].
threshold is set too tight, hardly any matches could be found
Our work suggest a straightforward way to handle this: set
a relatively loose threshold to obtain initial set of copes- In this paper we proposed a new inlier identification scheme
dences and apply the proposed scheme to identify the tfoe robust estimation problems. We have demonstrated that i
inliers. The presented approach was evaluated on the datacsm efficiently handle data sets containing significantllefe
of outdoors street level images used in ICCV Vision Contestitliers. Inliers can be identified directly without lookirior
provided at (http://research.microsoft.com/iccv20@gitest/). good hypothesis, thus avoiding the need for large number of
The goal of the contest was to compute GPS locations ofsamples, which is required for the standard RANSAC algo-
set of unlabeled images, given a set of views tagged with GH&im. In addition to the efficiency of the proposed apprgach
coordinates. This required, given a new unlabeled queny vieve have also eliminated the need for sensitive threshoétsel
to compute the pose of the camera with respect to the twon for the outlier identification as well as the need foropri

(a) identified inliers. (b) identified outliers.

VI. CONCLUSION AND FUTURE WORK
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[17]

(a) Pair of images.

(b) identified inliers.

Fig. 9. Two frames of the widely used Corridor sequence Qit&nd bt.006),
obtained from http://www.robots.ox.ac.uk/ vgg/data/.tl@u percentage is
over 50%. 134 inliers are identified with no false positive.

knowledge about the percentage of outliers. We would like
to emphasize that the proposed method is especially seitabl
for the data with a large number of outliers as demonstrated
in our application and often encountered in wide baseline
matching. The proposed scheme was tested extensively with
both synthetic and real data. We plan to refine the inlier
identification step in the future, by replacing the k-means
clustering by its probabilistic version and hence obtairtime
probability of being an inlier for each data point. We arenals
in the process of carrying out more extensive experiments
with different distributions of outliers, in order to asséee
generality of the presented method.
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