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Abstract— Inverse kinematics (IK) problems are important in
the study of robotics and have found applications in other fields
such as structural biology. The conventional formulation of IK
in terms of joint parameters amounts to solving a system of
nonlinear equations, which is considered to be very hard for
general chains, especially for those with many links.

In this paper, we study IK for a serial chain with joints
under distance constraints, in particular, either a spatial chain
with spherical joints, or a planar chain with revolute joints (in
this paper we ignore other constraints such as joint limits and
link collision-free constraints, a common approach in studies
of inverse kinematics). We present a new set of geometric
parameters, which are not joint angles, for such chains, and use a
novel approach to formulate the inverse kinematics as a system
of linear inequalities, which is an exact, not an approximate,
formulation of the IK problem. It follows that the IK problem
for such a chain with an arbitrary number of joints can be done
efficiently in many ways.

Under our new formulation, the set of solutions for an IK
problem (as specified by the positions of the two end points of
the last link), and more generally the set of solutions for all IK
problems, is essentiallypiecewise convex. Our approach can also
be generalized to other linkages such as those with prismatic
joints sandwiched between rotational joints and with multiple
loops that have a tree decomposition of triangles. The efficient
algorithms and nice geometry entailed by piecewise convexity
considerably simplify IK related problems, including motion
planning, in the systems under study, and thus broaden the class
of practical mechanisms at the disposal of robot designers.

I. OVERVIEW

Inverse kinematics (IK) is important in robotics and is
indispensable in the design, analysis, planning and control
of robot linkage systems such as robotic hands, limbs and
humanoid robots. Given a serial chain and its end link con-
figuration, the IK problem is to find joint parameters that
achieve the specified end link configuration. This arises in
many robotics problems, such as multi-linked manipulators
and mobile robots, in which a linkage like a finger or leg needs
to touch an object with a certain pose. It has recently been
noted that some biological molecule structure problems [1],
[2] can also be formulated as IK problems and thus benefit
from IK approaches and results.

A. Prior approaches

Conventionally, IK problems are formulated with respect to
joint parameters like linear displacements (for prismatic joints)
or angles (for rotational joints). Such parameters correspond

directly to the actuation of the joints, and thus become natural
choices for linkage parameters. However, in general the end
link configuration is a complicated function of joint parame-
ters, especially when there are rotational joints in the chain,
because the end effector configuration involves nonlinear func-
tions of trigonometric terms of joint angles. Consequently, the
IK problem of solving for the joint parameters in terms of
a given end link configuration is considered to be very hard,
especially for chains with many links.

IK has been intensively studied in robotics and mechanical
design. Here we have no room to do justice to the large
body of relevant literature; references [3]–[15] include books
with chapters on IK, recent surveys, and papers containing
representative techniques as well as recent formulations of
IK problems using distance constraints and vector equations.
In brief, prior work has provided two broad categories of
solution methods for IK problems, numerical and analytical
(or closed form). Numerical methods may generate all possible
solutions or just one for an IK problem; they are applicable
to general chains including chains with different numbers of
links and different types of joints, but normally they are slow,
require small step sizes in computation, and provide little
insight on the solutions. Analytical methods have different
traits: they provide insights on the solutions and are fast with
the given analytical formula for the solutions, but generally
new analytical solutions must be developed specifically for
each type of linkage. Most, if not all, industrial robots use
only mechanisms with known closed form IK solution [3]. It
would be desirable to find a method that combines traits from
each approach, one that is fast, can be applied to quite general
linkages, and provides insight.

A good example of the state of the art is the theory of the6R
manipulator, a spatial chain of6 links connected by6 revolute
joints. Using dialytical elimination, a method from algebraic
geometry, researchers have proved one of the most important
IK results: a6R manipulator may have up to16 IK solutions
for a given end link configuration [9]–[11]. This leads to IK
solutions for various related chains, such as those obtained by
swapping out some revolute joints in6R for prismatic joints.
But these successes have depended on researchers’ ingenious
discovery of special structures in the system of polynomials
that allow dialytical elimination.

IK for a serial chain is closely related to the study of closed



chain systems. For an IK problem, since the end link config-
uration is specified we can supplement the real chain links
with a virtual link from the base joint to the last link of the
chain, thereby forming a closed chain in a loop configuration.
In other words, the IK problem for a serial chain is essentially
equivalent to the problem of generating closure configurations
for a loop. Indeed, the intrinsic connection between these two
problems has been recognized and explored. For example,
the term “loop closure constraint” is used in both problems,
and earlier methods developed for closed chains generate a
loop configuration by breaking the loop into two serial sub-
chains and then using random gradient descent [16] or a
combination of forward and inverse kinematics [17] to try
to make these two sub-chains meet. The efficiency of these
approaches decreases rapidly for chains with many links. To
address this issue, researchers have developed several closure
configuration generation methods that can be adapted to solve
the IK problem, such as the random loop generator [18] and
iterative constraint relaxation [19], which have considerably
improved performance over earlier methods.

In this paper, we study IK for a serial chain with rotational
joints under distance constraints, in particular, a spatial chain
with spherical joints or a planar chain with revolute joints.
We ignore other constraints such as joint angle limits and the
link collision-free constraint, a common approach in the study
of inverse kinematics; also, for most of the paper we assume
the distances between adjacent joints are fixed, to model rigid
links, although we later briefly describe the generalization of
our approach to variable distances, which can be used to model
some prismatic joints. To simplify the discussion we will call
a planar serial chain withn revolute joints a planarnR chain
and a spatial serial chain withn spherical joints a spatialnS
chain. Note that these linkages can also be used to model
points under distance constraints in the plane and in space.

Prior work [20]–[23] on these systems, from the perspec-
tives of closed chains and polygons, has described the topology
of the set of closure configurations, which is essentially
equivalent to the set of the solutions for an IK problem of a
serial chain (also called theself-motion space). In particular, it
has been proved that the configuration space of a spatial loop
with spherical joints, if not empty, has only one connected
component, while the configuration space of a planar loop with
revolute joints has either one or two connected components,
depending on the number of “long links” (a technical term,
cf. [22]). Armed with the knowledge of the global structure
of the configuration space, researchers [20], [22] have also
developed polynomial time complete planners that guarantee
to generate a path between two closure configurations in the
same connected component; the generated path satisfies the
closure constraints but may involve link crossing (collision)
and violation of joint angle limits. In their recent work, Trinkle
and Milgram [22], [23] proved, using joint angle parameters,
that the configuration space of a closed chain with generic link
lengths is a manifold. More specifically, for a planar loop with
n links having 3 long links, the closure configuration space
is a pair of (n ¡ 3)-dimensional tori each coordinatized by
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Fig. 1. Geometric Parameters: Diagonal Lengths and Dihedral Angles

the joint angles of then ¡ 3 short links. Thus for this type
of planar loop, given two closure configurations in the same
connected component, linear interpolation of then ¡ 3 joint
angles (with the usual identification of angle2… with 0) is a
valid path: the closure configuration space for a planar chain
with revolute joints and3 long links, coordinatized by joint
angles derived from the short links, is practically convex.

One problem not yet addressed in the aforementioned prior
work on chains with joints under distance constraints is how
to generate the closure configuration of a closed chain, or
equivalently, how to solve IK for a serial chain. A closure
configuration generation method [24] specifically designed
for closed chains with spherical joints assumes that a clo-
sure configuration is given and then generates more closure
configurations by selecting a subchain of the closed loop
and then flipping (rotating) it along the line connecting the
two end-joints of that subchain. This simple algorithm works
for loops with arbitrarily many chains. But it needs at least
one seed closure configuration to start the flipping process.
The general closure configuration methods mentioned earlier
can certainly be applied. However, these methods still have
difficulty with chains of many links, say over100; and, as
usual with numerical methods, they provide little insight on
the solution sets.

B. Our results

For our study of IK, we assume that the base joint is fixed
and the positions of the two end points of the last link are
given as the specification for an IK problem. In place of joint
angles, we use another equally geometric set of parameters
for the chain. We will show a novel reformulation of the
loop closure constraint obtained by breaking a loop into an
open chain of triangles and using triangle inequalities. Our
parameters are not joint parameters; they consist of some
inter-joint distances and some triangle orientation data. With
our parameters, the loop closure constraint can be formulated,
exactly not approximately, as a set oflinear inequalities. It will
follow that the IK problem for an arbitrary number of joints
reduces to solving linear inequalities, which can be efficiently
done in many ways including linear programming.

Specifically, let kIK be the set of solutions for an IK
problem of a given serial chain with rotational joints under
distance constraints andn rigid links of specified lengths in
space (k = 3) or the plane (k = 2). We can choose an
arbitrary joint of the chain to be ananchor; in this paper,
we use the base joint as the anchor. In general we will call
an object “anchored” if it includes the anchor joint. Draw the



anchored diagonals from the anchor to other joints. As shown
in Fig. 1, these diagonals, along with the links, partition the
loop into an open chain of triangles, with the configuration
of the last triangle known for each given IK problem. In a
sense, our new parameters are these anchored triangles them-
selves. We will extract more conventional parameters from
these triangles including diagonal lengthsr(0) and triangle
orientation parameters (dihedral angles for spatialnS and
planarnR chains, or orientation signs for planarnR chains)
in section II. We will show that our new parameters (anchored
diagonal lengths, anchored triangle orientation parameters) are
indeed coordinates for the set of allIK solutions not having
any degenerateanchored triangles. Note that a triangle is
degenerate when its three vertices are collinear. We will briefly
describe how to generalize our new parameters to handle
singularIK solutions.1

We will explain in section III that the anchored triangle
orientation parameters are independent of the loop closure
constraints. We will formulate the loop closure constraints
as a set of linear inequalities in diagonal lengthsr(0) and
show that the set of all diagonal lengths feasible for the
solutions of a givenIK problem is a readily computable
convex polyhedronIKStretch(0) that is non-empty if and only
if kIK is. Using our new parameters and the new formulation
of the loop closure constraints, with proper treatments of
singular configurations, the2IK of a planar nR chain is
essentially tiled by2n¡2 copies of the convex polyhedron
IKStretch(0) joined into one connected component or two via
proper boundary identification, making it piecewise convex in
a very tractable sense; and the3IK of a spatialnS chain
is essentially the product of a high-dimensional torus and
the convex polyhedronIKStretch(0), making it what we call
“practically convex” since a torus is easily cut open into a
cube, which is convex. (We use the word “essentially” here
because a certain lower-dimensional subset ofIK solutions,
namely that of the “super-singular” ones, to be defined later,
does need some extra care.) To simplify our description, we
will say that both3IK and 2IK parameterized by our new
parameters are piecewise convex, bearing in mind that the3IK
has only one piece and involves a torus factor space.

Although we cannot give details here, it will become clear
that our parameters and the linear inequality formulation of
the loop closure constraint can easily be generalized to a chain
with prismatic joints sandwiched between rotational joints un-
der distance constraints, and to some linkage systems involving
multiple loops. Furthermore, the set of all IK solutions, which
is the union of the solution sets for all IK problems, for the
systems under study is still piecewise convex.

C. Discussion

A few examples will highlight the connection between our
work and prior results, as well as the new insights our work

1A configuration that is singular in the traditional sense but includes no
degenerateanchoredtriangle poses no problems for our new parametrization,
so for our purposes it is non-singular. We will discuss the role of anchor
choice in future papers.
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(a) IKStretch for a planar
6R chain or a spatial6S chain

(b) Some IK solutions for a
planar6R chain

Fig. 2. IK examples for a6-bar chain with link lengths(11; 12; 13; 14; 20; 8)
and distances23 and 21:6 from base joint to last joint and tip of the chain.
The dashed-dot lines in (b) and in later figures are the diagonals from the
base joint to the endpoints of the last link, which are known and fixed for
each IK problem.

provides. The IK problem for a serial chain with3 links has
well known solutions: the IK problem, if not infeasible, has
two solutions for a planar3R chain (one elbow-up, the other
elbow-down), and a circle of solutions (free rotations around
a line of the joint with unspecified position) for a spatial3S
chain. Our new approach recovers these results.

For a planar6R chain with generic link lengths, our
approach constructs the IK solution set from16 copies of
a 3-dimensional convex polyhedron.2 Fig. 2(a) shows the3-
dimensional convex polyhedronIKStretch(0) for the 6-bar
IK problem specified in the caption. Fig. 2(b) shows some IK
solutions for a planar6R chain, with the base joint at the origin
and the two joints of the end link at the positions specified
for some IK problem.

Our linear inequality formulation of IK problems for a chain
with rotational joints under distance constraints allows efficient
computation of IK solutions for chains of this class of arbitrar-
ily many joints. In addition to linear programming, we have
developed a suite of methods [25] for solving IK problems,
some outperforming linear programming. For example, one
of our best generators, which we call the diagonal sweeping
method, can generate one set of diagonal lengths for an IK
problem for a loop of 1000 links in 19 milliseconds in Matlab
on a desktop computer. This one set of diagonal lengths can
be used to generate2998 related IK solutions for a planar
chain, or be combined with a998-dimensional torus,(S1)998,
to generate a family of related IK solutions for a spatial chain.
Fig. 3(a) shows some IK solutions for a spatial1000S chain.

Our new formulation and results for IK problems of chains
with rotational joints under distance constraints have profound
implications for such systems. As is well known in robotics,
system designers gain important insight from knowledge of IK
solutions and their dependence on the underlying parameters.
Partly due to the importance of IK problems in robotics and
the lack of general solving strategies, mechanisms used in the
design of robots have generally tended to be those known
to have analytical IK solutions. The nice geometry of the
IK solutions of planarnR and spatialnS chains, and the
resulting efficient algorithms, will provide robot designers with

2Note that the class of systems studied here does not contain what is
commonly called a6R chain, in which6 links are connected by revolute
joints in space rather than in the plane.



(a) Some IK solutions for a
spatial1000S chain

(b) Manipulation path of two fin-
gers, each being a5S chain

Fig. 3. IK related examples for spatialnS chains

a broader class of practical mechanisms.
In particular, the piecewise convexity of an IK solution set

and, more strikingly, the piecewise convexity of the set of all
IK solutions, considerably simplify the kinematics problems
of the linkage system such as path planning and manipulation
planning, which is a great benefit on its own and further makes
the system more appealing for robot design. Essentially, for a
spatialnS chain and two points on its self-motion manifold,
linear interpolation between our parameter values of the two
points stays on the manifold; this need not be the case with
the joint angle parameters. Fig. 3(a) actually shows a linear
path between two solutions (with different diagonal lengths
and triangle orientations) for one1000S chain IK problem.

Fig. 3(b) shows a manipulation path of a block grasped
by two fingers (of different colors), each a spatial5S chain.
Even with the fingertips changing their positions during the
manipulation process, we can still use the linear interpolation
of the new linkage parameters and the object configurations of
the two given configurations to find a path for the system, since
the set of all IK solutions is piecewise practically convex. Path
planning for planarnR chains is a little more involved than
for spatialnS chains, since their configuration spaces are more
complicated. Fig. 2(b) actually pictures a linear path between
two IK solutions in a single copy ofIKStretch(0); the validity
of this path is guaranteed by the convexity ofIKStretch(0). To
join two IK solutions not on the same copy ofIKStretch(0)
of 2IK for a planar nR chain, we need to find critical
intermediate singular configurations that can connect the start
and goal copies possibly via some other copies; again, efficient
algorithms like linear programming and diagonal sweeping
can be used to compute these critical configurations. Thus,
as shown in our paper [26] motion planning for planarnR
chains can also be efficiently done.

II. N EW PARAMETERS

A. Problem formulation

Consider a serial chain consisting ofn rigid links with link
lengthslj > 0; j = 0; : : : ; n¡1, connected by spherical joints
(for a chain in three-dimensional space) or revolute joints (for
a chain in the plane). Denote the end points of the links in
the chain, including the joints and the tip of the last link, by
Pj ; j = 0; : : : ; n. With a slight abuse of notation, we will also
write Pj for the coordinate of the pointPj .

For this paper, we assume that a chain configuration is
completely specified by its joint positions. In such a system

model, each link is represented by two points at its ends. For a
general rigid link, two points may not be enough to specify the
link configuration—for instance, if the link is not symmetric
about the line passing through its endpoints. Nevertheless, we
adopt this formulation since it still captures the essence and
complexity of the IK problem.

For the IK problem, a reference frame is given and the
configuration of the first joint and the last link is specified;
the problem is to find joint variables achieving the required
end link configuration. Conventionally, a local frame of the last
link needs to be defined and its relative position and orientation
with respect to the reference frame, which can be described
by a rigid body transformation matrix inSE(k), are used to
describe the last link configuration. In this paper, instead of
directly using a transformation matrix, we use the positions of
the last two pointsPn andPn¡1 as the specified values for a
given IK problem. These two values should be easily derived
from the local frame of the last link, since a conventional
local frame for the link will have the origin at one endpoint
and one of the axis directions as the link direction. In the rest
of this paper, we will refer to the first jointP0 and the last
two endpointsPn¡1; Pn as the end joints of our chain.

A spherical jointi can be parameterized by two spherical
angles, sayfii and fli, with fii 2 (¡…; …], fli 2 (¡…=2; …=2].
A revolute joint can be parameterized byfii, or equivalently,
restrictingfli used in a spherical joint to zero. With our no-
tation, the conventional formulation of an IK problem respect
to joint angles can be described as follows.

IK : (P0; Pn¡1; Pn; l) ! (fii; fli; i = 0; : : : ; n ¡ 1) (1)

Here l = (l0; : : : ; ln¡1) is then-tuple of link lengths. Clearly,
the joint angles of the last link can easily be computed from
its two endpoint positions; the main difficulty of the inverse
kinematics lies in computing the joint angles of the subchain
from link 0 to link n ¡ 2.

For the development of our parameters, we note that the
IK problem can also be formulated in terms of joint posi-
tions. This is because with all joint positions computed, it is
straightforward to obtain joint angles.

IK : (P0; Pn¡1; Pn; l) ! (Pi; i = 1; : : : ; n ¡ 2) (2)

Conversely, as shown in this section, a given set of our
parameters taken together with the given end joint positions
can be used to uniquely determine all joint positions. In
other words, the following function is well defined for our
parameters, temporarily denotedParam.

f : (P0; Pn¡1; Pn; l ; Param) ! (Pi; i = 1; : : : ; n ¡ 2):

Section III addresses how to solve inverse kinematics problems
with respect to our parameters,

IK : (P0; Pn¡1; Pn; l) ! Param:

B. Serial spatial chains with spherical joints: new parameters

For a given serial chain with a fixed base andn links, use
the base (joint0) as the anchor joint and draw the diagonals



from the anchor to other jointsPj ; j = 1; 2; : : : ; n, as shown
in Fig. 1. Note that genuinely “diagonal” vectors correspond
to j = 2; : : : ; n; for j = 1, we get link0 that is incident on the
anchor joint. It will become clear soon that treating this link
also as a diagonal simplifies our description. The diagonals and
chain links definen¡1 triangles all sharing the anchor joint; a
configuration of the chain is calledsingular for that anchor in
case one or more of these triangles is degenerate,i.e., reduces
to a line segment. Denote the vector from the anchor joint0

to joint j by
¡¡!
diag(0; j) (j = 1; : : : ; n), its length byr(0; j),

and its corresponding unit directional vector bydiag(0; j).
Of coursediag(0; j) is not defined in caser(0; j) = 0, but
this happens if and only if jointj 2 f2; : : : ; ng has become
coincident with the anchor, which is a special type of singular
configuration that we callsuper-singular. In this paper, we
focus on non-singularIK solutions, which form an open dense
subset of the wholeIK solution set.

Each pair of adjacent non-degenerate triangles defines an
angle, called a dihedral angle, that reflects the relative orien-
tation of the triangle pair. Denote the triangle formed by the
anchor joint and consecutive endpointsj andj+1 by Tri(0; j)
(j = 1; : : : ; n ¡ 1), and its unit normal by

n(0; j) = normalize(
¡¡!
diag(0; j) £ ¡¡!

diag(0; j + 1))

(where£ is vector cross product). Define the dihedral angle
between consecutive trianglesTri(0; j) andTri(0; j+1) to be
the angle for rotatingn(0; j) to n(0; j + 1) about their shared
diagonaldiag(0; j + 1), and denote it¿(0; j). Thus

n(0; j + 1) = Rot(diag(0; j + 1); ¿(0; j))n(0; j);

j = 1; : : : ; n ¡ 2 (3)

whereRot(diag(0; j + 1); ¿(0; j)) is the matrix representing
rotation about the unit diagonal vectordiag(0; j + 1) by the
angle¿(0; j).

For the IK problem, the last two diagonal lengthsr(0; n¡1)
and r(0; n), and the orientation of the last triangle, can be
computed from the given endpoint positionP0; Pn¡1; Pn. So
there aren ¡ 3 unknown diagonal lengths andn ¡ 2 unknown
dihedral angles, which we can group together into column
vectors. Our new parameters for the IK problem (defined with
respect to the anchor0) are(r(0); ¿(0)), wherer(0) is the set
of diagonal lengths (well defined everywhere onkIK), and
¿(0) is the set of dihedral angles (well defined on non-singular
configurations).

r(0) = [r(0; 2); : : : ; r(0; n ¡ 2)]0

¿(0) = [¿(0; 1); : : : ; ¿(0; n ¡ 2)]0 (4)

As stated earlier, we will show in the next section how to
compute these parameters for a given set of end joint positions.
Here we assume that we have a set of diagonal lengths and
dihedral angles for a given set of end joint positions, and we
will show how to compute other joint positions.

f: (P0; Pn¡1; Pn; l ; r(0); ¿(0))!(Pj ; j = 1; : : : ; n ¡ 2) (5)

Input: P0; Pn¡1; Pn; l ; r(0); ¿(0)
Output:Pj ; j = 1; : : : ; n ¡ 2
Algorithm:
1. diag(0; n) = normalize(Pn ¡ P0)
2. diag(0; n ¡ 1) = normalize(Pn¡1 ¡ P0)
3. n(0; n ¡ 1) = normalize(diag(0; n ¡ 1) £ diag(0; n))
4. for j = n ¡ 2 to 1
5. n(0; j) = Rot(diag(0; j + 1); ¡¿(0; j))n(0; j + 1)

6. °(0; j) = acos

µ
r2(0; j) + r2(0; j + 1) ¡ l2

j

2:0 ⁄ r(0; j) ⁄ r(0; j + 1)

¶

7. diag(0; j) = Rot(n(0; j); ¡°(0; j))diag(0; j + 1)
8. Pj = P0 + r(0; j)diag(0; j)
9. endfor

Fig. 4. Algorithm for Computing Joint Positions of a Spatial Chain

Our algorithm computes the joint coordinates incrementally
and is given in Fig. 4. The first three lines in the algorithm
compute the diagonal and normal vectors of the last triangle.
Then the loop between lines four and nine computes the joint
positions, starting at the one closest to the last triangle (which
is joint n¡2) and moving down to joint1, with each execution
of a loop determining one joint position. Inside the loop,
line 5 computes the normal of a current triangle, which is
adjacent to the most recently determined triangle. Note that
the current triangle shares a diagonal, and thus two joints,
with its known neighbor, and thus has only one unknown
joint position and one unknown diagonal vector. Line 6 uses
the law of cosines to determine the angle between the two
diagonals of the current triangle. Line 7 computes the direction
of the unknown diagonal vector of the current triangle, and
line 8 uses the computed diagonal direction and given diagonal
length to compute the joint position.

The algorithm must be modified to handle singular configu-
rations. If a configuration is singular but not super-singular—
that is, if at least one triangle is degenerate but no diagonal
has length0—then the modification is simple. Although there
is no natural way to select any particular unit vector to
play the role ofn(0; j) at the corresponding “singular step”
in our algorithm, any unit vector in the well-defined plane
perpendicular to all sides of the degenerate triangle can serve
as n(0; j). In practice, we can make a definite choice by
setting n(0; j) = n(0; j + 1), and choosingn(0; n ¡ 1) at
random in caseTri(0; n ¡ 1) is degenerate. Super-singular
configurations have even greater indeterminacy and require
some other parameters, which will be described in our future
papers. Singular and super-singular configurations play an
important role in using our parameters to reconstruct the global
topological structure of the configuration space, especially for
planarnR chains as shown in paper [26].

C. Serial planar chains with revolute joints: new parameters

For a planar chain, we define the same set of anchored
diagonals and triangles as for a spatial chain, and use the
anchored diagonal lengthsr(0) as part of the parameters. Since
all triangles of a planar chain are in one plane, each dihedral
angle—if well defined—can be only 0 or…, depending on
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(b) Spatial 6S chain : via
flipping

Fig. 5. Changing one triangle orientation (black to dark gray)

whether the two triangles between which the angle lies have
the same or opposite orientations. Therefore, a straightforward
adaptation of the spatial chain parameters to planar chains is to
use the same set of parametersr(0); ¿(0), taking note that each
dihedral angle is either0 or …. An alternative representation of
triangle orientations is by direction signs of triangle normals. If
we consider our planar chain to lie in theXOY plane in space,
then all points of the chain have zero (0) z coordinates, and
all normals of the non-singular triangles are in thez direction,
either positive or negative. Therefore, we can use the positive
(+) and negative (¡) signs to represent the orientations of
these triangles. We will define the orientation sign of a singular
anchored triangle to be0.

The discrete dihedral angle values and orientation signs are
equivalent parameters for the anchored triangle orientations;
and each set can be changed to the other easily. However,
they have different characteristics and may be suitable for
different types of problems. In particular, the orientation sign
parameters are particularly convenient for determining if any
two given configurations have opposite orientations in any
of their anchored triangles. In the plane, change of triangle
orientations (such as the two drawn in in Fig. 5(a), which
differ in only one triangle orientation, black versus dark gray)
must go through singular configurations of the triangle (like
the one in light gray—see [26] for more details). But in space,
changing triangle orientation is much easier since we can just
flip that triangle (Fig. 5(b)). Henceforth, we use orientation
signs in this paper for planar chain triangle orientations.

Denote the orientation sign ofTri(0; j) by s(0; j). For the
IK problem, the orientation of the last triangle can be com-
puted from the specified end joint positions. The orientation
signs of all unknown triangles will be grouped into a column
vector and referred to ass(0) in the rest of the paper.

s(0) = [s(0; 1) ¢ ¢ ¢ s(0; n ¡ 2)]0 (6)

s(0; j) 2 f+; ¡; 0g; j = 1; : : : ; n ¡ 2 (7)

The planar counterpart of algorithm 4 for computing joint
positions from end joint positions and our parameters uses
ideas similar to those used for the spatial case. It is consider-
ably simpler and is not included here due to space limit.

III. T HE INVERSEK INEMATICS SOLUTIONS

In this section we describe how to compute IK solutions
in terms of our new parameters. We now indicate the index

of the anchor,0, explicitly by writing 3IK(0) for the set of
all IK solutions for a spatial chain and2IK(0) for a planar
chain, parameterized by our new parameters anchored at the
base joint. Our task is to compute the possibly empty sets

3 fIK(0) = f(r(0); ¿(0)) j r(0) and¿(0) reach the

specified end joint positiong; (8)
2 fIK(0) = f(r(0); s(0)) j r(0) ands(0) reach the

specified end joint positiong (9)

attained by our parameter values on the set of solutions where
they can be defined.

Note that by drawing a diagonal from the base joint to the
end joint, we define a virtually closed chain such that solving
the IK problem is equivalent to generating chain parameters
that can keep the chain closed and place the end points at the
specified positions. In other words, we need to find the set of
chain parameters that satisfy theloop closure constraints. We
further note that by drawing the diagonals from the base joint
to all other joints, wedecompose the closed chain into a chain
of triangleswith the last triangle completely known from the
inverse kinematics specification.

A. The sets of parametersr(0) and ¿(0)/s(0) are uncoupled

Our first observation is that the triangle orientations are
independent of the loop closure constraints. In fact, given
a spatial loop configuration, changing one dihedral angle
is equivalent to flipping part of the serial chain about the
corresponding diagonal vector while keeping the other part
fixed, as shown in Fig. 5(b). Similarly, changing the orientation
sign of a non-singular anchored triangle amounts to flipping
one side of the triangle to the other, as shown in Fig. 5(a).
Clearly flipping one or more anchored triangles can lead to
different configurations, and yet maintains the link lengths,
the anchored diagonal lengths and the loop closure.

Therefore, the diagonal lengths and the triangle orientation
parameters (dihedral angles or orientation signs as applica-
ble) are uncoupled; and the loop closure constraints pose
no restrictions on feasible values of the anchored triangle
orientations. More specifically, for a spatialnS chain, each of
its anchored dihedral angles can be any value in[¡…; …], which
can be identified with a flat circle obtained by identifying the
endpoints of an interval of length2…; for a planarnR chain,
each of the orientation signs for its non-singular anchored
triangles can indeed be any value inf+; ¡g.

B. The set of all feasible diagonal length values

Now that we have uncoupled the diagonal length parameters
from the triangle orientation parameters, we formulate the
closure constraints on the diagonal lengths. As described
earlier, by drawing diagonals from the base joint to the joints
not adjacent to it, we definen ¡ 1 triangles, with links and
diagonals as triangle sides. The last triangle is completely
known for any given case of IK problems. It is conceivable
that an inappropriate value of a diagonal length may make the
diagonal too long or too short to form a triangle and thus may



not be part of the IK solution.Our second observationis that
for a given set of diagonal lengths, the loop closure constraint
can be satisfied if and only if they can form alln¡2 unknown
triangles with the links. From basic plane geometry, we know
that a set of three non-negative numbersfl1; l2; l3g can serve
as the side lengths of a (possibly degenerate) triangle if and
only if no side length is strictly greater than the sum of the
other two side lengths. In other words,fl1; l2; l3g must satisfy

l1 • l2 + l3; l2 • l3 + l1; l3 • l1 + l2 (10)

Furthermore, the triangle is non-degenerate if and only if all
three inequalities are strict. Using these triangle inequalities,
we can explicitly write out the loop constraints in terms of
the lengths of the links and diagonals in the compact matrix
format

Tr(0) • b(0); (11)

wherer(0) is the vector of diagonal lengths,b(0) is the vector
of terms on the right hand side, and the(3n ¡ 8) £ (n ¡ 3)
matrix T has one row for each inequality in the following
system.

r(0; 2)

¡r(0; 2)

r(0; j) ¡ r(0; j + 1)

¡r(0; j) + r(0; j + 1)

¡r(j) ¡ r(j + 1)

r(0; n ¡ 2)

¡r(0; n ¡ 2)

•
•
•
•
•
•
•

l0 + l1

¡jl0 ¡ l1j
lj

lj

¡ lj

ln¡2 + jP0Pn¡1j
¡

flflln¡2 ¡ jP0Pn¡1j
flfl

9
>=
>;

2 • j • n ¡ 3 (12)

The first and last two lines in (12) are inequalities for the first
and last unknown triangles,Tri(0; 1) and Tri(0; n ¡ 2), and
jP0Pn¡1j is the length of the virtual link fromP0 to Pn¡1.
Each of these two triangles has two links and one diagonal as
its sides. The middle three lines in (12) are for intermediate
trianglesTri(0; j) (j = 2; : : : ; n ¡ 3), each having one link
and two diagonals as its sides.

Denote the side of all feasibler(0) values to be
IKStretch(0), we have

IKStretch(0) = fr(0) j Tr(0) • b(0)g: (13)

Note that all constraints on the diagonal vectors arelinear
inequalitiesand each one defines a closed half space. Thus
IKStretch0 is the intersection of half-spaces; by convexity
theory, it is a convex polytope. Moreover, it is easy to see
that, for a given set of positive link lengths, the lengths of
all diagonal vectors are bounded between zero and the sum
of all link lengths, which are all encoded in the triangle
inequality constraints. So—again by convexity theory—we
conclude thatIKStretch0 is a convex polyhedron, possibly
empty, of dimensionn ¡ 3 (for generic link lengths) or less.

C. The convexity ofkIK

Note that any pointr(0) in Int(IKStretch(0)), the interior
of IKStretch(0), satisfies all triangle inequalities in (12) as
strict inequalities without achieve equality in any of them. This

means that none of the anchored triangles can be singular for
the given diagonal lengths. In fact,Int(IKStretch(0)) is the
set of allr(0)0s leading to non-singularIK solutions. Taking
our two observations together, we can write the set of all non-
singularIK solutions as the product of the two factor spaces
as follows.

k ÎKNS (0) = Int(IKStretch(0)) £ kIKFlip(0) (14)

where kIKFlip(0) is the set of feasible triangle orienta-
tion parameter values, with3IKFlip(0) = [¡…; …]n¡2 and
2IKFlip(0) = f+; ¡gn¡2.

3IKFlip(0) is a high-dimensional torus, which can be easily
cut open into a cube and thus can be viewed as practically con-
vex. Therefore,3ÎKNS (0) is practically convex. We describe
this situation succinctly by saying that3IK is practically
convex: our parameters give a one-to-one correspondence
between its open dense subset of non-singular configurations
and the convex setInt(IKStretch0) £ [¡…; …]n¡2. Of course
2IKFlip(0) is not convex (except for the trivial casen = 2),
but the productInt(IKStretch(0))£2IKFlip(0) = 2ÎKNS (0)
is the union of2n¡2 pairwise disjoint copies of the convex
polyhedron Int(IKStretch(0)), and our parameters identify
the open, dense, generally disconnected set of non-singular
configurations in2IK. We say that2IK is piecewise convex.3

We summarize our results in the following theorems.
Theorem 1: Given a spatial closed chain ofn rigid links

connected by spherical joints and the positions of its base point
P0 and the endpoints of the last linkPn¡1; Pn, the set3IK(0)
of IK solutions with respect to the parameter set of diagonal
lengths and dihedral angles, if not empty, is practically convex.

Theorem 2: Given a planar closed chain ofn rigid links
connected by revolute joints and the positions of its base
point P0 and the endpoints of the last linkPn¡1; Pn, the set
2IK(0) of IK solutions with respect to the parameter set of
diagonal lengths and triangle orientation signs, if not empty,
is piecewise convex.

While we have no space to give details in this paper, we
can prove that the anchor and the corresponding parameters
determine astratification of kIK in a sense familiar from
topology and algebraic geometry—that is, a decomposition of
kIK into finitely many smooth connected pairwise disjoint
manifolds, itsstrata, of various dimensions (see,e.g., [27]).
Refer to paper [26] for the stratification of the self-motion
space of a planarnR loop.

IV. GENERALIZATIONS OF OUR APPROACH

Our parameters can be generalized to other type of chains
and IK problems. For example, all link lengths and the end-
to-end distance (jP0Pn¡1j) in our formulation of the inequal-
ities (12) are assumed to be fixed. If we allow some link
length, saylk, to lie in an interval[lk; lk], we can augment
our parameters with this link length variable and introduce

3We will describe the strata ofkIK in all dimensions in future papers,
using parameters like those described here but somewhat more complicated,
particularly for super-singular strata. Then, guided by the face structure of
IKStretch, we reconstruct the global topology ofkIK from its strata.



the additional constraintlk • lk • lk, which is still linear and
keeps the augmentedIKStretch convex. The changing length
of a link can be used to model a prismatic joint.

For a chain with rotatable joints and a fixed base, we
know that the workspace,i.e. the set of reachable positions,
of its tip (and any point on the chain) is a spherical shell
in general, which means that the end-to-end distancejP0Pnj
has a range. So we can use a similar idea to augment our
parameters with those for the last anchored triangle along with
a range constraint onjP0Pnj. Then the resulting augmented
IKStretch and IK include the solutions forall IK problems
of the chain. Note thatthe augmentedIKStretch is still a
convex polyhedron, and the augmented set of the solutions of
all IK problems still has convexity properties similar to those
of the solution set of a singleIK problem.

Our approach can also be generalized to more complicated
kinematic structures such as those involving multiple loops.
Our decomposition of one loop into a serial chain of triangles,
which allows us to decouple the parameters and to formulate
the loop closure constraint as a set of triangle inequality con-
straints, generalizes to multiple loops that can be decomposed
into a tree of triangles, carrying with it our parameters as
presented in this paper. More substantial work will be needed
for loops without a tree decomposition and with other joint
types, as well as to incorporate other constraints such as joint
limits and collision avoidance.

V. SUMMARY

Inverse kinematics is a fundamental problem in robotics.
The conventional formulation of IK in terms of joint parame-
ters amounts to solving a set of nonlinear equations, a problem
for which there is no general analytical solution. Partly due
to the importance of IK problems in robotics and the lack
of general solving strategies, designs for new robots tend to
be limited to developments and combinations of mechanisms
with known analytical IK solutions.

In this paper, we present a new set of geometric parameters,
namely anchored diagonal lengths and triangle orientations, for
solving the inverse kinematics of a serial chain with spherical
joints in space or revolute joints in the plane. Formulated in
our parameters, IK is a set of linear inequalities and can be ef-
ficiently solved in many ways [25] such as linear programming
and diagonal sweeping. We also show that for a serial chain
with rotational joints under distance constraints the solution set
of an IK problem, if not empty, is practically convex. Indeed
it is a pleasant surprise that the inverse kinematics for a chain
with all rotational joints like a planarnR chain and a spatial
nS chain can be formulated as a set of linear inequalities. As
briefly outlined in the paper, our approaches can be generalized
to other linkage systems, which broadens the class of practical
mechanisms at the disposal of robot designers.
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