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Abstract— Inverse kinematics (IK) problems are important in  directly to the actuation of the joints, and thus become natural
the study of robotics and have found applications in other fields choices for linkage parameters. However, in general the end
such as structural biology. The conventional formulation of IK iqK configuration is a complicated function of joint parame-
in terms of joint parameters amounts to solving a system of - . - . .
nonlinear equations which is considered to be very hard for ters, especially when there are rot.atpnal joints in .the chain,
general chains, especially for those with many links. because the end effector configuration involves nonlinear func-

In this paper, we study IK for a serial chain with joints tions of trigonometric terms of joint angles. Consequently, the
under distance constraints, in particular, either a spatial chain |K problem of solving for the joint parameters in terms of

with spherical joints, or a planar chain with revolute joints (in 5 given end link configuration is considered to be very hard,
this paper we ignore other constraints such as joint limits and . . . .
especially for chains with many links.

link collision-free constraints, a common approach in studies : ) y . .
of inverse kinematics)l We present a new set of geometric IK haS been |ntenS|Ve|y Stud|ed N I’ObOtICS and mechar"cal

parameters, which are not joint angles, for such chains, and use a design. Here we have no room to do justice to the large
H?Vld approach ?Ct) fOme;]'?tﬁ the invefsetkine;natics as a _Sysiem body of relevant literature; references [3]-[15] include books
or linear Inequalities wnicnh IS an exact, not an approximate, H ini
formulation o? the IE problem. It follows that the IKpSroblem with chaptqrs on IK’. recent surveys, and papers con.talnlng
for such a chain with an arbitrary number of joints can be done representative FeChn,'queS as well f"‘s recent formulatlor!s of
efficiently in many ways. IK problems using distance constraints and vector equations.
Under our new formulation, the set of solutions for an IK In brief, prior work has provided two broad categories of
problem (as specified by the positions of the two end points of solution methods for IK problems, numerical and analytical
the last link), and more generally the set of solutions for all IK 4 closed form). Numerical methods may generate all possible
problems, is essentiallypiecewise convexOur approach can also - . g .
be generalized to other linkages such as those with prismatic solutions or Just ope for. an IK .problgm, t.hey are applicable
joints sandwiched between rotational joints and with multiple t0 general chains including chains with different numbers of
loops that have a tree decomposition of triangles. The efficient links and different types of joints, but normally they are slow,
algorithms and nice geometry entailed by piecewise convexity require small step sizes in computation, and provide little
considerably simplify IK related problems, including motion j,qignt on the solutions. Analytical methods have different
planning, in the systems under study, and thus broaden the class, .~ . . . .
of practical mechanisms at the disposal of robot designers. tralts.. they provu_:ie insights on the squuons and are fast with
the given analytical formula for the solutions, but generally
|. OVERVIEW new analytical solutions must be developed specifically for
Inverse kinematics (IK) is important in robotics and igach type of linkage. Most, if not all, industrial robots use
indispensable in the design, analysis, planning and conteslly mechanisms with known closed form IK solution [3]. It
of robot |inkage systems such as robotic hands, limbs a}ﬂ@Uld be desirable to find a method that combines traits from
humanoid robots. Given a serial chain and its end link cogach approach, one that is fast, can be applied to quite general
figuration, the IK problem is to find joint parameters thalinkages, and provides insight.
achieve the specified end link configuration. This arises inA good example of the state of the art is the theory oftRe
many robotics problems, such as multi-linked manipulatofganipulator, a spatial chain éflinks connected by revolute
and mobile robots, in which a linkage like a finger or leg need@ints. Using dialytical elimination, a method from algebraic
to touch an object with a certain pose. It has recently be8gometry, researchers have proved one of the most important
noted that some biological molecule structure problems [1K results: abR manipulator may have up ti6 IK solutions
[2] can also be formulated as IK problems and thus benef@ @ given end link configuration [9]-[11]. This leads to IK

from IK approaches and results. solutions for various related chains, such as those obtained by
) swapping out some revolute joints @R for prismatic joints.
A. Prior approaches But these successes have depended on researchers’ ingenious

Conventionally, IK problems are formulated with respect tdiscovery of special structures in the system of polynomials
joint parameters like linear displacements (for prismatic jointthat allow dialytical elimination.
or angles (for rotational joints). Such parameters correspondK for a serial chain is closely related to the study of closed



chain systems. For an IK problem, since the end link config- Py Byl
uration is specified we can supplement the real chain links NETTON

. . . .. . +* vJ"':I-):‘xQ
with a virtual link from the base joint to the last link of the S/ A
chain, thereby forming a closed chain in a loop configuration. L@:_.:(Oﬁ(o,J),u“f{é’

N Tri(0,))

In other words, the IK problem for a serial chain is essentially
equivalent to the problem of generating closure configurations
for a loop. Indeed, the intrinsic connection between these two
problems has been recognized and explored. For examp|§i,g. 1. Geometric Parameters: Diagonal Lengths and Dihedral Angles
the term “loop closure constraint” is used in both problems,

and earlier methods developed for closed chains generatgha joint angles of then j 3 short links. Thus for this type
loop configuration by breaking the loop into two serial subysf planar loop, given two closure configurations in the same
chains and then using random gradient descent [16] Ofcgnnected component, linear interpolation of thg 3 joint
combination of forward and inverse kinematics [17] to tMangles (with the usual identification of angle with 0) is a
to make these two sub-chains meet. The efficiency of theggid path: the closure configuration space for a planar chain
approaches decreases rapidly for chains with many links. \[@th revolute joints and3 long links, coordinatized by joint
address this issue, researchers have developed several C|O‘§1%ﬁas derived from the short links, is practically convex.
configuration generation methods that can be adapted to solvgyne problem not yet addressed in the aforementioned prior
the IK problem, such as the random loop generator [18] afghrk on chains with joints under distance constraints is how
iterative constraint relaxation [19], which have considerabiy generate the closure configuration of a closed chain, or
improved performance over earlier methods. equivalently, how to solve IK for a serial chain. A closure
In this paper, we study IK for a serial chain with rotationa¢onfiguration generation method [24] specifically designed
joints under distance constraints, in particular, a spatial chag} closed chains with spherical joints assumes that a clo-
with spherical joints or a planar chain with revolute jointssyre configuration is given and then generates more closure
We ignore other constraints such as joint angle limits and tegnfigurations by selecting a subchain of the closed loop
link collision-free constraint, a common approach in the studynq then flipping (rotating) it along the line connecting the
of inverse kinematics; also, for most of the paper we assumg, end-joints of that subchain. This simple algorithm works
the distances between adjacent joints are fixed, to model rigig |00ps with arbitrarily many chains. But it needs at least
links, although we later briefly describe the generalization ghe seed closure configuration to start the flipping process.
our approach to variable distances, which can be used to mofigk general closure configuration methods mentioned earlier
some prismatic joints. To simplify the discussion we will caltan certainly be applied. However, these methods still have
a planar serial chain with revolute joints a plananR chain difficulty with chains of many links, say ovet00; and, as

and a spatial serial chain with spherical joints a spatialS  ysual with numerical methods, they provide little insight on
chain. Note that these linkages can also be used to mogfd solution sets.

points under distance constraints in the plane and in space.

Prior work [20][23] on these systems, from the perspe& OuUr results
tives of closed chains and polygons, has described the topologyor our study of IK, we assume that the base joint is fixed
of the set of closure configurations, which is essentialgnd the positions of the two end points of the last link are
equivalent to the set of the solutions for an IK problem of given as the specification for an IK problem. In place of joint
serial chain (also called theelf-motion spack In particular, it angles, we use another equally geometric set of parameters
has been proved that the configuration space of a spatial ldop the chain. We will show a novel reformulation of the
with spherical joints, if not empty, has only one connectedop closure constraint obtained by breaking a loop into an
component, while the configuration space of a planar loop witlpen chain of triangles and using triangle inequalities. Our
revolute joints has either one or two connected componenpsrameters are not joint parameters; they consist of some
depending on the number of “long links” (a technical terminter-joint distances and some triangle orientation data. With
cf. [22]). Armed with the knowledge of the global structur@ur parameters, the loop closure constraint can be formulated,
of the configuration space, researchers [20], [22] have alsractly not approximately, as a setliofear inequalities It will
developed polynomial time complete planners that guarantedow that the IK problem for an arbitrary number of joints
to generate a path between two closure configurations in tfegluces to solving linear inequalities, which can be efficiently
same connected component; the generated path satisfiesdtivee in many ways including linear programming.
closure constraints but may involve link crossing (collision) Specifically, let*IK be the set of solutions for an IK
and violation of joint angle limits. In their recent work, Trinkleproblem of a given serial chain with rotational joints under
and Milgram [22], [23] proved, using joint angle parameterslistance constraints ama rigid links of specified lengths in
that the configuration space of a closed chain with generic liskace kK = 3) or the plane K = 2). We can choose an
lengths is a manifold. More specifically, for a planar loop witlrbitrary joint of the chain to be aanchor, in this paper,
n links having 3 long links, the closure configuration spaceve use the base joint as the anchor. In general we will call
is a pair of (n j 3)-dimensional tori each coordinatized byan object “anchored” if it includes the anchor joint. Draw the




anchored diagonals from the anchor to other joints. As shown
in Fig. 1, these diagonals, along with the links, partition the
loop into an open chain of triangles, with the configuration

of the last triangle known for each given IK problem. In a
sense, our new parameters are these anchored triangles them-
selves. We will extract more conventional parameters from o 10 20 30

thgse tr_iangles including Qiagonal length€) and .triangle (@) IKStretch for a planar (b) Some IK solutions for a
orientation parameters (dihedral angles for spatial and 6R chain or a spatiaéS chain planar6R chain

planarnR chains, or orientation signs for planaR chains) o

. tion 1. We will show that our new parameters (anchor Fig. 2. IK examples for &-bar chain with link lengthg§11; 12; 13; 14; 20; 8)

'r! sec : . . P ) d distance@3 and21:6 from base joint to last joint and tip of the chain.

diagonal lengths, anchored triangle orientation parameters) @ie dashed-dot lines in (b) and in later figures are the diagonals from the

indeed coordinates for the set of &K solutions not having base joint to the endpoints of the last link, which are known and fixed for
. . .each IK problem.

any degenerateanchored triangles. Note that a triangle i§ach 1 problem

degenerate when its three vertices are collinear. We will brieg

.
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ovides. The IK problem for a serial chain wiglinks has

&Il known solutions: the IK problem, if not infeasible, has
. S _ ) two solutions for a plana8R chain (one elbow-up, the other
We will explain in section Il that the anchored triangl&, i, gown), and a circle of solutions (free rotations around

orientation parameters are independent of the loop clos%r%ne of the joint with unspecified position) for a spatas
constraints. We will formulate the loop closure constrain@mﬂin Our new approach recovers these results

as a set of linear inequalities in diagonal leng#{8) and For a planar6R chain with generic link lengths, our

show that the set of all diagonal lengths feasible for thz?pproach constructs the IK solution set fraté copies of

solutions of a givenl K problem is a readily computable ;'3 yimensional convex polyhedrénFig. 2(a) shows theé-
convex polyhedroKsStretch(0) that is non-empty if and only g ensional convex polyhedrohk Stretch(0) for the 6-bar

. k . - .
if “1Kis. Using our new pargmetersl and the new formulauqR problem specified in the caption. Fig. 2(b) shows some IK
of the loop closure constraints, with proper treatments biutions for a plana8R chain, with the base joint at the origin

singulqr con_figuration_sz, théI_K of a planarnR chain is  5hq the two joints of the end link at the positions specified
essentially tiled by2"i< copies of the convex polyhedronfor some IK problem

IKStretch(0) joined into one connected component or two via Our linear inequality formulation of IK problems for a chain

proper boundary identification, making it piecewise convex i, rotational joints under distance constraints allows efficient

a very trgctable sense; and tHEK. of a spat?alns chain computation of IK solutions for chains of this class of arbitrar-
is essentially the product of a high-dimensional torus a many joints. In addition to linear programming, we have

the convex polyhedrohKStretch (0), making it what we call developed a suite of methods [25] for solving IK problems,

“practically convex” since a torus is easily cut open into 8,0 oytperforming linear programming. For example, one
cube, which is convex. (We use the word “essentially” hetg o, phest generators, which we call the diagonal sweeping
because a certain lower-dimensional subset kf solutions, method, can generate one set of diagonal lengths for an IK
namely that of the “super-singular” ones, to be defined latgj, o for o loop of 1000 links in 19 milliseconds in Matlab

dqes need some sextra Carg_) To simplify our description, W& 5 desktop computer. This one set of diagonal lengths can
will say that both®I K and “IK parameterized by our newy, \seq 1o generate®® related IK solutions for a planar

parameters are piecewise convex, bearing in mind thatltke chain, or be combined with 88-dimensional torus(S1)%%,

has only one piece and involves a torus factor space. to generate a family of related IK solutions for a spatial chain.

Although we cannot give det.ails hgre, it V‘,’i" become'cleafl_cig_ 3(a) shows some IK solutions for a spati@D0S chain.
that our parameters and the linear inequality formulation Of_ Our new formulation and results for IK problems of chains

the loop closure constraint can easily be generalized to a chgjg, (orational joints under distance constraints have profound
with pnsmanc joints .sandW|ched betwgen rotational 10|_nts urﬁhplications for such systems. As is well known in robotics,
der @stance constraints, and to some linkage systgms 'nVO,IVQ&tem designers gain important insight from knowledge of IK
.mulktllple Ipops.f F;]thherlmpre, the sfet Of”a" IK S%Ft'ons’fv"h'ﬁ@olutions and their dependence on the underlying parameters.
Is the unlondo t edso_ utlo_r|1| sgts or a IK problems, for t %’artly due to the importance of IK problems in robotics and
systems under study is still piecewise convex. the lack of general solving strategies, mechanisms used in the
C. Discussion design of robots have generally tended to be those known
O : 0 have analytical IK solutions. The nice geometry of the
A few examples will highlight the connection between ourhé solutions Zf blanamR and spatialnS chgains ar¥d the

work and prior results, as well as the new insights our wo . - . . : . :
P g resulting efficient algorithms, will provide robot designers with

describe how to generalize our new parameters to han
singular K solutions!

1A configuration that is singular in the traditional sense but includes no
degeneratanchoredtriangle poses no problems for our new parametrization, 2Note that the class of systems studied here does not contain what is
so for our purposes it is non-singular. We will discuss the role of anchoommonly called &R chain, in which6 links are connected by revolute
choice in future papers. joints in space rather than in the plane.



model, each link is represented by two points at its ends. For a
general rigid link, two points may not be enough to specify the
link configuration—for instance, if the link is not symmetric
about the line passing through its endpoints. Nevertheless, we
adopt this formulation since it still captures the essence and
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00 0 R R R complexity of the IK problem.
(@) Some IK solutions for a (b) Manipulation path of two fin- qu the_ IK prOblem’ a r_eference frame IS given an_d_ the
spatial1000S chain gers, each being &S chain configuration of the first joint and the last link is specified;

the problem is to find joint variables achieving the required
end link configuration. Conventionally, a local frame of the last
link needs to be defined and its relative position and orientation
\tvith respect to the reference frame, which can be described
y a rigid body transformation matrix i8E(k), are used to
escribe the last link configuration. In this paper, instead of

of the linkage system such as path planning and manipulati i,r]ectly using a transformation matrix, we use the positions of
planning, which is a great benefit on its own and further mak e last two point$’n andPn ;1 as the specified valqes for. a
the system more appealing for robot design. Essentially, fodyen IK problem. These two value_s ShO.UId be easily de_zrlved
spatialnS chain and two points on its self-motion manifoldfrom the local fram_e of t_he last link, SINce a conventlo_nal
linear interpolation between our parameter values of the t\m)cal frame for th? I'r!k W!" have the origin at one endpoint
points stays on the manifold: this need not be the case Wﬂﬁd one of the axis _dlrect|ons as thg I|n.k_d|rect|on. In the rest
the joint angle parameters. Fig. 3(a) actually shows a lineRr this baper, we V_V'” refer to the f|r§t joir®o and the last
path between two solutions (with different diagonal Iengtht¥V0 endpo_mtsffn.il,_Pn as the end joints of our chain. .
and triangle orientations) for or00S chain IK problem. A spherlcgl jointi can be_ para_me.terlzed by_two .spherlcal
Fig. 3(b) shows a manipulation path of a block graspe gles, sayfi; andfli, with fi; 2 (i .;..], fli 2 (i .=2;..=2].

by two fingers (of different colors), each a spatt@ chain. rte\_/otl_uteﬂ]_omt cdar_1 be par:a”?e‘ff'z_ef tfly, or e%l\j!;/ﬁlently,
Even with the fingertips changing their positions during theSrictingtly used in a spherica’ jomnt to zero. With our no-
tion, the conventional formulation of an IK problem respect

manipulation process, we can still use the linear interpolati Aior ¢ I be d ived as foll
of the new linkage parameters and the object configurations grloint angies can be described as Toflows.

Fig. 3. IK related examples for spatialS chains

a broader class of practical mechanisms.

In particular, the piecewise convexity of an IK solution s
and, more strikingly, the piecewise convexity of the set of a
IK solutions, considerably simplify the kinematics problem

the two given configu_ratio_ns to find_a path fqrthe system, since K : (Pg;Pn;1;Pn;l) ¥ (fis;fli;i=0;:::;n § 1) (1)
the set of all IK solutions is piecewise practically convex. Path  _ ) )
planning for planamR chains is a little more involved thanHerel = (lo;:::;1n;1) is then-tuple of link lengths. Clearly,

for spatialnS chains, since their configuration spaces are mofi€ joint angles of the last link can easily be computed from
complicated. Fig. 2(b) actually pictures a linear path betwed two endpoint positions; the main difficulty of the inverse
two IK solutions in a single copy dKStretch (0); the validity klnem_atlcs I|es_ in computing the joint angles of the subchain
of this path is guaranteed by the convexityl fStretch(0). To  from link 0 to link n j 2.

join two IK solutions not on the same copy bKStretch(0) For the development of our parameters, we note that the
of 21K for a planarnR chain, we need to find critical IK problem can also be formulated in terms of joint posi-
intermediate singular configurations that can connect the stéfS- This is because with all joint positions computed, it is
and goal copies possibly via some other copies; again, effici§f@ightforward to obtain joint angles.

algorithms like linear programming_and diagonal_sweeping IK: (Po;PnsiiPmiD) ¥ (Pi=1:::ni2) (2
can be used to compute these critical configurations. Thus,

as shown in our paper [26] motion planning for plam®R Conversely, as shown in this section, a given set of our

chains can also be efficiently done. parameters taken together with the given end joint positions
can be used to uniquely determine all joint positions. In
Il. NEW PARAMETERS other words, the following function is well defined for our
A. Problem formulation parameters, temporarily denot®@ram.
Consider a serial chain consisting rfrigid links with link f:(Po;Pn;1;Pn;l;Param) ¥ (Pi;i=1;:::5n  2):
lengthsl; > 0;j =0;:::;n j 1, connected by spherical joints

§rection [Il addresses how to solve inverse kinematics problems

(for a chain in three-dimensional space) or revolute joints (f
Wth respect to our parameters,

a chain in the plane). Denote the end points of the links

the chain, including the joints and the tip of the last link, by IK : (Po;Pnj1;Pn;T) ¥ Param:
Pj;j = 0;:::;n. With a slight abuse of notation, we will also ) ) ) . o
write P; for the coordinate of the poir®;. B. Serial spatial chains with spherical joints: new parameters

For this paper, we assume that a chain configuration isFor a given serial chain with a fixed base amdinks, use
completely specified by its joint positions. In such a systethe base (joinD) as the anchor joint and draw the diagonals



from the anchor to other.joimﬁj;.j =1;2;:::15n, as shown |nput: Po; Pn; 1; P; T; T(0); 7(0)

in Fig. 1. Note that genuinely “diagonal” vectors corresponQutput:Pj;j =1;:::;n j 2

toj =2;:::;n; for j = 1, we get link0 that is incident on the Algorithm: _

anchor joint. It will become clear soon that treating this link- diag(0; n) = normalize(Pn i Po)

also as a diagonal simplifies our description. The diagonals a%odlag(o;_n i i) = normalize (Pn il Po) '

chain links definen j 1 triangles all sharing the anchor joint; ai' :L(PJ ”_'nlz 5 tr:)onimallze(dlag (0:n i 1) £ diag(0: m))
. . L. : . - 1

configuration of the chain is callesingular for that anchor in n(0; j) = Rot(diag(0; j + 1); i ¢(0:))NO; b+ 1)

case one or more of these triangles is degeneiratereduces ] P20 )+ r2(0j +1) i I2

to g.line_ segm_ein. [?ent_)te the vector.from the anchor_jOintG- ﬁj) = acos 2010 )10 ] + 1)J

to joint j by di'a@J(O;_J) G =1:::n), its length byr(0:4), 7. diag(0;j) = Rot(n(0;j); i (0;§))diag(0;j + 1)

and its cor_respor_ldlng unit dl_rectlo_nal vector Biag(0;j). 8. P;j =Py + r(0;j)diag(0;j)

Of coursediag(0;j) is not defined in case(0;j) = 0, but 9. endfor

coincident with the anchor, which is a special type of singular Fig. 4. Algorithm for Computing Joint Positions of a Spatial Chain

configuration that we calsuper-singular In this paper, we i o , )
focus on non-singularK solutions, which form an open dense Our algorithm computes the joint coordinates incrementally
subset of the whold K solution set. and is given in Fig. 4. The first three lines in the algorithm

Each pair of adjacent non-degenerate triangles defines G@npute the diagonal and normal vectors of the last triangle.

angle, called a dihedral angle, that reflects the relative orieh?e"n the loop between lines four and nine computes the joint

tation of the triangle pair. Denote the triangle formed by th@ositions, starting at the one closest to the last triangle (which

anchor joint and consecutive endpoijtandj+1 by Tri(0;j) 'S ointn i 2) and moving down to joint, with each execution
(i=1:::::n i 1), and its unit normal by of a loop determining one joint position. Inside the loop,

oy u line 5 computes the normal of a current triangle, which is

n(0;j) = normalize(dfa'g(o;j) £di'a'g 0;j + 1)) adjacent to the most recently determined triangle. Note that

the current triangle shares a diagonal, and thus two joints,

(where £ is vector cross product). Define the dihedral anglgith its known neighbor, and thus has only one unknown
between consecutive triangl@si (0; j) andTri(0; j+1) to be joint position and one unknown diagonal vector. Line 6 uses
the angle for rotatingi(0; j) to n(0; j + 1) about their shared the law of cosines to determine the angle between the two
diagonaldiag(0; j + 1), and denote it (0; j). Thus diagonals of the current triangle. Line 7 computes the direction

. . e of the unknown diagonal vector of the current triangle, and

n(0;j + 1) = Rot(diag(0; j + 1); ¢ (0; ))N(0; j); line 8 uses the computed diagonal direction and given diagonal
J=Lnng2 (3) length to compute the joint position.

The algorithm must be modified to handle singular configu-
rations. If a configuration is singular but not super-singular—
that is, if at least one triangle is degenerate but no diagonal
has lengttD—then the modification is simple. Although there
is no natural way to select any particular unit vector to
Elay the role ofn(0; J) at the corresponding “singular step”
in our algorithm, any unit vector in the well-defined plane
Erpendicular to all sides of the degenerate triangle can serve

where Rot (diag(0; j + 1);¢(0;j)) is the matrix representing
rotation about the unit diagonal vectdrag(0; j + 1) by the
angle¢ (0;]).

For the IK problem, the last two diagonal lengt(®; n j 1)
and r(0; n), and the orientation of the last triangle, can b
computed from the given endpoint positi®q; Pn;1; Pn. SO
there aren j 3 unknown diagonal lengths amdj 2 unknown
dihedral angles, which we can group together into colu
vectors. Our new parameters for the IK problem (defined wi

respect to the anchd are (r(0); ¢(0)), wherer(0) is the set random in caselri(0;n j 1) is degenerate. Super-singular

of diagonal lengths (well defined everywhere 6hK), and configurations have even greater indeterminacy and require

¢(0) is the set of dihedral angles (well defined on non-singul%me other parameters, which will be described in our future

n(0;j). In practice, we can make a definite choice by
ttingn(0;j) = n(0;j + 1), and choosingn(0;n § 1) at

configurations). papers. Singular and super-singular configurations play an
FO) = [r(0;2):::::r(©0:n i 2)] important role in using our parameters to reconstruct the global
70 = L1600 2 @ topological structure of the configuration space, especially for

planarnR chains as shown in paper [26].

As stated earlier, we will show in the next section how t
compute these parameters for a given set of end joint positio
Here we assume that we have a set of diagonal lengths an&or a planar chain, we define the same set of anchored
dihedral angles for a given set of end joint positions, and veagonals and triangles as for a spatial chain, and use the
will show how to compute other joint positions. anchored diagonal lengtii¢0) as part of the parameters. Since
7 all triangles of a planar chain are in one plane, each dihedral
f:(Po;Pnj1i P 57(0):0(0)) T (Pjsd = 1;:::in i 2) (5)  angle—if well defined—can be only 0 or, depending on

%s Serial planar chains with revolute joints: new parameters



ig of the anchor0, explicitly by writing 31 K (0) for the set of
10 all IK solutions for a spatial chain antl K(0) for a planar
5 chain, parameterized by our new parameters anchored at the
0 base joint. Our task is to compute the possibly empty sets
5
-10 3Iﬁ(O) = f(r(0); ¢(0)) j T(0) andz(0) reach the
0 10 20 30 0 10 20 specified end joint positian  (8)
(a) Planar6R chain: via a singular (b) Spatial6S chain : via 2I-ﬁ(O) = f(r(0);s(0)) j T(0) ands(0) reach the
configuration (light gray) flipping

specified end joint positian (9)
Fig. 5. Changing one triangle orientation (black to dark gray) . .
attained by our parameter values on the set of solutions where

whether the two triangles between which the angle lies haley can be defined.
the same or opposite orientations. Therefore, a straightforwardNote that by drawing a diagonal from the base joint to the
adaptation of the spatial chain parameters to planar chains i€l joint, we define a virtually closed chain such that solving
use the same set of paramet®(8); ¢ (0), taking note that each the IK problem is equivalent to generating chain parameters
dihedral angle is eithed or ... An alternative representation ofthat can keep the chain closed and place the end points at the
triangle orientations is by direction signs of triangle normals. fPecified positions. In other words, we need to find the set of
we consider our planar chain to lie in thOY plane in space, chain parameters that satisfy thwp closure constraintsie
then all points of the chain have zer®)  coordinates, and further note that by drawing the diagonals from the base joint
all normals of the non-singular triangles are in theirection, to all other joints, wedecompose the closed chain into a chain
either positive or negative. Therefore, we can use the positRetriangleswith the last triangle completely known from the
(+) and negative {) signs to represent the orientations ofverse kinematics specification.
these triangles. We will define the orientation sign of a singulgr
anchored triangle to beé. '
The discrete dihedral angle values and orientation signs aréUr first observation is that the triangle orientations are
equivalent parameters for the anchored triangle orientatiofftdependent of the loop closure constraints. In fact, given
and each set can be changed to the other easily. HowegerSpatial loop configuration, changing one dihedral angle
they have different characteristics and may be suitable f§r €quivalent to flipping part of the serial chain about the
different types of problems. In particular, the orientation siggPrresponding diagonal vector while keeping the other part
parameters are particularly convenient for determining if afixed, as shown in Fig. 5(b). Similarly, changing the orientation
two given configurations have opposite orientations in arj}gn of a non-singular anchored triangle amounts to flipping
of their anchored triangles. In the plane, change of triangd®€ side of the triangle to the other, as shown in Fig. 5(a).
orientations (such as the two drawn in in Fig. 5(a), whicklearly flipping one or more anchored triangles can lead to
differ in only one triangle orientation, black versus dark graydifferent configurations, and yet maintains the link lengths,
must go through singular configurations of the triangle (liké¢ anchored diagonal lengths and the loop closure.
the one in light gray—see [26] for more details). But in space, Therefore, the diagonal lengths and the triangle orientation
changing triangle orientation is much easier since we can jR&rameters (dihedral angles or orientation signs as applica-
flip that triangle (Fig. 5(b)). Henceforth, we use orientatioRl€) are uncoupled; and the loop closure constraints pose
signs in this paper for planar chain triangle orientations.  NO restrictions on feasible values of the anchored triangle
Denote the orientation sign afri(0; j) by s(0; j). For the orientations. More specifically, for a spatia$ chain, each of
IK problem, the orientation of the last triangle can be conits anchored dihedral angles can be any valdgin; ], which
puted from the specified end joint positions. The orientatidifn be identified with a flat circle obtained by identifying the
signs of all unknown triangles will be grouped into a columgndpoints of an interval of length..; for a planamR chain,

vector and referred to &0) in the rest of the paper. each of the orientation signs for its non-singular anchored
triangles can indeed be any valuefifr; jg.

The sets of parameterg0) andz(0)/s(0) are uncoupled

5(0) =[s(0;1) ¢ttt s(0;n § 2)) (6) o
s e s A . B. The set of all feasible diagonal length values
S(O,J)2f+,|,og,1—l,...,n|2 (7) .
_ ~ Now that we have uncoupled the diagonal length parameters
The planar counterpart of algorithm 4 for computing joinfrom the triangle orientation parameters, we formulate the
positions from end joint positions and our parameters use®sure constraints on the diagonal lengths. As described
ideas similar to those used for the spatial case. It is considerlier, by drawing diagonals from the base joint to the joints
ably simpler and is not included here due to space limit. not adjacent to it, we defina j 1 triangles, with links and
diagonals as triangle sides. The last triangle is completely
known for any given case of IK problems. It is conceivable
In this section we describe how to compute IK solutionthat an inappropriate value of a diagonal length may make the
in terms of our new parameters. We now indicate the indelkagonal too long or too short to form a triangle and thus may
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not be part of the IK solutiorOur second observationis that means that none of the anchored triangles can be singular for

for a given set of diagonal lengths, the loop closure constraihie given diagonal lengths. In fadint(IKStretch(0)) is the

can be satisfied if and only if they can form allj 2 unknown set of allT(0)’s leading to non-singularK solutions. Taking

triangles with the links. From basic plane geometry, we knoaur two observations together, we can write the set of all non-

that a set of three non-negative numb#E 12; 13g can serve singularl K solutions as the product of the two factor spaces

as the side lengths of a (possibly degenerate) triangle if aasl follows.

only if no side length is strictly greater than the sum of the . .

other two side lengths. In other wordd]; 12; 13g must satisfy “TRN'S (0) = Int(IKStretch(0)) £ “IKFlip(0) (14)

where KIKFlip(0) is the set of feasible triangle orienta-

tion parameter values, witRIKFlip(0) = [j..;..]"12 and

Furthermore, the triangle is non-degenerate if and only if £IKFlip(0) = f+; jgni2.

three inequalities are strict. Using these triangle inequalities,?IKFlip(0) is a high-dimensional torus, which can be easily

we can explicitly write out the loop constraints in terms ofut open into a cube and thus can be viewed as practically con-

the lengths of the links and diagonals in the compact matnex. Therefore2IRKNS (0) is practically convex. We describe

format this situation succinctly by saying thai K is practically
Tr(0) = b(0); (11) convex our parameters give a one-to-one correspondence

o i . between its open dense subset of non-singular configurations
wherer(0) is the vector of diagonal lengthis(0) is the vector 44 the convex sent(IKStretcho) £ [ ..;

: : X - .;.]"12. Of course
of terms on the right hand side, and 8 i 8) £(n i 3) 2)KF)ip(0) is not convex (except for the trivial case= 2),

matrix T has one row for each inequality in the foIIowingbut the productnt(IKStretch(0)) £21KFlip(0) = 2IRNS (0)

le2+13; 12« 13+11; I3=11+12 (20)

system. is the union of2"i2 pairwise disjoint copies of the convex
r(0;2) = lo+ 11 polyhedron Int(IKStretch(0)), and our parameters identify
ir@02) = ijloghi the open, dense, generally disconnected set of non-singular
r:j) i r@j+1) = | = configurations irfl1K. We say thaf I K is piecewise convek
iFO:j)+r(0:j+1) - i 2ejeni3 (12) We summarize our results in the following theorems.
ir5y)+ril S Theorem 1: Given a spatial closed chain of rigid links
ir@irG+1) = ilj- connected by spherical joints and the positions of its base point
roni2 = H'niz + jPoPn; 1]H Po and the endpoints of the last lifik, ; 1; P, the sef 1K (0)
irOGni2) = §illh;2ijPoPnjii of IK solutions with respect to the parameter set of diagonal

' : . : . . lengths and dihedral angles, if not empty, is practically convex.
The first and last two lines in (12) are inequalities for the fII’S? Theorem 2: Given a planar closed chain of rigid links

and last unknown triangle§ri(0; 1) and Tri(0;n i 2), and connected by revolute joints and the positions of its base

JPoPn;1] is the length of the virtual link fronPo 10 Pn ;1. point Py and the endpoints of the last lifk,; 1; P, the set

Each of these two triangles has two links and one diagonal . .
its sides. The middle three lines in (12) are for intermedia%aﬁqo) of IK solutions with respect to the parameter set of

oeTagonaI lengths and triangle orientation signs, if not empty,
is piecewise convex.

While we have no space to give details in this paper, we
can prove that the anchor and the corresponding parameters
determine astratification of KIK in a sense familiar from

IKStretch(0) = fF(0) j TF(0) = b(0)g: (13) topology and algebraic geometry—that is, a decomposition of
) ) . KIK into finitely many smooth connected pairwise disjoint
Note that all constraints on the diagonal vectors latear manifolds, itsstrata, of various dimensions (see,g, [27]).

inequalitiesand each one defines a closed half space. Thidgfer to paper [26] for the stratification of the self-motion
IKStretcho is the intersection of half-spaces; by convexitgpace of a plananR loop.

theory, it is a convex polytope. Moreover, it is easy to see

that, for a given set of positive link lengths, the lengths of IV. GENERALIZATIONS OF OUR APPROACH

all diagonal vectors are bounded between zero and the sun®ur parameters can be generalized to other type of chains
of all link lengths, which are all encoded in the trianglend IK problems. For example, all link lengths and the end-
inequality constraints. So—again by convexity theory—w-end distancejPoPn;1j) in our formulation of the inequal-
conclude thatlKStretchg is a convex polyhedranpossibly ities (12) are assumed to be fixed. If we allow some link
empty, of dimensiom j 3 (for generic link lengths) or less. length, sayly, to lie in an intervall,;Ix], we can augment
our parameters with this link length variable and introduce

and two diagonals as its sides.
Denote the side of all feasibler(0) values to be
IKStretch(0), we have

C. The convexity of 1K

Note that any poinf(O) in Int(IKStretch (0)), the interior _ SWe will descri_be the strata d’f_l K in all dimensions in future papers,
f IKStretch (0) satisfies all trianale inequalities in (12) N using parameters like t_hose described here bu‘t somewhat more complicated,
0 ) g q %artlcularly for super-singular strata. Then, guided by the face structure of

strict inequalities without achieve equality in any of them. Thie<Stretch, we reconstruct the global topology b1 K from its strata.



the additional constrairlf, = I = Ik, which is still linear and
keeps the augmentddStretch convex. The changing length (1
of a link can be used to model a prismatic joint.

For a chain with rotatable joints and a fixed base, W?Z]
know that the workspace,e. the set of reachable positions,
of its tip (and any point on the chain) is a spherical shell
in general, which means that the end-to-end distgRg€,j [
has a range. So we can use a similar idea to augment oyf
parameters with those for the last anchored triangle along with
a range constraint ofPoP,j. Then the resulting augmented [
IKStretch and I K include the solutions foall IK problems
of the chain. Note thathe augmentedKStretch is still a
convex polyhedrgnandthe augmented set of the solutions of
all 1K problems still has convexity properties similar to those[s]
of the solution set of a singlEK problem.

Our approach can also be generalized to more complicatédl
kinematic structures such as those involving multiple loops.
Our decomposition of one loop into a serial chain of triangleg]
which allows us to decouple the parameters and to formulate
the loop closure constraint as a set of triangle inequality Cof)
straints, generalizes to multiple loops that can be decomposed
into a tree of triangles, carrying with it our parameters d&2l
presented in this paper. More substantial work will be need q]
for loops without a tree decomposition and with other joint
types, as well as to incorporate other constraints such as joif
limits and collision avoidance.

(7]

V. SUMMARY (15]

Inverse kinematics is a fundamental problem in roboticE.8]
The conventional formulation of IK in terms of joint parame-
ters amounts to solving a set of nonlinear equations, a problgm
for which there is no general analytical solution. Partly due
to the importance of IK problems in robotics and the lac
of general solving strategies, designs for new robots tend to
be limited to developments and combinations of mechanisms
with known analytical IK solutions. [19

In this paper, we present a new set of geometric parameters,
namely anchored diagonal lengths and triangle orientations, f&¥
solving the inverse kinematics of a serial chain with spherical
joints in space or revolute joints in the plane. Formulated jpy)
our parameters, IK is a set of linear inequalities and can be ef-
ficiently solved in many ways [25] such as linear programmihth]
and diagonal sweeping. We also show that for a serial chain
with rotational joints under distance constraints the solution set
of an IK problem, if not empty, is practically convex. Indeed?®
it is a pleasant surprise that the inverse kinematics for a chain
with all rotational joints like a plananR chain and a spatial [24]
nS chain can be formulated as a set of linear inequalities. As
briefly outlined in the paper, our approaches can be generalizgg
to other linkage systems, which broadens the class of practical

mechanisms at the disposal of robot designers. [26]

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their helpfaf]
comments.

REFERENCES

H. van den Bedem, I. Lotan, J. Latombe, and A. M. Deacon, “Real-
space protein-model completion: an inverse-kinematics approActy’
Crystallographica vol. D61, pp. 2-13, 2005.

R. Kolodny, L. Guibas, M. Levitt, and P. Koehl, “Inverse kinematics in
biology: The protein loop closure problenirit. J. Robot. Resvol. 24,
no. 2-3, pp. 151-163, 2005.

J. J. Craig, Introduction to Robotics: Mechanics and Control, 2nd
Edition. Reading, MA: Addison-Wesley Publishing Company, 1989.
R. M. Murray, Z. Li, and S. S. SastrA Mathematical Introduction to
Robotic Manipulation Boca Raton, FL: CRC Press, 1994.

J.-P. Merlet,Parallel Robots Springer, 2000.

] M. Mason,Mechanics of Robotic ManipulationThe MIT Press, 2001.

D. Pieper and B. Roth, “The kinematics of manipulators under computer
control,” in Proceedings of the Second International Congress on the
Theory of Machines and Mechanisni969, pp. 159-169.

C. Lee and M. Ziegler, “Geometric approach in solving inverse kinemat-
ics of PUMA robots,”"IEEE Transactions on Aerospace and Electronic
Systemsvol. AES-20, no. 6, November, 1984.

H. Lee and C. Liang, “A new vector theory for the analysis of spatial
mechanisms,Mechanisms and Machine Thepwpl. 23, no. 3, pp. 209—
217, 1988.

M. Raghavan and B. Roth, “Inverse kinematics of the general 6r
manipulator and related linkages)’ Mechanical Designvol. 115, pp.
502-508, 1993.

D. Manocha and J. Canny, “Efficient inverse kinematics for general 6R
manipulators,1EEE Trans. Robot. Automatol. 10, pp. 648-657, 1994.

J. Nielsen and B. Roth, “On the kinematic analysis of robotic mecha-
nisms,” Int. J. Robot. Resvol. 18, no. 12, pp. 1147-1160, 1999.

J.-P. Merlet, “Still a long way to go on the road for parallel mechanisms,”
in ASME 27th Biennial Mechanisms and Robotics C&G02.

J. Porta, L. Ros, and F. Thomas, “Inverse kinematics by distance
matrix completion,” Proc. International Workshop on Computational
Kinematics 2005.

——, “Multiple-loop position analysis via iterated linear programming,”
Robotics: Science and Systeraf06.

S. LaValle, J. Yakey, and L. Kavraki, “A probabilistic roadmap approach
for systems with closed kinematic chains,” Rroc. IEEE Int. Conf.
Robot. Autom(ICRA), 1999.

L. Han and N. M. Amato, “A kinematics-based probabilistic roadmap
method for closed chain systems,” Klgorithmic and Computational
Robotics — New Direction@NVAFR 2000, 2000, pp. 233-246.

J. Cortes, T. Simeon, and J. Laumond, “A random loop generator for
planning the motions of closed kinematic chains using PRM methods,”
in Proc. IEEE Int. Conf. Robot. AutonilCRA), 2002.

] O. B. Bayazit, D. Xie, and N. M. Amato, “Iterative relaxation of

constraints: A framework for improving automated motion planning,”
in Proc. IEEE Int. Conf. Robot. AutonilCRA), 2005.

W. Lenhart and S. Whitesides, “Reconfiguring closed polygon chains in
euclidean d-spacepPiscrete and Computational Geometmol. 13, pp.
123-140, 1995.

M. Kapovich and J. Millson, “On the moduli spaces of polygons in
the euclidean plane,Journal of Differential Geometrypp. 42:133-164,
1995.

J. Trinkle and R. Milgram, “Complete path planning for closed kinematic
chains with spherical jointsfht. J. Robot. Resvol. 21, no. 9, pp. 773—
789, 2002.

] R. Milgram and J. Trinkle, “The geometry of configuration spaces for

closed chains in two and three dimensiortddmology Homotopy and
Applications 2002.

L. Han, “Hybrid probabilistic roadmap - Monte Carlo motion planning
for closed chain systems with spherical joints,’Rroc. IEEE Int. Conf.
Robot. Autom(ICRA), 2004.

L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin, “The inverse
kinematics of a serial chain with spherical joints, part ii: Efficient solving
methods,” 2007, submitted.

——, “Stratified configuration space and path planning for a planar
closed chain with revolute joints,” iRroc. Seventh International Work-
shop on Algorithmic Foundation of RoboticZ006.

M. Goresky and R. MacphersoStratified Morse Theory New York,
Springer Verlag, 1988.



