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Abstract— While operational space control is of essential im- as all these terms are not observable and are therefore not
portance for robotics and well-understood from an analytial syitable for formulating supervised learning as tradityn
point of view, it can be prohibitively hard to achieve accurae used in learning control approaches [5].

control in face of modeling errors, which are inevitable in . . .
complex robots, e.g., humanoid robots. In such cases, ledng In th.|s paper, we will suggest a_ novel apProaCh to learning
control methods can offer an interesting alternative to ansytical ~OPerational space control that avoids extracting suclttred
control algorithms. However, the resulting learning problem is knowledge, and rather aims at learning the operationalespac
ill-defined as it requires to learn an inverse mapping of a control law directly. To develop our approach, we will prede
usually redundant system, which is well known to suffer from a5 follows: firstly, we will review operational space cofitro

the property of non-convexity of the solution space, i.e., e and discuss where learning can be beneficial. Secondly, we
learning system could generate motor commands that try to 9 ) Y

steer the robot into physically impossible configurationsA first ~ Will pose operational space control as a learning problech an
important insight for this paper is that, nevertheless, a plysically discuss why standard learning techniques cannot be applied
correct solution to the inverse problem does exit when leaiing  straightforwardly. Using the alternative understandifigpp-

of the inverse map is performed in a suitable piecewise linga grational space control as an optimal control technique, we

way. The second crucial component for our work is based on reformulate it as an immediate reward reinforcement leayrni
a recent insight that many operational space controllers ca be N

understood in terms of a constraint optimal control problem.  Of pqlicy search problem and suggest novel a|gorithm§ for
The cost function associated with this optimal control protlem learning some of the most standard types of operational

allows us to formulate a learning algorithm that automaticdly  space control laws. These new techniques are evaluated on

synthesizes a globally consistent desired resolution ofdendancy 5 gimulated three degree-of-freedom robot arm.
while learning the operational space controller. From the vew

of machine learning, the learning problem corresponds to a A. Notation and Remarks

reinforcement learning problem that maximizes an immediae . .
reward and that employs an expectation-maximization polig Throughout this paper, we assume the standard rigid body

search algorithm. Evaluations on a three degrees of freedom Model for the description of the robot, i.e.,
robot arm illustrate the feasibility of the suggested apprach. . . .
w P Hos PP M(q)4+C(q,q)+G(q) +e(q,q)=u, (1)

. INTRODUCTION whereq, 4, § € R™ denote the joint coordinates, veloci-

Operational space control is one of the most elegant s;;)qs and accelerations of the robot, respectively. Theuesq

proaches to task control due to its potential for dyna enerated by the motors of the robot, also referred to as

i n
ically consistent control, compliant control, force catr motor commands, are given by € R". FurthermoreM (q)

hierarchical control, and many other favorable prope,rtie%emtes the inertia tensor or mass maktixq, 4) the Coriolis

with applications from end-effector control of manipulato and centripetal forcesz (q) is gravity ande (q, q) denotes

. : . .unmodeled nonlinearities.
[1], [2] up to balancing and gait execution for humanoi . . .
: In operational space control, we intend to execute trajecto
robots [3]. If the robot model is accurately known, oper-

. : A _ries or forces! given in the coordinate system of the actual
ational space control is well-understood yielding a varie . . .
. . ) . : : ask. A well-studied example is a manipulator robot arm wher
of different solution alternatives, including resolveaiinn o . .
! position and orientation of the end-effector are contrbltH],
rate control, resolved-acceleration control, and foraseul ) . L .
[2]; however, a variety of further applications exist, sashthe

control [.4]' Hoyvever, pgrtlcularly i compha_nt (i.e., logain) control of the center of gravity for balancing legged robots
control is desired, as in many new robotic systems that ar

) . AVhich can also be thought of as operational space control [3]
supposed to operate safely in human environments, Oplsum'oPosition and orientation € R™ of the controlled element of

space control becomes increasingly difficult in the preseng. oot in task-space, €.g., the end-effector, is givethby

of unmodele(_j nonlinearities, leading to reduced accuracy 9 4 Linematicsx — fimemaics(q). The derivatives yield
even unpredictable and unstable null-space behavior in %16

. . . . oth velocity and acceleration in task space, i.e.,
robot system. As a potential solution to this problem, leagn y ) P
control methods seem to be promising. But learning methods x=J(q)q, x=J(q)d+J(q)q, (2)
do not eaSIIy prowde the hlghly structured knOW|edge rEI]'JJI 1In the more general case, the hybrid creation of forces i space while

!n trz_;tdltlona_l operational ;pgce Cor_]tr0| laws, i.e., ‘]m following a desired trajectory needs to be included. Forpdiwity, we will
inertia matrices, and Coriolis/centripetal and gravityc&s, omit such kind of tasks in this paper.



where J (q) = deinemat!cs(_q) /dq denotes the chopian. We ! /\/’\” \\—\ T E::W
assume that the robot is in general redundant, i.e., it has mo x 05 J \ |- - oNem?
degrees of freedom than required for the task or, equivglent % 0 \\.\ J
n>m. * 05 \ /
\ A
-1 \/\/
B. Operational Space Control as an Optimal Control Problem | o o0z o4 o6 o8

Time t

. : - _ (a) Prismatic 2-dof robot (b) End-effector position (all trajecto-
Using the framework of trajectory tracking as an ex ries coincide almost perfectly with the

ample, the general problem in operational space cdntrol refrence trajectory)e
can be described as follows: generate a control {aw= 1
feontror (9, 4, X4, X4, X4) Which controls the robot along a joint , NeM ;7

space trajectory () , q (¢) (¢) such that the controlled element ' ' o
(e.g., the end-effector) follows a desired trajectory iskta
spacexy (t) ,%q (t) , X4 (t). This problem has been thoroughly = -os N 0.5 . ;

discussed since the late 1980s (e.g., [1], [2]) and, among ) ST

others, has resulted in a class of well-known control laws [4 0 0z 04 06 08 1 o o0z 04 06 08 1
As an important new insight into operational space control
it was recently discovered [6], that many of the suggested
controllers in the literature can be derived as the solubiba
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Fig. 1. When applied to the prismatic robot from Example 1lvahdn

constraint optimization problem given by (a), the three control laws for the metrid¥§ = I (dashed-dot red lines),
. N = M~ (solid green),N = M~2 (dashed blue) result in (b) the same
min Cyp (u) = u'Nu s.t. J§ = %t — Jq, (3) task-space tracking but (c,d) very different joint-spacbadvior. See Example
u

1 for more information.
where N denotes a positive definite metric that weights the

contribution of the motor commands to the cost funCtior(]:’ases additional controls which do not affect the tasks per
and ket = %4 (t) + Ka (%4 () — % (1) + K, (x4 (t) — x (1)) ’ P

. . i formance but ensure a favorable joint-space behavior need
denotes a reference attractor in task space with gain raatn(t:o be included. From the point of view of the optimiza-

Kq and K,,. The resulting control laws or solution of thistion framework. we would select a nominal control law
optimization problem obey the general form [6 v
P P 4 9 [6] (e.g., a force which pulls the robot towards a rest posture
u=N"2IM NVt (et — Jq+IMIF), (4) uo=—-Kpg—Kp(q—gres)), and then solve the constraint

. ~ optimization problem
with F (q,q) = C(q,q)+ G (q) +£ (q,q), and the notation

. T . o S e
D defining the pseudo inverse of a matrix such atD = ~ minCi (u) = (u—up)” N (u—uo) S.t.JG = Xrer — Jq,
I, DDt = I, and with the matrix rootD!/? defined as (6)
D'/2D'/?2 = D. whereu; = u—ug as the task-space control component. The

For example, the resolved-acceleration controller of Hsu general solution is given by
al. [2] (without null space optimization) is the result ofingg N—1/2 —Ang—1/25 fes s, -1
the metricN = M~2, which yieldsu = MJ” (krei—J&)+F, = N7 IMTINTY)T (St — JG + IMTF) ™
and corresponds to a cascade of an inverse dynamics and ant N~ /*(I— (N"/2M ™1 3)(IM~'N~/2)")N'/?u,,
inverse kinematics control law. Another example is Khatib\,here the second summand fulfill the nominal control kW
formulation of operational space control [1], determingd By the null-space of the first term. When having more than
the metricN = M~" and given by two tasks, these can be nested in a similar fashion leading to

w=JT(IMIT) " (et — Jo+ IM'F). ) @ general framewo_rk of hi_erarchical task control _[3], [6].
Example 1: An illustrative example of operational space

Khatib’s solution is special as the met§ = M~! is the control is tracking the end-effector positian= ¢; + ¢» of a
only metric which generated torques that correspond to tpasmatic robot with two parallel links with joint positieny;,
ones created by a physical contraint pulling the robot atbeg ¢», see Figure 1. The mass matrix will B = diag (m1,0)+
trajectory [6], [7], i.e., it is the metric used by natureaating m,1 with massesn; = my, = 1 and 1 denoting a matrix
to Gauss'’ principle [7], [8] and it is invariant under chargfe with all coefficients equal to one. The internal forces are
joint coordinates [9]. Other metrics such®s= const can be F = 0, the Jacobian isJ = [1,1]7 and its derivative] = 0.
used to distribute the required forces differently, e.gchsthat If no joint-space control law is selected, i.aiy = 0, the
stronger motors get a higher portion of the generated forogentrol law in the form of Equation (4) for executing the
[6]. task Zret = #q + Kq(iq — &) + Kp (xq —x) would result

Even when achieving the task perfectly, the joint-spadeto unstable behavior for most metri@ds. When adding a
trajectories can result into unfavorable postures or egant-j ug = —Kpg — Kpq pulling the robot towardsgrest = 0,
space instability (see Example 1 below). For handling suele obtain stable tracking with very different propertiescas



be observed in Figure 1: (i) metritN = I will result into 2 P N 2

the second link tracking the end-effector and the null-spac ~ |« & RV B

component stabilizing the first link, (i) metl¥ = M~ will < oo f,jj'f’ s |

distribute the task on both links evenly and have the null-g ol & L YR g o

space component decouple the two links, while (iii) metric | ® .7 A o® S

N = M2 simply minimizes the squared acceleration. g .7 S@ g \
We will use this simple robot example (Example 1) to > |7 R = |

illustrate various other issues below as it allows easyydical 2 o N |

understanding and graphical visualizations. ? Notorcommandy - 2 otor command J 2

C. Why should we learn Operational Space Control? (a) Unweighted datasets (b) Reward weighted datasets

When an accurate analytical model of the robot is available

and its parameters can be well-estimated operationalespﬁ' . 2. This figure illustrates how (a) different data setsutein different
! solutions if each data point is treated with equal imporattbe blue dash-

Fontml laws can be highly _SucceSSfm (1], [3], [4]. H_OWeverdot line corresponds to the blue diamonds and the red dashedd the
in many new complex robotic systems, e.g., humanoid robotsj circles). If these data points are (b) weighted downgusire Gaussian

space robots. etc.. accurate analytical models of the rolﬁ%‘it function (here indicated with the metid = M~ as solid thin black
! o ines) the solutions of different data sets will consigieapproximate optimal

dynamics are not available due to significant depatures frQ@jtions shown in the solid cyan line. While for the lineaismatic robot

idealized theoretical models such as rigid body dynamios. Fone could live with any solution in (a), different local sténs have to create
instance. in our experience with anthropomorphic robats. U& consistent global solution for nonlinear robots. Thezantal faintly dotted

' . ' Iines in (a) and (b) indicate contour lines of equal taskespacceleration.
modeled nonlinear effects were caused by complex hydraulic

actuator dynamics, hydraulic hoses and cable bundlesdoute

along the light weight structure of the robot as well as c@Rpl yrajectories in joint-space, which were to be executed by a
friction effects. Trying to model such nonlinearities islitfle given joint-space control law. The combination of a learned
use due to the lack of generality of such an approach, apgerse kinematics and a learned inverse dynamics coairoll
the daunting task of deriving useful models for the unknOV\{qO]’ [13], [14] can only be found occasionally in the litaree.
effects. To the best of our knowledge, full operational space control

Example 2: In the prismatic robot from Example 1, alreadiaws with redundancy have not been addressed by general
small unmodeled nonlinearities can have a drastic efféthd learning approaches to date.

estimated mass matrix of the robd = diag (mq,0) +mal _
just differs from the trudVI by M, — Mg = Moy — Moy = A Can Operational Space Control be learned?
0.5sin (1 + ¢2), €.9., through unmodeled properties of cables, Learning operational space control is equivalent to obtgin
then the resulting control law will result in unstable anda mappingq, q, Xref) — u from sampled data using a function
unpredictable null-space behavior despite that accuratkt approximator. However, as the dimensionality of the task-
space tracking is theoretically still possible. On a reaypltal space reference trajectofyes is lower than the one of motor
system, excessive null space behavior saturates the maftorsommandu, there are infinitely many solutions farfor most
the robot, such that also task space tracking degrades, lamd joint positionsq, and joint velocitiesq. For the illustrative
entire control system goes unstable. linear case in Example 2 without a null-space componery, thi
Example 2 demonstrates how a small modeling error derapping corresponds to a line in the plane of possible cbntro
creases the performance of the operational control law alagvs as shown by the two lines in Figure 2(a).
can result in joint-space instability even for simple rabdior A major problem arises in the case of a robot with rotary
light-weight robot arms or full-body humanoid robots, sucfoints as the motor commandsachieving the same reference
problems become even more frequent and difficult to copecelerationk,es are no longer form a convex set, a problem
with. Traditionally, this problem is be fixed by the engineefirst described in the context of learning inverse kinemat-
improving the approximation the plant by hand; however, facs [11], [14]. Thus, when learning the inverse mapping
operational space control of low-gain controlled lightig¥eé (q, q,Xrt) — u, the learning algorithm will average over
robots which are hard to model, learning is a promising novehconnected sets of the solutions which can result in idvali
alternative and will be discussed in Section II. solutions to the learning problem. Therefore, the learning
problem is ill-conditioned such that directly learning riro
samples with supervised learning techniques is not seitabl
Nevertheless, the convexity issues can be resolved by
Learning operational space control with redundant manipemploying a spatially localized supervised learning syste
lators is largely an unexplored problem and the literatuas hwhich, in our case, needs to spatially localized based oh bot
only few related examples. Among those, learning appraacheint space position and velocity — such an approach was first
to task level control focussed mostly on an inverse kinemattroduced in the context of inverse kinematics learning][1
ics end-effector control [10]-[14], i.e., learning an inse [14]. The feasibility of this idea can be demonstrated simpl
kinematics mapping, in order to create appropriate refaexerby averaging over the combination of Equations (2) and (1)

II. LEARNING METHODS FOROPERATIONAL SPACE
CONTROL



which yields that by averaging over the exact same spatBl Combining the Local Controllers and Ensuring Consistent

positionq, and velocityq, we have Resolution of Redundancy
- . . .. In order to control a robot with these local control laws,
%= (%)= <JM (u+F)+ Jq> (8) they need to be combined into a consistent global contral law
=IM ' (u+F)+Jqg=IM ! (U+F)+Jq, The combination is given by a weighted average [15]:
_ n 7 N\ [T T [
i.e., in the vicinity of sameq,q, a particularx will always u= 2imy W (nq’ q)i[xref,.q 118 ) (12)
correspond to exactly one particular 2. Therefore, locally iz ' (a,4)

linear controllers ; e e . L
where each control Iawb(q,q,xref) is just valid in its local

region computed byv’ (q, ¢), and 3¢ are the parameters of
each local operational space control law.
However, while the mappinggy, 4, Xrer) — u can properly

ui = Ci,@ (q7 (-17 5ETEf) = [i;fzéfa qTa 1]/617 (9)
can be used if they are only active in a region arogng (note

that we added constant input in Equation (9) to account f F Ieacrlne(; Iocally mh the nghborhood (r)]f Sowne, due to
the intercept of a linear function). From a control engiregr the redundancy in the robotic system, there IS no guaraniee

point of view, this argument corresponds to the insight tthat {;\cr(;)ssht.he Ioglal map()jplngs trf:edsamedtype Off srcl)lu.Uon IS
when we can linearize the plantin a certain region, we can fifgauired. This pro lem IS due tp t_e ependence o the levers
a local control law in that region by treating the plant agdin solution on the training data distribution in each local miod
and, in general, linear system do not have the problem —fi.e., different distributions will pick different solutns for

non-convexity of the solution space when learning an irever: € inverse mapping from the infinity of possible inverses. |
function Figure 2 (a), we demonstrate this effect. While this probiem

Next we need to address how to find an appropriate piecneqt devastating for the prismatic robot from Example 1, it is

wise linearization for the locally linear controllers. Ftis resu_lts in severe proplems for any nonlinear robot re_qg|irin
purpose, we learn a locally linear forward or predictor modénulnple, consistent _Imear models. The.re are tWO. d!ffderen

approaches to tackling such problems: (1) by biasing the
system towards using a pre-processed data set such that it ca
only produce one particular inverse solution [14], and () b
Learning this forward model is a standard supervised Iegrni:(r;cgrg?;gm?oi C;:téf;vrﬁr(ljeﬂ\jvnh?gﬁr\]/vlirlll gredgirst:u];i\godr g\?::ran
problem, as the mapping is guaranteed to be a proper functiof ( P

A method of learning such a forward model that automaticalhs/ shown Figure 2 (b)). The first approach lacks generality an

also learns a local linearization is Locally Weighted Pecoeje an bias the learning system such that the task is not pgoper]

tion Regression (LWPR) [15], a fast online learning metho%ccompllshed anymore. The major shortcoming of the second

which scales into high-dimensions, has been used for ieve?spproaCh is that the choice of the cost/reward function is in

dynamics control of humanoid robots, and can automatica rllleraltﬂonl-tnwaldandl (tj_etermmes the learing algoridn
determine the number of local models that are needed & has € .elarne sowtion. findi incinled h
represent the function. The membership to a local model jsThe crucial component to finding a principled approac

determined by a weight generated from a Gaussian kerneli© this inconsistency problem is based on the discussion in
Section I-B and previous work [6]. Operational space cdntro

‘ 1 T can be seen as a constrained optimization problem with a cost
w'(q, q) =exp (5({ a } — ci> D’ ({ d ] — cl>> function given in Equation (3). Thus, the cost function lothse
1 1 approach for the creation of a consistent set of local clatso

( for operational space control can be based on this insidtg. T

cent(_ered ate; In (q,q)-spacg, .and shgped .by. a d'Stancgost function can be turned into a immediate rewa(d) by
metric D;. For a closer description of this statistical learnin

Bunning it through an exponential function:
algorithm see [15]. 9 9 p

For_ each local forward model createql by LWPR, we au-r (u) = gexp(_o_50201 (u)) = oexp (—a‘Qquul),
tomatically create a local controller. This approach ofrpai
wise combining predictors and controllers is related by thehereo is a scaling factor and the task space commane-
MOSAIC architecture [16] where the quality of predicting a1 — uy can be computed using a desired null-space behavior
task is used for selecting which local controller should bedu u, (e.g., pulling towards a rest posture as discussed in $ectio
for the task. I-B). The scaling factor does not affect the optimality of a
solutionu as it acts as a monotonic transformation in this cost
2Note, that the localization in velocity; can be dropped for a pure rigid function. However, it can increase the efficiency of theraay
body formulation as it is linear in the;q; for all degrees of freedor, j; algorithm significantly when only sparse data is available
this, however, is not necessarily desirable as it will add mguts to the local . . . . .
for learning (i.e., as for most interesting robots as thehhig

regression problem which grows quadratically with the nemif degrees of '~ : ' )
freedom. dimensional action spaces of complex robots will hardlyreve

%' =pyla,qu) = [" v, 16, (10)



be filled densely with datd) These local rewards allow us the Algorithm:_Learning for (?.ierat'().nkal Skpace Control
I ; . . 1 for each new data point [¥%;, q, 4", u”]
ref_ormulation of our.Iearning problem as .afnmed.iate rewar.d 2 Add (q, 4, u) — % to the forward model regression.
reinforcement learning problefi8], as will be discussed in| 3 Determine the current number of modelsand
Section II-C. localizations of the forward models® (q, q).
. .. .l a4 Compute desired null-space behavigf = f (q*, ¢*).
We are now in the position to formulate a supervised © T P
. : . 5 Compute cost&F = (uf)” N (q”) uf with uf = u* —uf.
learning algorithm_for _the Iocal_operational space con‘&rel_ 6 For each modeli = 1.2, ... ,n
The task constraint in Equation (3) as well as the rigid Update mean cost:
body dynamics in Equation (1) are automatically fulfilled 7 o2 =% wk (q" g") CF /Zszlwk (g™, a"),
by all data sampled from the real robot similar to a self- Compute reward: y
supervised learning problem. Therefore, for learning twal | & r(w) = o exp (—0.5070F)
. . . Add data point to weighted regression so that:
operational space controllers, we have obtained a locehtin| o B, = g, 4, % ]
. . . L L) 7 “rred
regression problem where we attempt to learn primarily fropo U, =u’
the observed motor commandd which also have a high| 11 W = diag (r (u') w',...,7 (u") w")
rewardr(u*) within each active local modetj(q*, §*, X%,). Perform policy update by regression
AN C : r 12 Bri1 = (8TWS) ' #TWU,
An intuitive solution is to use reward-weighted regressian, | i3 end
find the solution which minimizes 14  end
9 TABLE |
Zr q q ) (ulC —[x fefT, q]C T ,1]8° ) — min, THIS TABLE SHOWS THE COMPLETE LEARNING ALGORITHM FOR
k=1 OPERATIONAL SPACE CONTROL. SEE TEXT OF DETAILED EXPLANATIONS.

(13)
for each controllei. The solution to this problem is the well-

known weighted regression formula: o
the parameters of the local controllers such that we mirémiz

8= (<I>TW<I>)71 »TWU, (14) the expected return
N
with rows in the matrice® andU : &, = [X fefT,q’“T 1], J (0 :/ ) du ~ (K k 15
U, = u®T and W, = T‘(ui) w(qi,('f). When employing ( ) T (U)T(u) u ZTFZ (u )7’(11 ) (15)

this reward-weighted regression solution, we will coneer
to a globally consistent solution across all local conél

The learning algorithm is shown in Table | together with an
additional component derived in Section II-C. Note thas thi
step was only possible due to the essential cost function'in

gof the immediate reward (hence the state variaiplé, X e
are dropped from the equation while implicitly present)isTh
maximization is not directly possible, however, we can maxi
ize the lower bound of thivg J (0) transformation, i.e.,

Equation (6) from our previous work. N

a ©) P logJ(O)zlong(u )%, (16)
C. Rephrased as a Reinforcement Learning Problem k=1

Origir_ially, we derived this algorithm fiom a .Weighted > XN:q(uk) log ( k)r(uk)’ (17)
regression point of view. However, this point of view is not Pt q (uk)
completely satisfying as it still has the open parametér N
which determines the speed of convergence of the learning — Zq (u) (log m; (u*) +logr (u*)) +¢, (18)
controllers. An alternative view point, i.e., in the franmuak of 1
reinforcement learning, allows deriving the previous aildpon
together with a computation rule far> by employing an Qi(810?)

approach similar to the one suggest in Dayan & Hinton [18vherec denotes the terms which do not depend on the local
For this purpose, we assume that we have a sampling processtrollers’ parameter@’ or the open parameter?; we set

or sampling policy7(u), e.g., the robot moving along 5-thg (u*) = 7(u)r (u) w’ (q,¢) as in [18] as fixed sampling.
order polynomial trajectories in joint space towards ranjo This yields the two steps of an expectation-maximization
chosen joint-space targets by employing a simple PD cdetrolalgorithm, i.e., computing) (3’, ¢?) and the maximizing the

in joint space. Additionally, we have IocaI stochastic coht lower bound by maximizing? (Bl ) The maximization
policies given by, e.g.m (u) = N (u|&L, 47, 118", %), step[Bi,02]T = argmaxg 52 Q(3,52) can be obtained by
where N/ denotes a normal distribution. For simplicity, WesettingaQ(B,c}2)/6B — OandaQ(B,érQ)/ﬁ (5,2) = 0, which
assume that the varianée of the normal distribution is fixed yields both Equation (14) and a rule for estimating i.e.,

in this paper, but it could be included in the algorithm below N ok &F) (k)T k\ 1,k

the exact same way &¥. Under this setup, we want to adjust o2 — Srmw' (a",d") (uf) N(q )“1. (19)

i N ; .
PONERTICLN LY
3The reward has to be seen in the light of the relationship éamthe Thi le i isinglV i . d h ianifi .
Gaussian distribution and Gauss’ principle for constrdimstion as suggested IS rule Is surprisingly intuitive an as significant inmpo

already by Carl-Friedrich Gauss in his original work [17]. tance as it decreases the sensitivity of the learning psoces




o
N

——— — — — — ==

towards regions with too sparse data. Note, that this digiva
can also be understood as minimizing the Kullback-Leibler
distanceD(r,2 (u) ¢ (u) ,7; (u)) with respect to3; ando?,
which is similar to the weighted regression point of vieweTh
complete algorithm is shown in Table I.

Position x,

o

D. An Outlook on Future Work: Using Intertia-based Metrics
without having the Mass Matrix

In order to learn several important control laws known
from analytical robotics, e.g., Khatib-Gauss [1] and HBMI ¢
Control Laws [2], our learning algorithm needs to be modified o \\% S onx,
in order to be able to compute the appropriate rewards. In \ ‘

Section 1I-C, we have assumed that the rewarfd,q) = \

exp (—u”N (q) u) can be computed without difficulty which

is the case, e.g., fdN (q) = const. However, this is not the Fig. 3. We consider a three degrees of freedom, rotary raotrécking
case for metrics in the formy (q) —M" (q) as these require control for the experiments. The units are meters and, feltended, the

. . : robot arm extends té m length
the exact determination of the expensive and error-prone

inertia tensor. Therefore, when trying to learn an openatio

space controller with this kind of a metric, we would run
into the same kind of difficulties as analytical approaches
with modeling errors, or, at least, learn a different cohtro

o
o

o
>

3DoF: Task Space

law, which does not fully realize the interesting propestie | \ / \

o
o
~

of the desired control law, e.g., the Khatib-Gauss control & \ / |
law. Nevertheless, through a reformulation of the learning % 0.1 )( ‘
problem, we can compute the reward without explicitly using & 008 / \ r
the inertia tensor when employing a forward-inverse maodgli '\ / \ |
approach similar to [16]. For this reformulation, we realiz 0.061| / \\ /
from Equation (1) that WA // \ /
\ / 1\\ /

Mil“l = q_Mil(F"i_uO) = q_g,@ (q7 (.11 uO) = 6(1, (20)

whereq = gg(q,q,u) denotes a learned forward model

(or predictor) which predicts acceleration for a given rmotoF_ 4
ig.

0.44 046 048 05 052 0.54 0.56
Positionx1

. . e . . . This figure shows both the analytical controller éblsolid in
commandu at the joint positionsy and Ve|OCItIeSq. Using background) and the learned controller (green dashed)taBkespace tracking

this motor command induced acceleration differedée we of the learned controller is perfect and can barely be diffefrom the
can determine the rewards for Khatib-Gauss and Hsu-ID#palytically obtained optimal solution.
control laws by

rk (u) = exp(—uf M 'uy) = exp(—uf 6§), (21)  The goal of the experiment is to learn how to track oper-
(22) ational space trajectories in a limited part of the workspac
i.e., when the end-effector is in the rectangle of horizbsitie
respectively. This approach has been tested successfullyeo |ength of30 cm, a vertical side length 020 cm and a center
prismatic robot. atz = 50cm andy = 10 cm. It can be easily verified that in
this region the robot dynamics is highly nonlinear, patacky

IIl. EVALUATIONS )
. . at higher speeds of the robot.
In order to demonstrate the feasibility of our learning ap- +1,o metric of the cost function is constant and given by
proach, we evaluated our learning operational space dtartro
(23)

on a three degrees of freedom, planar robot arm similar as
in [19]. Evaluations on an anthropomorphic seven degrees of

freedom SARCOS master arm robot arm are in progress and results from the reasoning that in the worst case paositio
" q = 0, it will be close to the square of the diagonal of the

A. Simulated Experiment linearized mass matrix. Furthermore, we assume the presenc
We assume the three degrees of freedom planar robot sh&fr null-space control lawy = ~K3q — K (q — dres)

in Figure 3. The links have the length = I, = 35cm and Pulling the robot towards a rest position

I3 = 3cm. The mass of the links is given ag; = mqy = T
. ) . = [—1.2366,1.64,0.95485]" ,

ms = 3kg. The dynamic equations of the robot used in the rest = | ]

simulator have been automatically derived using the Newtowhich corresponds to a joint-space position which brings th

Euler methodology. end-effector roughly to the center of the considered waakep

ry (u) = exp(—u{M_Qul) = exp(—&iT&i),

N = diag (4.44,1.01, 0.07),

(24)



The gains of the null-space component are givenkpy =
diag(20,6,2), and K¥ = diag(0.5,0.3,0.1). Note, that this -40
null-space term corresponds to a spring in joint-space hwhic
is most of the time extended due to the task constraints,ehenc
the lowerK% gains.

-60
-80 r \/
B. Results 100 7 05 1 15 2

The experiment consists out of two phases. In the first phase, Time t
the control law is trained using data generated by another (@) Joint positiong;
policy while in the second phase the learned control law 100(
is used to generate more data. During the first phase, we 90 \/
generated a sequence 200 arbitrary joint space positions
for which the end-effector was still in the desired workspac 80
rectangle, and connected these positions in joint-spaicg us 70 ‘ ‘
fifth order polynomials in order to create desired trajeewr 0 0.5 1 1.5 2
in joint space of duratiorl s. A purposely badly tuned PD Time t
control law, which could not track the trajectories accelat (b) Joint positiong>
was used to generate the data. This data was added to the 8

0
learning system and a first operational space control law was
60 \/ N4
0.5 1

learned. Subsequently, the learned control law was tested o
40
0

Position g ’

Position a,

Position d,

figure eight reference trajectory of durati@s and exhibited
relatively good performance in task space. After two to ¢hre
iterations on the figure eight reference trajectory, thke $psce
tracking performance could not be distinguished from ptrfe Time t
task space tracking as can be observed in Figure 4; diffesenc (c) Joint positiongs
to the optimal control law computed from the perfect anabiti 100¢

model were negligible, i.e., we obtained nearly perfeck tas
0 \/\/
100 : : :
0

1.5 2

Velocity dq1

Velocity dq2

Velocity dq3

IV. CONCLUSION

(f) Joint velocity g3

fulfilment. However, as the null-space control law only Ipul
the robot towards a rest posture but does not prescribe a
desired trajectory, small differences in the motor comnsand ‘
of the learned and the analytical operational space control 0.5 1 15 2
laws will result into different joint-space trajectories aan Time t
be observed Figure 5 which shows the all three joint-space (d) Joint velocityq;
position over time in the Figures 5 (a-c) and all three joint- 100
space velocities over time in the Figures 5 (d-f). As a resiult
differing joint-space trajectories the motor commands db n 0 /\/\\
of both control laws cannot be compared and are different at ‘ </
the same time step, see Figures 6(a-c) which shows all three P ) ) ) ,
motor commands over time. In order to verify that we did in 0 0.5 A 1.5 2
fact learn the optimal control law, we compared the outputs Time t
of both the learned control law and the analytical optimal (e) Joint velocityga
control law when using the exact same trajectory as inputs. 100
The outputs of both control laws match nearly perfectly as /\
shown in Figure 6 (d). 0 \,/\k
/ )
In this paper, a general learning framework for operational %% 0.5 N 1.5 2
space for redundant robots has been presented, which is Time t
probably the first successful attempt of learning such obntr
laws to date. We overcome the difficulties of having a non-
convex data distribution by only learning in the vincinitiya Fig- 5. Figures(a-c) show the joint positions and Figures) (the joint
LT . . .. velocities which result from the task space tracking forhbtite analytical
local model anchored both in joint Ve|0C|ty and joint pasm control law (blue solid) and the learned control law (greeasteed). The
The local regions are obtained by learning forward modelsfference between the two controllers in joint-space ltegtom accumulated,
which predict the movement of the end-effector. The glob¥g" small differences between the analytical and the &zhoontrol laws as
consistency of the redundancy resolution of the local mode servable in 6(c).
controllers is ensured through minimizing the cost funcid



1
1

Motor command u

2
1

40 \-

% /\_/

0 0.5 1 1.5 2
Time t

(a) Motor commandu;

arm as example. As application, we have shown a task-space
trajectory following on a three degrees of freedom rotary
robot arm, where we could exhibit near-perfect operational
space tracking control. As robotics increasingly movesyawa
from the structured domains of industrial robotics towards
complex robotic systems, which both are increasingly high-
dimensional and increasingly hard to model, such as hurdanoi
robots, the techniques and theory developed in this pager wi
be beneficial in developing truly autonomous and self-tgnin

20 /\//\\
0 0.5 ; r]11 N 15 2 a

Motor command u

(b) Motor commancus
40 2]

20 /\//\\ [3]
0 05 1 15 2 [4]
Time t

2
1

Motor command u

(c) Motor commandus

(5]

(6]

(7]
(8]

Motor commands u},uf,u?

El

0.5 1 1.5 2
Time t

[11]

(d) Comparison with ideal output on the same trajec- [12]
tory.

Fig. 6. Figures (a-c) show the motor commands for trackingmgde for (23]

the joint-space trajectories shown in Figure 5. In Figurg e compare the
outputs of both analytical and learned control laws on timestajectory and [14]
observe only small differences.

[15]

operational space control. This cost function, derived im o
previous work, is crucial to the success of this framewoiKkél
and its absence has most likely been the reason for the
absence of learning operational space controllers to date.
The resulting learning algorithm for the local models can H&7]
understood from two perspective, i.e., as a weighted regnes [18
problem where we intend to match the reward weighted motor
commands (after transforming the cost into a reward) or as a
reinforcement learning problem where we attempt to maemi
an immediate reward criterion. Throughout this paper, weeha
illustrated the problems and advantages of learning ojp@igt
space control using a prismatic two degrees of freedom robot

robotic systems.
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