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Abstract— The autonomous execution of manipulation tasks in
unstructured, dynamic environments requires the consideration
of various motion constraints. Any motion performed during the
manipulation task has to satisfy constraints imposed by the task
itself, but also has to consider kinematic and dynamic limitations
of the manipulator, avoid unpredictably moving obstacles, and
observe constraints imposed by the global connectivity of the
workspace. Furthermore, the unpredictability of unstructured
environments requires the continuous incorporation of feedback
to reliably satisfy these constraints. We present a novel feedback
motion planning approach, called elastic roadmap framework,
capable of satisfying all of the motion constraints that arise in
autonomous mobile manipulation and their respective feedback
requirements. This framework is validated with simulation ex-
periments using a mobile manipulation platform and a stationary
manipulator.

I. INTRODUCTION

Autonomous robots are beginning to address real-world
tasks in unstructured and dynamic environments. Today these
robots predominantly perform tasks based on mobility. But the
potential of augmenting autonomous mobility with manipula-
tion skills is significant [4]. To achieve autonomous mobile
manipulation, robots have to perform complex, task-oriented
motion in unpredictably changing environments. To address
this problem, we present a novel motion generation technique,
called elastic roadmap. Elastic roadmaps generate robust and
globally task-consistent motion in dynamic environments. To
validate the approach, we present experiments with a mobile
manipulator and a stationary robot arm.

In the context of autonomous mobile manipulation, motion
is subject to numerous constraints. 1) The task imposes con-
straints that can be expressed as position or force constraints at
the end-effector. 2) Kinematic and dynamic constraints, such
as joint and actuation limitations, restrict the manipulator’s
motion capabilities. 3) Postural constraints represent secondary
task constraints that can improve some performance metric of
the manipulator. Generally, they express a desired, subordinate
behavior that should not interfere with task execution. 4) Reac-
tive obstacle avoidance imposes motion constraints in response
to changes in the environment. These constraints prevent
collisions but cannot address global connectivity constraints.
5) Global motion planners consider constraints imposed by the
global connectivity of free space. Only global consideration of
connectivity can prevent the susceptibility to local minima.

The maintenance of these five types of motion constraints
requires feedback to accommodate modeling error, uncertainty
in sensing and execution, and the dynamic aspects of the

environment. The required frequency of feedback depends on
the constraint and the application. In autonomous mobile ma-
nipulation, feedback requirements range from several hundred
times per second for task constraints to about once per second
for global motion constraints. A successful motion generation
approach for autonomous mobile manipulation has to address
all five types of motion constraints and in addition satisfy their
respective feedback requirements.

We propose a novel framework for feedback motion plan-
ning [26] that combines the advantages of planning and control
to address the motion requirements in autonomous mobile
manipulation. From motion planning this framework takes the
concept of a roadmap [22] to represent global connectivity
information. Every milestone in the roadmap represents the
attractor of a local potential function. By sequencing attractors
in accordance with global connectivity information, we can
generate a global navigation function. This navigation function
permits the integration of control-based methods with global
connectivity information through the use of task-level, multi-
objective control. The resulting motion framework addresses
all motion constraints that arise in autonomous mobile manip-
ulation and their respective feedback requirements.

II. RELATED WORK

The literature concerning robot motion is extensive. We re-
strict the discussion to work that incorporates multiple motion
constraints relevant to autonomous mobile manipulation.

a) Control: Control methods [15] specify motion behav-
ior using potential functions defined in the robot’s state space.
Each potential function represents a specific motion constraint
or motion objective. Objectives can be combined into multi-
objective motion by combining the respective potential func-
tions. Control-based methods descend the gradient of such
a combined potential function to achieve the desired motion
behavior. The use of feedback during gradient descent renders
motion generation robust to external disturbances at high rates
of feedback, but also makes it susceptible to local minimal in
the combined potential landscape.

The operational space framework [23] achieves complex,
multi-objective behavior [30] for manipulation tasks by com-
bining potential functions with nullspace projections. These
projections ensure that subordinate motion objectives do not
interfere with superior ones. The resulting motion satisfies
the motion constraints and their feedback requirements in
autonomous mobile manipulation, with the exception of global
connectivity constraints. Control-based methods are subject to



local minima and cannot guarantee the successful attainment
of a particular motion objective.

b) Motion planning: Motion planners construct a global
representation of the free configuration space to determine
a valid motion. Among a large number of global motion
planning techniques [12], [26], sampling-based motion plan-
ners [22], [24] currently represent the dominant planning
paradigm. Global motion planners have been extended to
specifically address constraints arising in manipulation [32]
or in the context of dynamic environments [16], [17], [20],
[21], [27], [34], [35]. However, these methods are currently
not computationally efficient enough to incorporate feedback
at rates required to satisfy task constraints in the context of
autonomous mobile manipulation, such as force control, for
example. The acceleration of global motion planning tech-
niques has thus been an active area of research [7]. One of the
promising directions in this area is the inclusion of workspace
information to guide sampling [25], [33], [38]. The elastic
roadmap approach presented in this paper will make extensive
use of workspace information to improve the feedback rates
for the computation of global connectivity information.

c) Feedback motion planning: Feedback motion planners
construct a local minima-free potential function based on
global information [26]. This can be achieved with navigation
functions [29], numerical navigation functions [2], harmonic
potential functions [14], or by composing a series of local
potential functions based on global information [8], [10],
[11], [13], [36]. Once such a global potential function has
been computed, these methods are able to satisfy all of the
motion constraints mentioned above. However, changes in the
environment or task will invalidate a computed global potential
function. Since the computation of this function for robots
with many degrees of freedom is computationally complex,
this type of approach cannot satisfy the feedback requirements
of autonomous mobile manipulation. The proposed elastic
roadmap framework overcomes this limitation.

d) Integration of local and global methods: The elastic
band framework [28] assumes that a global motion planner
has determined a motion that satisfies the task-requirements.
Local methods subsequently modify this motion incrementally
in response to feedback from the environment. The elastic
strip framework [6] extends the elastic band framework and
has been used to demonstrate global, task-consistent obstacle
avoidance and posture behavior on a mobile manipulator [6].
Both of these approaches combine the advantages of control-
based approaches with a predetermined global motion. How-
ever, neither of these methods can recover from an invalidation
of the global motion.

Decomposition-based motion planning [5] also combines
global and local methods. Initially, global connectivity infor-
mation in the workspace is captured in a navigation function
for the manipulator’s end-effector. This navigation function is
combined with control-based methods to generate the robot’s
motion, satisfying all considered motion constraints and their
feedback requirements. However, the fact that the navigation
function is computed in the workspace and only for the end-

effector limits the applicability of the approach.
The proposed elastic roadmap framework can be seen as

a natural progression in this line of research. It combines
local and global methods into a reactive approach to feedback
motion planning.

III. ELASTIC ROADMAP FRAMEWORK

The elastic roadmap framework is a robust and efficient
framework for feedback motion planning in dynamic environ-
ments. It addresses all motion constraints for autonomous mo-
bile manipulation and their respective feedback requirements.
To accomplish this, the elastic roadmap framework relies on
the following main ideas:

a) Elastic roadmap: Conventional roadmaps capture
global connectivity information in graphs consisting of
collision-free vertices (milestones) and edges. Once added to
the roadmap, neither milestones nor edges are changed. In
contrast, an elastic roadmap moves its milestones and updates
their connectivity to adapt to changes in the environment. The
modification of milestones is performed in a task-consistent
manner, relying on methods from task-level control. The
roadmap thus always represents task-consistent motions. The
visual effect resulting from the continuous modification of the
roadmap gives rise to the name elastic roadmap. An elastic
roadmap consists of a set of milestones M = {m1, · · · ,mn}
and an ordered binary relation C : M × M → {0, 1}. The
relation C(mi,mj) replaces the notion of edges; it holds for
two milestones mi,mj if a feedback controller is able to move
the robot from mi to mj .

b) Navigation function: The relation C(mi,mj) holds
for two milestones if a feedback controller is able to move
the robot from mi to mj . In this view of a roadmap, every
milestone mi is associated with a local potential function for
which it is the attractor. Milestone mj is connected to mi if
mj is within the region of attraction of the potential function
associated with mi. An elastic roadmap thus defines a hybrid
system of potential functions. Given a particular goal state,
the connectivity of the roadmap determines how a hybrid
system can compose a set of local potential functions into
an approximate, global navigation function.

c) Using workspace information to determine milestones:
To improve the efficiency of global motion planning, many
researchers have directed their efforts towards making the
construction of roadmaps more efficient. Notable advances in
this area have come from the consideration of workspace infor-
mation [25], [33], [37], [38]. The elastic roadmap framework
determines the entire roadmap directly in workspace, avoiding
the computationally costly construction of a configuration
space roadmap. This step is the key to satisfying the feedback
requirements for global motion constraints.

The proposed framework’s efficiency in maintaining global
connectivity information comes at the price of completeness.
In fact, the framework consciously trades completeness for
computational efficiency. We believe that within the con-
text of a particular application, such as autonomous mobile
manipulation, this tradeoff is justified. The evaluation of



such an incomplete, application-specific method then has to
be performed in the context of application-specific planning
problems. To validate the proposed approach, we present
three experimental scenarios in Section V. These scenarios
can be viewed as characteristic of a broad class of tasks
in autonomous mobile manipulation. Our results obtained in
these scenarios demonstrate that the degree of completeness
achieved by the proposed framework remains adequate for
our application. At the same time, they demonstrate that
the framework is able to satisfy all motion constraints and
their feedback requirements. A more detailed discussion of
completeness is given in Section IV-H.

IV. AN ELASTIC ROADMAP IMPLEMENTATION

We now describe a specific implementation of the elastic
roadmap framework proposed in Section III. This implemen-
tation should be viewed as a proof of concept. The specific
algorithmic components of the implementation will be subject
of future investigations.

A. Task-level control

Task-level control [23] is a convenient and powerful method
of generating multi-objective behavior for robotic systems.
Rather than specifying joint trajectories, this framework per-
mits direct control of the manipulator’s end-effectors, greatly
facilitating programming for kinematically redundant robots.
Task-level control also permits the task-consistent execution of
subordinate behaviors, exploiting nullspace projections. Given
an end-effector task, expressed as a force Ftask acting on
the end-effector, and given an arbitrary subordinate behavior,
expressed as a vector of joint torques Γ0, we can determine the
torque Γ to achieve task and subordinate behavior as follows:

Γ = Jtask(q)FT
task + NT

task(q) Γ0, (1)

where NT
task represents a projection into the nullspace of the

end-effector Jacobian Jtask. This projection ensures that the
subordinate behavior will not alter task behavior, i.e., it will
result in task-consistent motion.

This principle of nullspace projections can be extended to
cascade an arbitrary number of hierarchical behaviors [30]. If
behavior i results in torque Γi, the torque

Γ = Γ1 +NT
1 (q)

(

Γ1 + NT
2 (q)

(

Γ3 + NT
3 (q) (. . .)

))

(2)

combines these behaviors in such a way that behavior i

does not affect behavior j if i > j. In equation 2, NT
i is

the nullspace projection associated with the task Jacobian of
behavior i. Here, we adopt the more compact notation of the
control basis [19] to describe such cascaded nullspaces. We
associate a control primitive φi with each torque Γi. If a
control primitive φi is executed in the nullspace of the control
primitive φj , we say that φi is performed subject to φj , written
as φi C φj . We can now rewrite equation 2 as

. . . C φ3 C φ2 C φ1 . (3)

This task-level framework with nullspace projections serves as
the underlying control scheme for the elastic roadmap frame-
work. Torques computed using this framework are applied to
the robot to generate its motion.

B. Creating milestones

A roadmap has to capture the connectivity of free config-
uration space to allow the solution of motion queries. The
adequate placement of milestones critically determines the
quality of a roadmap. For sampling-based multi-query motion
planning, prior work shows that the adequacy of milestones
is largely determined by their visibility properties, i.e., the
amount of free configuration space “visible” to them [18].
Milestones with large visibility provide better coverage of
configuration space. This has motivated heuristics for plac-
ing samples in configuration space [31]. Another sampling
heuristic attempts to place milestones close to the boundary of
configuration space obstacles [1], following the intuition that
solution paths circumnavigate these obstacles. When sampling
in configuration space, however, visibility properties and ob-
stacle boundaries are unknown, making it difficult to a priori
select milestones with favorable properties.

The elastic roadmap framework generates milestones based
on workspace information about obstacles. More specifically,
milestones are generated for configurations in which the robot
is in proximity to workspace obstacles. For such configura-
tions, the corresponding point in configuration space must be
close to the boundary of the corresponding configuration space
obstacle. Our technique for generating milestones is therefore a
special case of other obstacle boundary sampling heuristics [1].

It is not sufficient for the elastic roadmap framework to gen-
erate milestones that are collision free. Adequate milestones
also have to satisfy task constraints. These task constraints are
specified in terms of the robot’s end-effector and may limit its
position or orientation. This is illustrated in Figure 1, where
the end-effector is constrained by the task to remain positioned
on the horizontal line, effectively constraining two positional
degrees of freedom.

Fig. 1. Four task-consistent milestones associated with a simple obstacle.
The task consists of moving the end-effector along the line.

To describe milestone generation in the context of the elastic
roadmap framework, we distinguish between two kinds of
tasks: end-effector placement (the end-effector position is only
constrained at the final configuration) and position-constrained
end-effector motion (at least one of the translational degrees
of freedom of the end-effector is constrained by the task).
For end-effector placement tasks, we reduce the notion of
configuration space coverage to workspace reachability for the



end-effector: if an elastic roadmap allows us to reach every
workspace location with the robot’s end-effector, we have
achieved workspace coverage. The motion for the remaining
links of the robot will be generated by powerful task-level
controllers [30].

Our ability to place the end-effector in any position and
orientation is limited by obstacles. Our milestone creation
method for placement tasks thus considers possible end-
effector placements in the proximity to the surface obstacles.
We need to determine a roadmap that permits the motion of the
end-effector from any feature on the obstacle to any other fea-
ture on the same obstacle. Since the motion between obstacles
is by definition obstacle free, a collection of such roadmaps for
all obstacles would allow us to achieve workspace coverage
for end-effector placement tasks.

We now describe a naive approach to the creation of mile-
stones for end-effector placement tasks based on workspace
obstacles. This approach serves as a proof-of-concept for
the elastic roadmap framework. More sophisticated milestone
creation methods will be the subject of future investigations.

Workspace obstacles are decomposed into convex regions;
these regions are then approximated by bounding boxes. We
select each of the corners of the bounding box as well as
the centers of the edges as obstacle features. These features
are chosen so that the end-effector can move freely between
adjacent features. To create milestones associated with these
obstacle features, we pick a nearby configuration and drag the
end-effector towards the feature. The controller used to achieve
this is given by:

φposture Cφavoidance Cφtask Cφfeature Cφcollision Cφkinematic , (4)

where φposture describes a posture potential for kinematic
conditioning of the robot, φavoidance performs reactive obsta-
cle avoidance, φtask describes a task potential, φfeature is the
potential that maintains proximity between the robot and the
obstacle feature, φcollision is able to prevent imminent collisions,
and φkinematic prevents the manipulator from reaching its joint
limits. The resulting milestones are added to the roadmap. If
the obstacle feature can be reached by the end-effector without
collisions, the milestone is considered valid.

The resulting set of milestones place the end-effector on
obstacle features. Milestones associated with adjacent features
are likely to be very similar. Furthermore, the motion of the
end-effector between two different features is unobstructed.
For most of the adjacent features it will therefore be possible
to employ a task-level controller to generate the motion from
one milestone to an adjacent milestone. This intuitive argument
will later be confirmed by our experimental results. It is
apparent that the selection of milestones plays a critical role
in the performance of the proposed framework and warrants
significant further investigation.

Milestones for position-constrained end-effector motion are
created in a similar fashion. Instead of dragging the end-
effector towards the feature, we drag the closest point on
the robot towards the feature, while maintaining the task con-
straints. In equation 4, the order of φfeature and φtask is changed.

If the resulting milestone satisfies the task constraints, it is
considered task-consistent. Four task-consistent milestones for
task-constrained end-effector motion are shown in Figure 1.

C. Maintaining milestones

Milestones continue to be controlled by their respective
controllers (equation 4). This permits them to react to changes
in the environment. In particular, when the obstacle associated
with the feature moves, the milestone will move with it.
If these changes cause the milestone to violate task con-
straints (for task-constrained end-effector motion), the mile-
stone changes its status from task-consistent to valid. If it vi-
olates collision avoidance constraints or kinematic constraints,
it is labeled as invalid.

The computational complexity of milestone creation and
milestone maintenance is O(nm) [9], where n is the number
of degrees of freedom of the robot and m is the number
of milestones generated. This implies that the computational
complexity of milestone maintenance is proportional to the
geometric complexity of the workspace obstacles.

D. Determining connectivity among milestones

To complete the computation of an elastic roadmap, we
need to determine the connectivity relation C(mi,mj), where
mi,mj are milestones.

In our current implementation, we employ workspace vis-
ibility as a criterion for the connectivity of two milestones.
If two milestones mi and mj are mutually “visible,” we add
C(mi,mj) to the connectivity relation of the elastic roadmap.
Visibility between milestones is determined by evaluating if
designated handle points (origins of the coordinate frames
attached to each link) [37] on the respective milestones can
be connected by straight, collision-free line segments. This
criterion is computationally efficient and relatively accurate,
i.e., if the criterion determines that two milestones are vis-
ible, a valid trajectory can be determined using task-level,
multi-objective control. In Section IV-G, we discuss how the
planning method recovers from failure, should the visibility
criterion erroneously label two milestones as connected.

While this approximation of connectivity compromises
completeness (see Section IV-H), it allows us to leverage the
power of task-level, reactive control as a local planner among
milestones. As we will see in our experimental validation of
the framework (see Section V), this simple heuristic for the
connectivity relation can solve challenging motion planning
problems in dynamic environments in real time. In future
work, we will investigate more sophisticated and complete
workspace criteria to determine the connectivity of milestones
in the elastic roadmap.

E. Extracting a navigation function from the elastic roadmap

An elastic roadmap does not represent explicit configu-
ration space trajectories. Instead, it continuously maintains
a graph, consisting of task-consistent milestones (vertices)
and hypothesis about the connectivity of these milestones
(edges). Similarly to other roadmap-based motion planning



approaches, graph search algorithms can be used to extract
a path in this graph that connects the initial and the final
configuration of a motion planning problem (see Section IV-
F). In the elastic roadmap approach, this path represents a
sequence m1,m2, · · · ,mn of milestones. The motion between
two milestones mi and mi+1 can be generated using the
following task-consistent, multi-objective controller:

φposture C φavoidance C φglobal C φtask C φcollision C φkinematic . (5)

Compared to equation 4, we have removed the control prim-
itive φfeature and added the control primitive φglobal, which is
responsible for the global motion towards the next milestone.

We view the extracted sequence of milestones as a hybrid
system. Controllers are used to generate the motion from mi

to mi+1 until the robot has approached milestone mi+1. The
hybrid system then discretely switches to the controller that
moves the robot from mi+1 to mi+2, until the goal milestone
mn is reached. Note that throughout the entire motion all
milestones as well as the motion between them remain consis-
tent with all motion constraints. The hybrid system represents
an approximate, local-minima free navigation function for the
given motion problem. The navigation function is composed
from simple, local potential functions by considering the
global connectivity information captured in the roadmap [8],
[10], [11], [13], [29], [36].

F. Updating the elastic roadmap

The update of the elastic roadmap consists of three parts:
milestone maintenance, connectivity update, and path ex-
traction. Milestone maintenance (Section IV-C) is performed
continuously at high frequencies to ensure the maintenance
of task constraints. The resulting motion of the milestones
may invalidate the connectivity information represented in the
roadmap. We now describe how the connectivity is updated
and how a path is extracted. These parts of the algorithm are
also performed continuously, but at a low frequency that is
sufficient to satisfy the feedback requirements of global motion
constraints.

Given a roadmap with n milestones, there are potentially
O(n2) visibility tests to perform during a connectivity update.
Due to the small computational cost of a connectivity check
and the low update frequency associated with global motion
constraints, this is feasible in practice. In the experiments
presented in Section V, the computational cost of connectivity
checks was dwarfed by the cost of milestone maintenance.
In much larger environments, the cost of O(n2) visibility
tests can be reduced to O(n) (assuming a uniform spatial
distribution of milestones) by restricting the adjacency of
milestones based on spatial proximity.

Graph algorithms, such as A*, can be used to extract a path
from a roadmap [3]. To select paths with certain favorable
properties, the relationship between two connected milestones
is labeled with the associated traversal cost. During the
execution of a task-constrained motion, only task-consistent
milestones are considered during path extraction. For end-
effector placement tasks, it suffices for milestones to be valid,

i.e., collision-free. Invalid milestones are excluded from the
connectivity update as well as from the path extraction but
continue to be modified based on their controllers.

G. Recovering from failure

We distinguish three failure modes. First, a motion can fail
because the task-level controller is unable to find a motion
between two milestones that are connected in the roadmap.
Second, changes in the environment may force the robot
to give up the task constraints, leading to task failure. For
both of these failures we describe recovery strategies below.
The inability to find a valid path, even after these recovery
strategies have been applied, constitutes the third failure mode.
This last failure has to be attributed to the incompleteness of
our method (see Section IV-H).

The first failure mode occurs when the robot is moving
between two milestones. If a robot fails to make progress
without having reached the next milestone, the connection
is labeled as invalid. The continuous path extraction process
will automatically obtain a new path and the robot will start
moving along this path. Currently, the two milestones remain
unconnectable, but one could reconsider the connection after
the environment has changed.

The second failure mode occurs during task-constrained
motion. If the robot or any of the milestones in the current path
change their label from task-consistent to valid or invalid, a
new path has to be computed. This occurs automatically during
path extraction. If a new path with task-consistent milestones
can be found, it is executed. If no such path can be found,
path extraction considers the shortest possible recovery path
through valid milestones to a task-consistent milestone. To
follow the recovery path, we use the following controller:

φposture C φavoidance C φtask C φglobal C φcollision C φkinematic . (6)

Once the robot reaches a task-consistent milestone, the original
controller (Equation 5) is used to resume task behavior.

H. Completeness

The elastic roadmap framework is an approach to feedback
motion planning that is incomplete by design. It does not
possess any of the completeness properties of sampling-based
planners. Nevertheless, it is tempting to compare the elastic
roadmap framework to sampling-based planning methods.
Such a comparison, however, is difficult to make, since the
planning problems addressed by these two methods are funda-
mentally different. The elastic roadmap framework explicitly
addresses task constraints and feedback requirements of a
specific application and permits the execution of motion in
dynamic environments under these constraints. It is able to do
so precisely because it sacrifices completeness. To our knowl-
edge, no sampling-based method is able to either consider
task constraints in the generality proposed here or to address
explicit timing constraints.

A characterization of completeness of the elastic roadmap
would be most useful in the context of workspace properties.
This has been proposed in [5], where a minimum clearance



about the solution path is required for the method to be
complete. Such a notion of completeness could be established
for the elastic roadmap framework by showing that the selected
milestones can be reached from the entire configuration space,
excluding areas that do not provide sufficient clearance for the
robot. Furthermore, such a notion would require workspace
connection strategies with provable performance to ensure that
when the regions of attraction of milestones overlap, task-level
planning will find a connection trajectory. We will investigate
such notions of workspace completeness in our future work.

V. EXPERIMENTAL EVALUATION

We demonstrate the performance of the elastic roadmap
framework by performing simulation experiments. An ade-
quate experiment for the evaluation of the elastic roadmap
approach should exhibit the following characteristics: 1) The
robot has to maintain an end-effector task throughout the
entire motion. 2) The motion should be subject to kinematic
or dynamic constraints. 3) A solution has to depend on
global connectivity information. 4) The environment should
be dynamic and the motion of obstacles should interfere with
the motion. 5) The robot should be kinematically redundant
to permit the execution of multi-objective behavior. Following
these criteria, we have devised three experiments for the two
simulated robots shown in Figure 2.

Fig. 2. Left: The UMass mobile manipulator with ten degrees of freedom.
Middle: Model of the real platform. Right: Stationary robot with twelve
degrees of freedom.

In the first experiment, the mobile manipulation platform
has to move its end-effector along a horizontal, linear path,
indicated by the horizontal line in images 1a) and 1e) of
Figure 3. During task execution, several obstacles move into
the platform’s path. The direction of motion for the obstacles
is indicated by the arrows. The sequence of images 1b)–1d)
in Figure 3 illustrates how the elastic roadmap maintains task-
consistent workspace connectivity and repeatedly generates
new sequences of milestones in response to changes in the
environment. By following the approximate navigation func-
tion constructed from the roadmap, the robot moves to the goal
configuration in a task-consistent manner, i.e., by restricting
the end-effector position to the line. Control primitives prevent
collisions and keep the robot away from its joint limits.
All computations are performed during the simulation and
the motion is generated in real time. The pictures represent
snapshots of the ongoing execution.

Note that the narrow passages between the moving obstacles
render this motion problem challenging for motion planners

operating in configuration space. Furthermore, these planners
also have difficulties to generate task-consistent motion, as the
computation of the manifold of task-consistent configurations
is computationally complex.

In a second experiment with the mobile manipulator, we
demonstrate two additional capabilities of the framework.
First, we show that the framework is capable of generat-
ing task-consistent motion even for force-controlled tasks,
i.e., motion in contact with the environment. This stands
in contrast with other approaches to motion generation [6],
[28], which require the entire manipulator to move in free
space. In the elastic roadmap framework, the only requirement
is that motion continuously satisfies all motion constraints.
These constraints may include force constraints. Second, we
demonstrate that the elastic roadmap framework is able to
automatically recover from the violation of task-constraints.

In this experiment, the end-effector of the manipulator
tracks the unknown motion of an object based on force control.
This can initially be achieved using task-level control alone,
since the goal configuration is connected to the robot. As this
direct connection is invalidated by moving obstacles forming
a boxed canyon around the manipulator, the manipulator is
unable to follow the moving object and has to violate task
constraints by letting go of the object. Image 2b) in Figure 3
illustrates how the elastic roadmap framework then determines
a path through valid but not task-consistent milestones to re-
attain the task constraints in image 2c).

In a third experiment, we demonstrate the effectiveness of
the elastic roadmap framework for a stationary twelve degree-
of-freedom manipulator. The task consists of moving the end-
effector to a goal location, while maintaining its orientation
(task constraint). This motion is performed in an environment
that contains a truss moving from right to left, as indicated
by the arrows in image 3a) in Figure 3. The sequence of
images 3a)–3d) illustrates how the robot reaches its goal
location, while avoiding the moving truss and maintaining its
end-effector orientation. As the truss keeps moving, it forces
the manipulator to deviate from its goal location, repeatedly
triggering a replanning operation that results in a repeated
motion, similar to the one shown in images 3a)–3d).

All simulations were performed on a PentiumIV 3.2GHz
PC with 1GB RAM and a 64MB DDR Radeon 300 graphics
card. The computations associated with the maintenance of the
elastic roadmap and the extraction of a path can be performed
at a frequency of approximately 5-10Hz, thereby satisfying
the feedback requirements for global motion in the context of
autonomous mobile manipulation.

These experiments represent realistic autonomous manip-
ulation scenarios. The elastic roadmap framework is able to
maintain all required motion constraints while satisfying their
respective feedback requirements. These experiments therefore
demonstrate the effectiveness of the elastic roadmap frame-
work for the generation of constraint-consistent motion for
autonomous mobile manipulation in dynamic environments.
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Fig. 3. Three experiments to validate the elastic roadmap approach. In all experiments, lighter versions of the robot represent milestones of the roadmap that
are part of the current solution paths. The connectivity of these milestones is indicated by a dashed line. The darker robots represent the actual robot in motion.
The direction of motion of obstacles is indicated by arrows. Experiment 1: Images 1a) and 1e) show two perspectives of the same scene. The robot follows
the line with its end-effector, while moving obstacles invalidate the solution. The elastic roadmap framework repeatedly generates global, task-consistent
motion plans until the robot reaches the goal. Experiment 2: The task consists of following an object moving on an unknown trajectory. The following task
is achieved based on force control. Moving obstacles force the robot to suspend the force control task, loosing contact with the object. The elastic roadmap
framework computes a path to re-attain the force control task, shown in image 2c). This image also shows the trajectory taken by the object and its projection
onto the floor. Experiment 3: A stationary robot, operating under a moving truss, reaches for a goal location while maintaining a constant orientation with its
end-effector. The sequence of images shows how the goal can be reached. Continued motion by the truss will repeatedly force the robot to move away from
the goal location to avoid collision. The elastic roadmap framework repeatedly generates motions such as those shown in images 3a)–3c) to re-attain the goal
location.



VI. CONCLUSION

Motion in the context of autonomous mobile manipulation is
subject to numerous constraints. These constraints are imposed
by the task, by kinematic and dynamic limitations of the
robot, by moving obstacles in the environment, by global
the global connectivity of the workspace, and by subordinate
behaviors, such as posture control. Existing approaches to
motion generation for autonomous mobile manipulation either
fail to address all motion constraints simultaneously or do not
meet the respective feedback requirements. We have presented
the elastic roadmap framework as a new approach to feedback
motion planning. This framework satisfies all of the afore-
mentioned constraints and their feedback requirements. Fur-
thermore, the framework is capable of generating constraint-
consistent motion in dynamic environments in real time.
To achieve the computational efficiency, the elastic roadmap
framework makes several approximations that cause it to lose
the provable completeness many other planning techniques
possess. However, our experimental results indicate that the
elastic roadmap framework is able to solve challenging motion
generation problems for autonomous mobile manipulators and
stationary manipulator arms.
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[20] L. Jaillet and T. Siméon. A PRM-based motion planner for dynamically
changing environments. In Proc. Intl. Conf. on Intelligent Robots and
Systems, 2004.

[21] M. Kallmann and M. Matarić. Motion planning using dynamic
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