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Abstract— While operational space control is of essential im-
portance for robotics and well-understood from an analytical
point of view, it can be prohibitively hard to achieve accurate
control in face of modeling errors, which are inevitable in
complex robots, e.g., humanoid robots. In such cases, learning
control methods can offer an interesting alternative to analytical
control algorithms. However, the resulting learning problem is
ill-defined as it requires to learn an inverse mapping of a
usually redundant system, which is well known to suffer from
the property of non-convexity of the solution space, i.e., the
learning system could generate motor commands that try to
steer the robot into physically impossible configurations.A first
important insight for this paper is that, nevertheless, a physically
correct solution to the inverse problem does exit when learning
of the inverse map is performed in a suitable piecewise linear
way. The second crucial component for our work is based on
a recent insight that many operational space controllers can be
understood in terms of a constraint optimal control problem.
The cost function associated with this optimal control problem
allows us to formulate a learning algorithm that automatically
synthesizes a globally consistent desired resolution of redundancy
while learning the operational space controller. From the view
of machine learning, the learning problem corresponds to a
reinforcement learning problem that maximizes an immediate
reward and that employs an expectation-maximization policy
search algorithm. Evaluations on a three degrees of freedom
robot arm illustrate the feasibility of the suggested approach.

I. I NTRODUCTION

Operational space control is one of the most elegant ap-
proaches to task control due to its potential for dynam-
ically consistent control, compliant control, force control,
hierarchical control, and many other favorable properties,
with applications from end-effector control of manipulators
[1], [2] up to balancing and gait execution for humanoid
robots [3]. If the robot model is accurately known, oper-
ational space control is well-understood yielding a variety
of different solution alternatives, including resolved-motion
rate control, resolved-acceleration control, and force-based
control [4]. However, particularly if compliant (i.e., low-gain)
control is desired, as in many new robotic systems that are
supposed to operate safely in human environments, operational
space control becomes increasingly difficult in the presence
of unmodeled nonlinearities, leading to reduced accuracy or
even unpredictable and unstable null-space behavior in the
robot system. As a potential solution to this problem, learning
control methods seem to be promising. But learning methods
do not easily provide the highly structured knowledge required
in traditional operational space control laws, i.e., Jacobians,
inertia matrices, and Coriolis/centripetal and gravity forces,

as all these terms are not observable and are therefore not
suitable for formulating supervised learning as traditionally
used in learning control approaches [5].

In this paper, we will suggest a novel approach to learning
operational space control that avoids extracting such structured
knowledge, and rather aims at learning the operational space
control law directly. To develop our approach, we will proceed
as follows: firstly, we will review operational space control
and discuss where learning can be beneficial. Secondly, we
will pose operational space control as a learning problem and
discuss why standard learning techniques cannot be applied
straightforwardly. Using the alternative understanding of op-
erational space control as an optimal control technique, we
reformulate it as an immediate reward reinforcement learning
or policy search problem and suggest novel algorithms for
learning some of the most standard types of operational
space control laws. These new techniques are evaluated on
a simulated three degree-of-freedom robot arm.

A. Notation and Remarks

Throughout this paper, we assume the standard rigid body
model for the description of the robot, i.e.,

M (q) q̈ + C (q, q̇) + G (q) + ε (q, q̇) = u, (1)

where q, q̇, q̈ ∈ R
n denote the joint coordinates, veloci-

ties and accelerations of the robot, respectively. The torques
generated by the motors of the robot, also referred to as
motor commands, are given byu ∈ R

n. Furthermore,M (q)
denotes the inertia tensor or mass matrix,C (q, q̇) the Coriolis
and centripetal forces,G (q) is gravity andε (q, q̇) denotes
unmodeled nonlinearities.

In operational space control, we intend to execute trajecto-
ries or forces1 given in the coordinate system of the actual
task. A well-studied example is a manipulator robot arm where
position and orientation of the end-effector are controlled [1],
[2]; however, a variety of further applications exist, suchas the
control of the center of gravity for balancing legged robots,
which can also be thought of as operational space control [3].
Position and orientationx ∈ R

m of the controlled element of
the robot in task-space, e.g., the end-effector, is given bythe
forward kinematicsx = fKinematics(q). The derivatives yield
both velocity and acceleration in task space, i.e.,

ẋ = J (q) q̇, ẍ = J (q) q̈ + J̇ (q) q̇, (2)

1In the more general case, the hybrid creation of forces in task space while
following a desired trajectory needs to be included. For simplicity, we will
omit such kind of tasks in this paper.



whereJ (q) = dfKinematics(q) /dq denotes the Jacobian. We
assume that the robot is in general redundant, i.e., it has more
degrees of freedom than required for the task or, equivalently,
n > m.

B. Operational Space Control as an Optimal Control Problem

Using the framework of trajectory tracking as an ex-
ample, the general problem in operational space control1

can be described as follows: generate a control lawu =
fControl(q, q̇,xd, ẋd, ẍd) which controls the robot along a joint
space trajectoryq (t) , q̇ (t) (t) such that the controlled element
(e.g., the end-effector) follows a desired trajectory in task
spacexd (t) , ẋd (t) , ẍd (t). This problem has been thoroughly
discussed since the late 1980s (e.g., [1], [2]) and, among
others, has resulted in a class of well-known control laws [4].
As an important new insight into operational space control
it was recently discovered [6], that many of the suggested
controllers in the literature can be derived as the solutionof a
constraint optimization problem given by

min
u

C0 (u) = uTNu s.t. Jq̈ = ẍref − J̇q̇, (3)

whereN denotes a positive definite metric that weights the
contribution of the motor commands to the cost function,
and ẍref = ẍd (t) + Kd (ẋd (t) − ẋ (t)) + Kp (xd (t) − x (t))
denotes a reference attractor in task space with gain matrices
Kd and Kp. The resulting control laws or solution of this
optimization problem obey the general form [6]

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F), (4)

with F(q, q̇) = C (q, q̇)+G (q)+ε (q, q̇), and the notation
D+ defining the pseudo inverse of a matrix such thatD+D =
I, DD+ = I, and with the matrix rootD1/2 defined as
D1/2D1/2 = D.

For example, the resolved-acceleration controller of Hsu et
al. [2] (without null space optimization) is the result of using
the metricN = M−2, which yieldsu = MJT (ẍref− J̇q̇)+F,
and corresponds to a cascade of an inverse dynamics and an
inverse kinematics control law. Another example is Khatib’s
formulation of operational space control [1], determined by
the metricN = M−1 and given by

u = JT (JM−1JT )−1(ẍref − J̇q̇ + JM−1F). (5)

Khatib’s solution is special as the metricN = M−1 is the
only metric which generated torques that correspond to the
ones created by a physical contraint pulling the robot alongthe
trajectory [6], [7], i.e., it is the metric used by nature according
to Gauss’ principle [7], [8] and it is invariant under changeof
joint coordinates [9]. Other metrics such asN = const can be
used to distribute the required forces differently, e.g., such that
stronger motors get a higher portion of the generated forces
[6].

Even when achieving the task perfectly, the joint-space
trajectories can result into unfavorable postures or even joint-
space instability (see Example 1 below). For handling such

(a) Prismatic 2-dof robot
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(b) End-effector position (all trajecto-
ries coincide almost perfectly with the
refrence trajectory)x
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(c) Joint positionq1
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(d) Joint positionq2

Fig. 1. When applied to the prismatic robot from Example 1 shown in
(a), the three control laws for the metricsN = I (dashed-dot red lines),
N = M−1 (solid green),N = M−2 (dashed blue) result in (b) the same
task-space tracking but (c,d) very different joint-space behavior. See Example
1 for more information.

cases, additional controls which do not affect the tasks per-
formance but ensure a favorable joint-space behavior need
to be included. From the point of view of the optimiza-
tion framework, we would select a nominal control lawu0

(e.g., a force which pulls the robot towards a rest posture
u0 = −KDq̇−KD(q− qrest)), and then solve the constraint
optimization problem

min
u

C1 (u) = (u− u0)
T N (u− u0) s.t. Jq̈ = ẍref − J̇q̇,

(6)
whereu1 = u−u0 as the task-space control component. The
general solution is given by

u = N−1/2(JM−1N−1/2)+(ẍref − J̇q̇ + JM−1F) (7)

+ N−1/2(I − (N−1/2M−1J)(JM−1N−1/2)+)N1/2u0,

where the second summand fulfill the nominal control lawu0

in the null-space of the first term. When having more than
two tasks, these can be nested in a similar fashion leading to
a general framework of hierarchical task control [3], [6].

Example 1: An illustrative example of operational space
control is tracking the end-effector positionx = q1 + q2 of a
prismatic robot with two parallel links with joint positions q1,
q2, see Figure 1. The mass matrix will byM = diag (m1, 0)+
m21 with massesm1 = m2 = 1 and 1 denoting a matrix
with all coefficients equal to one. The internal forces are
F = 0, the Jacobian isJ = [1, 1]T and its derivativeJ̇ = 0.
If no joint-space control law is selected, i.e.,u0 = 0, the
control law in the form of Equation (4) for executing the
task ẍref = ẍd + Kd (ẋd − ẋ) + Kp (xd − x) would result
into unstable behavior for most metricsN. When adding a
u0 = −KDq̇ − KDq pulling the robot towardsqrest = 0,
we obtain stable tracking with very different properties ascan



be observed in Figure 1: (i) metricN = I will result into
the second link tracking the end-effector and the null-space
component stabilizing the first link, (ii) metricN = M−1 will
distribute the task on both links evenly and have the null-
space component decouple the two links, while (iii) metric
N = M−2 simply minimizes the squared acceleration.

We will use this simple robot example (Example 1) to
illustrate various other issues below as it allows easy analytical
understanding and graphical visualizations.

C. Why should we learn Operational Space Control?

When an accurate analytical model of the robot is available
and its parameters can be well-estimated, operational space
control laws can be highly successful [1], [3], [4]. However,
in many new complex robotic systems, e.g., humanoid robots,
space robots, etc., accurate analytical models of the robot
dynamics are not available due to significant depatures from
idealized theoretical models such as rigid body dynamics. For
instance, in our experience with anthropomorphic robots, un-
modeled nonlinear effects were caused by complex hydraulic
actuator dynamics, hydraulic hoses and cable bundles routed
along the light weight structure of the robot as well as complex
friction effects. Trying to model such nonlinearities is oflittle
use due to the lack of generality of such an approach, and
the daunting task of deriving useful models for the unknown
effects.

Example 2: In the prismatic robot from Example 1, already
small unmodeled nonlinearities can have a drastic effect. If the
estimated mass matrix of the robot̃M = diag (m1, 0) + m21
just differs from the trueM by M12 − M̃12 = M21 − M̃21 =
0.5 sin (q1 + q2), e.g., through unmodeled properties of cables,
then the resulting control law will result in unstable and
unpredictable null-space behavior despite that accurate task
space tracking is theoretically still possible. On a real physical
system, excessive null space behavior saturates the motorsof
the robot, such that also task space tracking degrades, and the
entire control system goes unstable.

Example 2 demonstrates how a small modeling error de-
creases the performance of the operational control law and
can result in joint-space instability even for simple robots. For
light-weight robot arms or full-body humanoid robots, such
problems become even more frequent and difficult to cope
with. Traditionally, this problem is be fixed by the engineer
improving the approximation the plant by hand; however, for
operational space control of low-gain controlled light-weight
robots which are hard to model, learning is a promising novel
alternative and will be discussed in Section II.

II. L EARNING METHODS FOROPERATIONAL SPACE

CONTROL

Learning operational space control with redundant manipu-
lators is largely an unexplored problem and the literature has
only few related examples. Among those, learning approaches
to task level control focussed mostly on an inverse kinemat-
ics end-effector control [10]–[14], i.e., learning an inverse
kinematics mapping, in order to create appropriate reference
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(a) Unweighted datasets
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(b) Reward weighted datasets

Fig. 2. This figure illustrates how (a) different data sets result in different
solutions if each data point is treated with equal importance (the blue dash-
dot line corresponds to the blue diamonds and the red dashed line to the
red circles). If these data points are (b) weighted down using the Gaussian
cost function (here indicated with the metricN = M−1 as solid thin black
lines) the solutions of different data sets will consistently approximate optimal
solutions shown in the solid cyan line. While for the linear prismatic robot
one could live with any solution in (a), different local solutions have to create
a consistent global solution for nonlinear robots. The horizontal faintly dotted
lines in (a) and (b) indicate contour lines of equal task-space acceleration.

trajectories in joint-space, which were to be executed by a
given joint-space control law. The combination of a learned
inverse kinematics and a learned inverse dynamics controller
[10], [13], [14] can only be found occasionally in the literature.
To the best of our knowledge, full operational space control
laws with redundancy have not been addressed by general
learning approaches to date.

A. Can Operational Space Control be learned?

Learning operational space control is equivalent to obtaining
a mapping(q, q̇, ẍref) → u from sampled data using a function
approximator. However, as the dimensionality of the task-
space reference trajectorÿxref is lower than the one of motor
commandu, there are infinitely many solutions foru for most
joint positionsq, and joint velocitiesq̇. For the illustrative
linear case in Example 2 without a null-space component, this
mapping corresponds to a line in the plane of possible control
laws as shown by the two lines in Figure 2(a).

A major problem arises in the case of a robot with rotary
joints as the motor commandsu achieving the same reference
acceleration̈xref are no longer form a convex set, a problem
first described in the context of learning inverse kinemat-
ics [11], [14]. Thus, when learning the inverse mapping
(q, q̇, ẍref) → u, the learning algorithm will average over
unconnected sets of the solutions which can result in invalid
solutions to the learning problem. Therefore, the learning
problem is ill-conditioned such that directly learning from
samples with supervised learning techniques is not suitable.

Nevertheless, the convexity issues can be resolved by
employing a spatially localized supervised learning system,
which, in our case, needs to spatially localized based on both
joint space position and velocity – such an approach was first
introduced in the context of inverse kinematics learning [12],
[14]. The feasibility of this idea can be demonstrated simply
by averaging over the combination of Equations (2) and (1)



which yields that by averaging over the exact same spatial
positionq, and velocityq̇, we have

ẍ = 〈ẍ〉 =
〈

JM−1 (u + F) + J̇q̇
〉

(8)

= JM−1 〈u + F〉 + J̇q̇ = JM−1 (u + F) + J̇q̇,

i.e., in the vicinity of sameq,q̇, a particularẍ will always
correspond to exactly one particularu 2. Therefore, locally
linear controllers

ui = ci
β(q, q̇, ẍref) = [ẍT

ref, q̇
T , 1]βi, (9)

can be used if they are only active in a region aroundq, q̇ (note
that we added constant input in Equation (9) to account for
the intercept of a linear function). From a control engineering
point of view, this argument corresponds to the insight that
when we can linearize the plant in a certain region, we can find
a local control law in that region by treating the plant as linear,
and, in general, linear system do not have the problem of
non-convexity of the solution space when learning an inverse
function.

Next we need to address how to find an appropriate piece-
wise linearization for the locally linear controllers. Forthis
purpose, we learn a locally linear forward or predictor model

ẍi = pi
β̂
(q, q̇,u) = [q̇T ,uT , 1]β̂i, (10)

Learning this forward model is a standard supervised learning
problem, as the mapping is guaranteed to be a proper function.
A method of learning such a forward model that automatically
also learns a local linearization is Locally Weighted Projec-
tion Regression (LWPR) [15], a fast online learning method
which scales into high-dimensions, has been used for inverse
dynamics control of humanoid robots, and can automatically
determine the number of local models that are needed to
represent the function. The membership to a local model is
determined by a weight generated from a Gaussian kernel:

wi(q, q̇) = exp

(

1

2

([
q
q̇

]

− ci

)T

Di

([
q
q̇

]

− ci

))

(11)
centered atci in (q, q̇)-space, and shaped by a distance
metric Di. For a closer description of this statistical learning
algorithm see [15].

For each local forward model created by LWPR, we au-
tomatically create a local controller. This approach of pair-
wise combining predictors and controllers is related by the
MOSAIC architecture [16] where the quality of predicting a
task is used for selecting which local controller should be used
for the task.

2Note, that the localization in velocitẏq can be dropped for a pure rigid
body formulation as it is linear in thėqiq̇j for all degrees of freedomi, j;
this, however, is not necessarily desirable as it will add new inputs to the local
regression problem which grows quadratically with the number of degrees of
freedom.

B. Combining the Local Controllers and Ensuring Consistent
Resolution of Redundancy

In order to control a robot with these local control laws,
they need to be combined into a consistent global control law.
The combination is given by a weighted average [15]:

u =

∑n
i=1

wi (q, q̇) [ẍT
ref, q̇

T , 1]βi

∑n
i=1

wi (q, q̇)
, (12)

where each control lawci
β(q, q̇, ẍref) is just valid in its local

region computed bywi (q, q̇), andβi are the parameters of
each local operational space control law.

However, while the mappings(q, q̇, ẍref) → u can properly
be learned locally in the neighborhood of someq,q̇, due to
the redundancy in the robotic system, there is no guarantee
that across the local mappings the same type of solution is
acquired. This problem is due to the dependence of the inverse
solution on the training data distribution in each local model
– i.e., different distributions will pick different solutions for
the inverse mapping from the infinity of possible inverses. In
Figure 2 (a), we demonstrate this effect. While this problemis
not devastating for the prismatic robot from Example 1, it is
results in severe problems for any nonlinear robot requiring
multiple, consistent linear models. There are two different
approaches to tackling such problems: (1) by biasing the
system towards using a pre-processed data set such that it can
only produce one particular inverse solution [14], and (2) by
incorporating a cost/reward function in order to favor a certain
kind of solution (an example which will be discussed later and
is shown Figure 2 (b)). The first approach lacks generality and
can bias the learning system such that the task is not properly
accomplished anymore. The major shortcoming of the second
approach is that the choice of the cost/reward function is in
general non-trivial and determines the learning algorithmas
well as the learned solution.

The crucial component to finding a principled approach
to this inconsistency problem is based on the discussion in
Section I-B and previous work [6]. Operational space control
can be seen as a constrained optimization problem with a cost
function given in Equation (3). Thus, the cost function based
approach for the creation of a consistent set of local controllers
for operational space control can be based on this insight. The
cost function can be turned into a immediate rewardr (u) by
running it through an exponential function:

r (u) = σ exp
(
−0.5σ2C1 (u)

)
= σ exp

(
−σ−2uT

1 Nu1

)
,

whereσ is a scaling factor and the task space commandu1 =
u − u0 can be computed using a desired null-space behavior
u0 (e.g., pulling towards a rest posture as discussed in Section
I-B). The scaling factorσ does not affect the optimality of a
solutionu as it acts as a monotonic transformation in this cost
function. However, it can increase the efficiency of the learning
algorithm significantly when only sparse data is available
for learning (i.e., as for most interesting robots as the high-
dimensional action spaces of complex robots will hardly ever



be filled densely with data)3. These local rewards allow us the
reformulation of our learning problem as animmediate reward
reinforcement learning problem[18], as will be discussed in
Section II-C.

We are now in the position to formulate a supervised
learning algorithm for the local operational space controllers.
The task constraint in Equation (3) as well as the rigid
body dynamics in Equation (1) are automatically fulfilled
by all data sampled from the real robot similar to a self-
supervised learning problem. Therefore, for learning the local
operational space controllers, we have obtained a local linear
regression problem where we attempt to learn primarily from
the observed motor commandsuk which also have a high
rewardr(uk) within each active local modelci

β(qk, q̇k, ẍk
ref).

An intuitive solution is to use reward-weighted regression, i.e.,
find the solution which minimizes

N∑

k=1

r
(
uk
)
wi
(
qk, q̇k

) (

uk − [ẍk,T
ref , q̇k,T , 1]βi

)2

→ min,

(13)
for each controlleri. The solution to this problem is the well-
known weighted regression formula:

β =
(
ΦTWΦ

)
−1

ΦTWU, (14)

with rows in the matricesΦ and U : Φk = [ẍk,T
ref , q̇k,T , 1],

Uk = uk,T and Wi = r
(
ui
)
w(qi, q̇i). When employing

this reward-weighted regression solution, we will converge
to a globally consistent solution across all local controllers.
The learning algorithm is shown in Table I together with an
additional component derived in Section II-C. Note that this
step was only possible due to the essential cost function in
Equation (6) from our previous work.

C. Rephrased as a Reinforcement Learning Problem

Originally, we derived this algorithm from a weighted
regression point of view. However, this point of view is not
completely satisfying as it still has the open parameterσ2

which determines the speed of convergence of the learning
controllers. An alternative view point, i.e., in the framework of
reinforcement learning, allows deriving the previous algorithm
together with a computation rule forσ2 by employing an
approach similar to the one suggest in Dayan & Hinton [18].
For this purpose, we assume that we have a sampling process
or sampling policyπ̃(u), e.g., the robot moving along 5-th
order polynomial trajectories in joint space towards randomly
chosen joint-space targets by employing a simple PD controller
in joint space. Additionally, we have local stochastic control
policies given by, e.g.,πi (u) = N

(
u
∣
∣[ẍT

ref, q̇
T , 1]βi, Σi

)
,

whereN denotes a normal distribution. For simplicity, we
assume that the varianceΣ of the normal distribution is fixed
in this paper, but it could be included in the algorithm belowin
the exact same way asβi. Under this setup, we want to adjust

3The reward has to be seen in the light of the relationship between the
Gaussian distribution and Gauss’ principle for constrained motion as suggested
already by Carl-Friedrich Gauss in his original work [17].

Algorithm: Learning for Operational Space Control
1 for each new data point [ẍk

ref,q, q̇k,uk]
2 Add (q, q̇,u) → ẍ to the forward model regression.
3 Determine the current number of modelsn and

localizations of the forward modelswi (q, q̇).
4 Compute desired null-space behavioruk

0 = f
`

qk, q̇k
´

.

5 Compute costsCk
1 =

`

uk
1

´T
N

`

qk
´

uk
1 with uk

1 = uk
− uk

0 .
6 For each modeli = 1, 2, . . . , n

Update mean cost:

7 σ2
i =

Pk
h=1 wk

`

qh, q̇h
´

Ck
1

.

PN
k=1 wk

`

qh, q̇h
´

,

Compute reward:
8 r (u) = σi exp

`

−0.5σ2
i Ck

1

´

Add data point to weighted regression so that:
9 Φi = [qi, q̇i, ẍi

ref]
10 Ui = ui

11 W = diag
`

r
`

u1
´

w1, . . . , r (un) wn
´

Perform policy update by regression
12 βk+1 =

`

ΦT WΦ
´

−1
ΦT WU,

13 end
14 end

TABLE I

THIS TABLE SHOWS THE COMPLETE LEARNING ALGORITHM FOR

OPERATIONAL SPACECONTROL. SEE TEXT OF DETAILED EXPLANATIONS.

the parameters of the local controllers such that we minimize
the expected return

Ji (θ) =

∫

πi (u) r (u) du ≈
N∑

k=1

πi

(
uk
)
r
(
uk
)

(15)

of the immediate reward (hence the state variableq, q̇, ẍref

are dropped from the equation while implicitly present). This
maximization is not directly possible, however, we can maxi-
mize the lower bound of thelog J (θ) transformation, i.e.,

log J (θ) = log

N∑

k=1

q
(
uk
) πi

(
uk
)
r
(
uk
)

q (uk)
, (16)

≥
N∑

k=1

q
(
uk
)
log

πi

(
uk
)
r
(
uk
)

q (uk)
, (17)

=

N∑

k=1

q
(
uk
) (

log πi

(
uk
)

+ log r
(
uk
))

︸ ︷︷ ︸

Qi(βi,σ2

i )

+ ε, (18)

whereε denotes the terms which do not depend on the local
controllers’ parametersβi or the open parameterσ2

i ; we set
q
(
uk
)

= π̃(u)r (u)wi (q, q̇) as in [18] as fixed sampling.
This yields the two steps of an expectation-maximization
algorithm, i.e., computingQ

(
βi, σ2

i

)
and the maximizing the

lower bound by maximizingQ
(
βi, σ2

i

)
. The maximization

step [βi,σ
2
i ]T = arg maxβ,σ̂2 Q(β̂, σ̂2) can be obtained by

setting∂Q(β̂, σ̂2)/∂β̂ = 0 and∂Q(β̂, σ̂2)/∂
(
σ̂2
)

= 0, which
yields both Equation (14) and a rule for estimatingσ2

i , i.e.,

σ2
i =

∑N
k=1

wi
(
qk, q̇k

) (
uk

1

)T
N
(
qk
)
uk

1
∑N

k=1
wi (qk, q̇k)

. (19)

This rule is surprisingly intuitive and has significant impor-
tance as it decreases the sensitivity of the learning process



towards regions with too sparse data. Note, that this derivation
can also be understood as minimizing the Kullback-Leibler
distanceD(rσ2

i

(u) q (u) , πi (u)) with respect toβi and σ2
i ,

which is similar to the weighted regression point of view. The
complete algorithm is shown in Table I.

D. An Outlook on Future Work: Using Intertia-based Metrics
without having the Mass Matrix

In order to learn several important control laws known
from analytical robotics, e.g., Khatib-Gauss [1] and Hsu-IDM
Control Laws [2], our learning algorithm needs to be modified
in order to be able to compute the appropriate rewards. In
Section II-C, we have assumed that the rewardr (u,q) =
exp

(
−uTN (q)u

)
can be computed without difficulty which

is the case, e.g., forN (q) = const. However, this is not the
case for metrics in the formN (q) = M−n (q) as these require
the exact determination of the expensive and error-prone
inertia tensor. Therefore, when trying to learn an operational
space controller with this kind of a metric, we would run
into the same kind of difficulties as analytical approaches
with modeling errors, or, at least, learn a different control
law, which does not fully realize the interesting properties
of the desired control law, e.g., the Khatib-Gauss control
law. Nevertheless, through a reformulation of the learning
problem, we can compute the reward without explicitly using
the inertia tensor when employing a forward-inverse modeling
approach similar to [16]. For this reformulation, we realize
from Equation (1) that

M−1u1 = q̈−M−1(F+u0) = q̈−gβ (q, q̇,u0) ≡ δq̈, (20)

where q̈ = gβ (q, q̇,u) denotes a learned forward model
(or predictor) which predicts acceleration for a given motor
commandu at the joint positionsq and velocitiesq̇. Using
this motor command induced acceleration differenceδq̈, we
can determine the rewards for Khatib-Gauss and Hsu-IDM
control laws by

rK (u) = exp(−uT
1 M−1u1) = exp(−uT

1 δq̈), (21)

rH (u) = exp(−uT
1 M−2u1) = exp(−δq̈T δq̈), (22)

respectively. This approach has been tested successfully on the
prismatic robot.

III. E VALUATIONS

In order to demonstrate the feasibility of our learning ap-
proach, we evaluated our learning operational space controller
on a three degrees of freedom, planar robot arm similar as
in [19]. Evaluations on an anthropomorphic seven degrees of
freedom SARCOS master arm robot arm are in progress.

A. Simulated Experiment

We assume the three degrees of freedom planar robot shown
in Figure 3. The links have the lengthl1 = l2 = 35 cm and
l3 = 3 cm. The mass of the links is given asm1 = m2 =
m3 = 3 kg. The dynamic equations of the robot used in the
simulator have been automatically derived using the Newton-
Euler methodology.
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Fig. 3. We consider a three degrees of freedom, rotary robot for tracking
control for the experiments. The units are meters and, fullyextended, the
robot arm extends to1m length
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Fig. 4. This figure shows both the analytical controller (blue solid in
background) and the learned controller (green dashed). Thetask space tracking
of the learned controller is perfect and can barely be differed from the
analytically obtained optimal solution.

The goal of the experiment is to learn how to track oper-
ational space trajectories in a limited part of the workspace,
i.e., when the end-effector is in the rectangle of horizontal side
length of30 cm, a vertical side length of20 cm and a center
at x = 50 cm andy = 10 cm. It can be easily verified that in
this region the robot dynamics is highly nonlinear, particularly
at higher speeds of the robot.

The metric of the cost function is constant and given by

N = diag (4.44, 1.01, 0.07) , (23)

and results from the reasoning that in the worst case position
q = 0, it will be close to the square of the diagonal of the
linearized mass matrix. Furthermore, we assume the presence
of a null-space control lawu0 = −KN

D q̇ − KN
D(q − qrest)

pulling the robot towards a rest position

qrest = [−1.2366, 1.64, 0.95485]
T

, (24)

which corresponds to a joint-space position which brings the
end-effector roughly to the center of the considered workspace.



The gains of the null-space component are given byKN
D =

diag(20, 6, 2), andKN
P = diag(0.5, 0.3, 0.1). Note, that this

null-space term corresponds to a spring in joint-space which
is most of the time extended due to the task constraints, hence
the lowerKN

P gains.

B. Results

The experiment consists out of two phases. In the first phase,
the control law is trained using data generated by another
policy while in the second phase the learned control law
is used to generate more data. During the first phase, we
generated a sequence of200 arbitrary joint space positions
for which the end-effector was still in the desired workspace
rectangle, and connected these positions in joint-space using
fifth order polynomials in order to create desired trajectories
in joint space of duration1 s. A purposely badly tuned PD
control law, which could not track the trajectories accurately,
was used to generate the data. This data was added to the
learning system and a first operational space control law was
learned. Subsequently, the learned control law was tested on a
figure eight reference trajectory of duration2 s and exhibited
relatively good performance in task space. After two to three
iterations on the figure eight reference trajectory, the task space
tracking performance could not be distinguished from perfect
task space tracking as can be observed in Figure 4; differences
to the optimal control law computed from the perfect analytical
model were negligible, i.e., we obtained nearly perfect task
fulfillment. However, as the null-space control law only pulls
the robot towards a rest posture but does not prescribe a
desired trajectory, small differences in the motor commands
of the learned and the analytical operational space control
laws will result into different joint-space trajectories as can
be observed Figure 5 which shows the all three joint-space
position over time in the Figures 5 (a-c) and all three joint-
space velocities over time in the Figures 5 (d-f). As a resultof
differing joint-space trajectories the motor commands do not
of both control laws cannot be compared and are different at
the same time step, see Figures 6(a-c) which shows all three
motor commands over time. In order to verify that we did in
fact learn the optimal control law, we compared the outputs
of both the learned control law and the analytical optimal
control law when using the exact same trajectory as inputs.
The outputs of both control laws match nearly perfectly as
shown in Figure 6 (d).

IV. CONCLUSION

In this paper, a general learning framework for operational
space for redundant robots has been presented, which is
probably the first successful attempt of learning such control
laws to date. We overcome the difficulties of having a non-
convex data distribution by only learning in the vincinity of a
local model anchored both in joint velocity and joint position.
The local regions are obtained by learning forward models,
which predict the movement of the end-effector. The global
consistency of the redundancy resolution of the local model
controllers is ensured through minimizing the cost function of
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Fig. 5. Figures(a-c) show the joint positions and Figures (d-f) the joint
velocities which result from the task space tracking for both the analytical
control law (blue solid) and the learned control law (green dashed). The
difference between the two controllers in joint-space results from accumulated,
very small differences between the analytical and the learned control laws as
observable in 6(d).



0 0.5 1 1.5 2
0

20

40

60

M
o

to
r 

c
o

m
m

a
n

d
 u

11

Time t

(a) Motor commandu1

0 0.5 1 1.5 2
0

20

40

M
o

to
r 

c
o

m
m

a
n

d
 u

12

Time t

(b) Motor commandu2

0 0.5 1 1.5 2
0

20

40

M
o

to
r 

c
o

m
m

a
n

d
 u

12

Time t

(c) Motor commandu3

0 0.5 1 1.5 2
-10

0

10

20

30

40

50

60

M
o

to
r 

c
o

m
m

a
n

d
s
 u

1 1
,u

2 1
,u

3 1

Time t

(d) Comparison with ideal output on the same trajec-
tory.

Fig. 6. Figures (a-c) show the motor commands for tracking example for
the joint-space trajectories shown in Figure 5. In Figure (d), we compare the
outputs of both analytical and learned control laws on the same trajectory and
observe only small differences.

operational space control. This cost function, derived in our
previous work, is crucial to the success of this framework
and its absence has most likely been the reason for the
absence of learning operational space controllers to date.
The resulting learning algorithm for the local models can be
understood from two perspective, i.e., as a weighted regression
problem where we intend to match the reward weighted motor
commands (after transforming the cost into a reward) or as a
reinforcement learning problem where we attempt to maximize
an immediate reward criterion. Throughout this paper, we have
illustrated the problems and advantages of learning operational
space control using a prismatic two degrees of freedom robot

arm as example. As application, we have shown a task-space
trajectory following on a three degrees of freedom rotary
robot arm, where we could exhibit near-perfect operational
space tracking control. As robotics increasingly moves away
from the structured domains of industrial robotics towards
complex robotic systems, which both are increasingly high-
dimensional and increasingly hard to model, such as humanoid
robots, the techniques and theory developed in this paper will
be beneficial in developing truly autonomous and self-tuning
robotic systems.
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