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_ Abstract— In this paper we study minimum-time motion plan- motivate the study of the Dynamic Traveling Repairperson
ning and routing problems for the Dubins vehicle, i.e., a non- Problem (DTRP), in which the UAV is required to visit a
holonomic vehicle that is constrained to move along planar paths dynamically changing set of targets. Such problems are exam

of bounded curvature, without reversing direction. Motivated by les of distributed task allocation problems and are ctirren
autonomous aerial vehicle applications, we consider the Traveling P IStibu : P v

Salesperson Problem for the Dubins vehicle (DTSP): givem generating much interest; e.g., [1] discusses complesgtyes
points on a plane, what is the shortest Dubins tour through related to UAVs assignments problems, [2] considers Dubins
these points and what is its length? Specifically, we study a vehicles surveilling multiple mobile targets, [3] congislenis-

stochastic version of the DTSP where the: targets are randomly  ; ; ; ;
sampled from a uniform distribution. We show that the expected sions with dynamic threats, other relevant works include [4

length of such a tour is of order at leastn®/® and we propose 5], [6], [_7]' . . . .
a novel algorithm yielding a solution with length of order n2/3 The literature on the Dubins vehicle is very rich and

with high probability. Additionally, we study a dynamic version includes contributions from researchers in multiple gioes.
of the DTSP: given a stochastic process that generates targetThe minimum-time point-to-point path planning problemHwit
points, is there a policy which guarantees that the number of \5unded curvature was originally introduced by Markov [8]

unvisited points does not diverge over time? If such stable policies . . . .
exist, what is the minimum expected time that a newly generated and a first solution was given by Dubins [9]. Modern treat-

target waits before being visited by the vehicle? We propose a Ments on point-to-point planning exploit the PontryagimMi
novel stabilizing algorithm such that the expected wait time is imum Principle [10], carefully account for symmetries ireth

provably within a constant factor from the optimum. problem [11], and consider environments with obstacle$.[12
The Dubins vehicle is commonly accepted as a reasonably ac-
|. INTRODUCTION curate kinematic model for aircraft motion planning prob

In this paper we study a novel class of optimal motiof-9- See [13], and its study is included in recent texts,[14]
planning problems for a nonholonomic vehicle required td-5]- . o . .
visit collections of points in the plane. This class of peshl The TSP and its variations continue to attract great interes
has two main ingredients. First, the robot model is the sBom a wide range of fields, including operations research,
called Dubins vehicle, namely, a nonholonomic vehicle thtathematics and computer science. Tight bounds on the
is constrained to move along paths of bounded curvat#8ymptotic dependence of the ETSP on the number of targets
without reversing direction. Second, the objective is tal fina'e given in the early work [16] and in the survey [17]. Exact
the shortest path for such vehicle through a given set ottarg!gorithms, heuristics as well as polynomial-time constac-
points. Except for the nonholonomic constraint, this task fOr approximation algorithms are available for the Eudiide
akin to the classic Traveling Salesperson Problem (TSPjrand! SP. see [18], [19], [20]. A variation of the TSP with potenti
particular to the Euclidean TSP (ETSP), in which the shertg®botic applications is the angular-metric problem stddie
path between any two target locations is a straight segmeht[21]. The DTRP (without nonholonomic constraints) was
In summary, the focus of this paper is the analysis and tigroduced in [22]. However, as with the TSP, the study of the
algorithmic design of the TSP for the Dubins vehicle; w&TRP in context of the Dubins vehicle has eluded attention
shall refer to this problem as to the Dubins TSP (DTSPYOM the research community. Finally, it is worth remarking
Specifically, we study a stochastic version of the DTSP, wvhidhat, unlike other variations of the TSP, the Dubins TSP oann
we refer to as the stochastic DTSP, where théargets are be formulated as a problem on a finite-dimensional grapls, thu
randomly sampled from a uniform distribution. preventing the use of well-established tools in combinator

A practical motivation to study the DTSP arises naturally iRPtImization. _ _
robotics and uninhabited aerial vehicles (UAVs) applimasi ~ The contributions of this paper are threefold. First, we
We envision applying DTSP algorithms to the setting of B/OPOSe an algorithm for the stochastic DTSP through a
UAV monitoring a collection of spatially distributed poibf POint set P, called the RCURSIVE BEAD-TILING ALGO-
interest. In one scenario, the location of the points ofreges RITHM, based on a geometric tiling of the plane, tuned to

might be known and static. Additionally, UAV applicationgh® Dubins vehicle dynamics, and a strategy for the ve-
hicle to service targets from each tile. Second, we obtain
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bound on the achievable performance belongst@?/?). The key objective of this paper is the design of an algorithm
The algorithm we introduce in this paper is the first knowthat provides a provably good approximation to the optimal
algorithm providing a provable constant-factor approxiota solution of the stochastic Dubins TSP. To establish what a
to the DTSP optimal solution. Third, we propose an algorithfiyood approximation” might be, let us recall what is known
for the DTRP in the heavy load case, called theaB- aboutthe ETSP in the stochastic setting. First, given a eainp
TILING ALGORITHM, based on a fixed-resolution version obet Q and a point-set”? whosen points are independently
the RECURSIVE BEAD-TILING ALGORITHM. We show that chosen from a distributiop with compact suppor ¢ R?,

the performance guarantees for the stochastic DTSP ttansthe following deterministic limit holds [16]:

into stability guarantees for the average performance ef th ETSP(P)
DTRP for the Dubins vehicle in heavy load case. Specificallxgglw n = ﬁ/ V@(q) dg, with probability 1,
we show that the performance oEBD-TILING ALGORITHM Q

is within a constant factor from the theoretical optimum. Whereg is a probability density function corresponding to the
To clarify the contributions of this paper, it is worthwhileabsolutely continuous part af, and 3 is a constant, which

to compare our results with the ones existing in literaturBas been evaluated g@s= 0.71240.0001, e.g., see [28]. The

While the problem of flying an aircraft through waypointdact that the dependence of the ETSP is sublinear is very

is a very standard problem in aeronautics, the formal stuéfpportant in the study of the DTRP, i.e., the problem in which

of the Dubins TSP (algorithmic and performance bound8fWw locations are continuously added to the set of outstandi

was introduced in our early work [23], where a constanpoints P; see Section Ill.

factor approximation algorithm for the worst-case settafg ~ Motivated by the Euclidean case, this paper shows that

the DTSP was proposed. Subsequently, similar versiongf tthe DTSP grows withn?/? in the stochastic case (as both

problem were also considered in [24] and [4]. A simplifiedpwer and upper bounds). Additionally, this paper proposes

version of the problem for a different but closely relatedcki novel algorithms for the DTSP in the stochastic setting, seho

of vehicle, the Reeds-Shepp vehicle, was considered in [2Brformances are within a constant factor of the optimal

In [26], we introduced the stochastic DTSP and gave the fig@lution in the asymptotic limit a& — +ooc. Finally, this

algorithm yielding, with high probability, a solution withcost Paper uses these results in the DTRP.

upper bounded by a strictly sublinear function of the number We conclude this section with some notation that is the

n of target points. Specifically, it was shown that the lowe§tandard concise way to state asymptotic properties fFpr

bound on the stochastic DTSP was of ordér® and that N — R, we say thatf € O(g) (respectively,f € Q(g)) if

our algorithm performed asymptotically within @gn)'/3 there existNy € N andk € Ry such that| (V)| < k|g(N)|

factor to this lower bound with high probability. This resulfor all N > Ny (respectively, f(N)| > k|g(N)| for all N >

was improved in [27] with an algorithm for the stochastiédVo)- If f € O(g) and f € Q(g), then we use the notation

DTSP that asymptotically performs within anyn) factor f € ©(g). Finally, we say thatf € o(g) as N — +oo if

of the optimal with high probability, where(n) — +oo as lmy— oo f(N)/g(IN) = 0 or, for functionsf,g : R — R,

n — +oo. In this paper we propose the first algorithm thate say thatf € o(g) asz — 0 if lim, o f(x)/g(z) = 0.

asymptotically achieves a constant factor approximatotiné

. e - Il. STOCHASTICDTSP
stochastic DTSP with high probability.

) In [23], a simple heuristics, the IAERNATING ALGO-

Notation RITHM for the Dubins TSP for a given point set was proposed.

In this section we setup the main problem of the papdihe length of tour generated by this algorithm was also
and review some basic required notation.DAbins vehicle characterized and it was shown that it belong${q/») and
is a planar vehicle that is constrained to move along patbgn). It was also shown that this simple policy performs well
of bounded curvature, without reversing direction and maiwhen the points to be visited by the tour are chosen in an
taining a constant speed. Accordingly, we defindeasible adversarial manner. However, this algorithm is not a cartsta
curve for the Dubins vehicler a Dubins path as a curve factor approximation algorithm in the general case. Moegov
v : [0, 7] — R? that is twice differentiable almost everywherethis algorithm might not perform very well when dealing with
and such that the magnitude of its curvature is bounded ab@eandom distribution of the target points. In this sective,
by 1/p, wherep > 0 is the minimum turning radius. consider the scenario whentarget points are stochastically

Let P = {p1,...,pn} be a set ofn points in a compact generated inQ according to a uniform distribution. A novel
region @ C R? and P,, be the collection of all point sets algorithm was proposed in [26] to service these points imsuc
P C Q with cardinalityn. Let ETSP(P) denote the cost of a way that its tour length grew sub-linearly with the number
the Euclidean TSP ovév, i.e., the length of the shortest closedf points asymptotically with high probability, where areev
path through all points iP. Correspondingly, leDTSP,(P) is said to occur with high probability if the probability ofsi
denote the cost of the Dubins TSP ow@y i.e., the length of occurrence approachdsasn — +oo. Here, we present a
the shortest closed Dubins path through all pointinvith  novel version of this strategy in the form of thee®URSIVE
minimum turning radiug. For the stochastic DTSP;,...,p, BEAD-TILING ALGORITHM and characterize its performance.
will be assumed to be randomly and independently sampledWe make the following assumptiong is a rectangle of
from a uniform distribution ove©. width W and heightH with W > H; different choices for



the shape ofQ affect our conclusions only by a constant(P3) For anyp € B,(¢), there is at least one Dubins path
The two axes of the reference frame are parallel to the sides through the point§p_, p, p; }, entirely contained within
of Q. The pointsP = (p1,...,p,) are randomly generated B, (). The length of any such path satisfies
according to a uniform distribution i®. 0 /3
Length(y,) < 4parcsin () =l+p-o0 <3> .
A. A lower bound 4p p
We begin with a result from [29], that provides a lowed hese facts are verified using elementary planar geometry.
bound on the expected length of the stochastic DTSP. ~ Finally, the bead has the property that the plane can be
Theorem 2.1: (Lower bound on stochastic DTSRy all Periodically tiled by identical copies o3, (¢), for any ¢ €
p > 0, the expected cost of the DTSP for a setof n 10,4p]. This fact is illustrated in Figure 2 below. .
uniformly-randomly-generated points in a rectangle oftvid Next, we study the probability of targets belonging to a

W and heightH satisfies given bead. Consider a beds entirely contained inQ and
assumen points are uniformly randomly generateddh The
lim E[DTSZPp(P)] > 35 S probability that thei™ point is sampled inB is
n—-+4+oo n /3 4
0 = Area(B,(¢))
Remark 2.2:Theorem 2.1 implies thaE[DTSP,(P)] be- ) = Area(Q)

longs toQ(n?/3).
d (") Furthermore, the probability that exacttyout of then points

B. The basic geometric construction are sampled inB has a binomial distribution, i.e., indicating

] ) ) with np the total number of points sampled i,
Here we define a useful geometric object and study its

properties. Consider two points. = (—¢,0) andpy = (¢,0) Pr[ng = k| n sampleb= (") W (1 — )k
on the plane, with < p, and construct the regioBi,(¢) as k

detailed in Figure 1. We refer to such regions abeadof | the pead lengtlY is chosen as a function of in such a

way thaty = n-p(€(n)) is a constant, then the limit for large

7T T T T n of the binomial distribution is [30] the Poisson distrilmrii
7 N7 hN of meanv, that is,
/ \\// \\
/ N \ I/k
/ . O . \ lim Pr[ng = k| n sampleb= —¢".
| . _ [ _._i‘_ | n—-+oo k!

N ) / C. The Recursive Bead-Tiling Algorithm

\ 4 \X/ // . . . .
N AN / In this section, we design a novel algorithm that computes a
NG PR e Dubins path through a point set . The proposed algorithm
\\57 9 ;,:/ consists of a sequence of phases; during each phase, a Dubins
)/ A tour (i.e., a closed path with bounded curvature) is coostdl
/ 2l I\ that “sweeps” the se@. We begin by considering a tiling of
( e \ the plane such thatrea(B,(¢)) = W H/(2n); in such a case,
\\ i // w(n)) =1/(2n), v=1/2, and
\ / 1
\\\\ //// £(n) :2(#)3 +0(n*%), (n — 4+00).

(Note that this implies that must be large enough in order
Fig. 1. Construction of the “beadB,(¢). The figure shows how the upperthatli S 4p:) Furthermore’ t,he tiling is Ch‘?se” in such a way
half of the boundary is constructed, the bottom half is symimetr that it is aligned with the sides ap, see Figure 2.

In the first phase of the algorithm, a Dubins tour is con-

length £. The regionB,(¢) enjoys the following asymptotic structed with the following properties:

properties agl/p) — 0%: (i) it visits all non-empty beads once,
(P1) Its maximum “thickness” is (ii) it visits all rows? in sequence top-to-down, alternating
between left-to-right and right-to-left passes, and ingit
02 02 /3 all non-empty beads in a row,
w(l) =4p (1 =/l 16/)2> = 8p +p (pg) (i) when visiting a non-empty bead, it services at least on
target in it.

(P2) Its area is
1A tiling of the plane is a collection of sets whose intersathas measure
Kw(ﬂ) 03 ) V& zero and whose union covers the plane.
Area(B,({)) = ——=——+p~ -0 (4) . 2A row is a maximal sequence of horizontally-aligned beads witin-
2 16p P empty intersection withQ.



In order to visit the targets outstanding after the first phaselongs to a meta-bead that already contains other targets n
a second phase is initiated. Instead of considering sirefiedy visited before the'™ phase:
we now consider “meta-beads” composed of two beads each .
as shown in Figure 2, and proceed in a way similar to the first' * [2(t) Z i 1] (vilt = 1), vima (= 1), va (¢ = 1))]
phase, i.e., a Dubins tour is constructed with the following = Pr [h(t) > i+ 1| h(t) > i, v;(t — 1)]
properties: - Pr[h(t) 2] (vima(t —1),...,01(t = 1))]
(i) the tour visits all non-empty meta-beads once, vi(t —1)
(i) it visits all (meta-bead) rows in sequence top-to-dpwn S
alternating between left-to-right and right-to-left pess in
and visiting all non-empty meta-beads in a row, “ 11 vt =1) _p 2wl _ (2
(iii) when visiting a non-empty meta-bead, it services aste m
one target in it.
This process is iteratedllog, n| times, and at each phase
meta-beads composed of two neighboring meta-beads fr
the previous phase are considered; in other words, the meta- v {17 if h(t) >i+1andv;(t—1) < Bin,
L =

Pri(t) > i| (vi—a(t = 1),...,v1(t = 1))]

> ij(n)

Given a sequencéf; },eny C R4 and given a fixed > 1,
’gﬁ.}‘ine a sequence of binary random variables

7

i—3
2
n

beads at thé" phase are composed &f-! neighboring beads.
After the last recursive phase, the leftover targets ariedis

using the ATERNATING ALGORITHM [23]. In other wordsy; = 1 if the ¢! target is not visited during the
first i phases even though the number of beads still containing
. i unvisited targets at the inception of th phase is less than
In this section, we calculate an upper bound on the length, Even though the random variablé depends on the

of Dubins path as given by the BRURSIVE BEAD-TILING  targets generated before the target, the probability that it
ALGORITHM. By comparing this upper bound with the lowefkgges the value 1 is bounded by

bound established earlier, we will conclude that the algo- .
rithm provides a constant factor approximation to the optim =3 T
stochastic DTSP with high probability. Due to lack of space,Pr[Yt =1]6(1),0(2),.....b(t —1)] < 27= H Bi =4,
we refer the reader to [31] for the missing proofs in this =1
section. We begin with a key result about the number oégardless of the actual values bfl),...,b(t — 1). It is
outstanding targets after the execution of frey, n] recursive known [32] that if the random variable¥; satisfy such a
phases; the proof of this result is based upon techniqueksimcondition, the sum)_, Y; is stochastically dominated by a
to those developed in [32]. binomially distributed random variable, namely,

Theorem 2.3 (Targets remaining after recursive phases): n
Let P € P, be uniformly randomly generated i@. The Pr ZYt >k
number of unvisited targets after the last recursive phdse o =1
the RECURSIVE BEAD-TILING ALGORITHM over P is less
than 24 log, n with high probability, i.e., with probability
approaching one as — +oc.

Proof: Associate a unique identifier to each beadp(e}
be the identifier of the bead in which th® target is sampled, ) ) ,
and leth(t) € N be the phase at which th# target is visited. Where the last inequality follows from Chernoff's Bound [30
Without loss of generality, assume that targets within glgin NOW, it is convenient to defing(; }icy by
bead are visited in the same order in which they are generated o i .
i.e.,if b(t1) = b(ty) andt; < to, thenh(ty) < h(tz). Letw;(t) =1, fiz1=2¢ =22 *1 H B; =272 B2,
be the number of beads that contain unvisited targets at the j=1
inception of thei™ phase, computed after the insertion of the , . i o .
4h ta[?get. Furtherm%re let, beF'zhe number of" phase meta- Which leads tg3; = 2'~%. In turn, this implies that equation (1)

beads (i.e., meta-beads containi2g ' neighboring beads) can be rewritten as

0, otherwise.

D. Analysis of the algorithm

< Pr[B(n,q;) > k]

In particular,

Pr

ZYt > 2”%‘] < Pr[B(n,q;) > 2np;] < 27"4/3, (1)

t=1

with a non-empty intersection witR. Clearly,v;(t) < v;(n), " —Bivan/6 _n
m; < 2m;y1, andvy(n) < n < m; /2 with certainty. Thet™ Pr | Yi> fipan| <2700 = 2755,
target will not be visited during the first phase if it is sastl =1
in a bead that already contains other targets. In other wordsghich is less thanl/n? for i < i*(n) := Lloan —
log, logy n — log, 6] < log, n. Note thatj3; < 12 =222 for
t 1 21082 2 2 n
Pr [h(t) > 2| v (t)] = o) < o) < - all i > i*(n).
mq 2n 2

Let & be the event that;(n) < G;n. Note that if&; is
Similarly, thet™" target will not be visited during thé" phase true, thenv;,;(n) < >, Yy the right hand side represents
if (i) it has not been visited before th# pass, and (ii) it the number of targets that will be visited after ti& phase,
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Fig. 2. Sketch of “meta-beads” at successive phases in thesree bead tiling algorithm. From left to right: phase 1, ¢h& and phase 3.

whereas the left hand side counts the number of beads conee and only once each bead with a non-empty intersection
taining such targets. We have, for alk i*(n): with a rectangleQ of width W and lengthH satisfies

n 16pW H 7
>3 < 1< R (14 Grfr ) oo (8).
=t Based on this calculation, we can estimate the length of
. and thus (recall thag, the paths in generic phases of the algorithm. Since the total
. ) . n* Pr(&;] number of phases in the algorithm depends on the number of
Is true with certainty): targetsn, as does the length of the beafiswe will retain
i explicitly the dependency on the phase number.
n2 Lemma 2.5 (Path length at odd-numbered phases):
In other words, for alli < i*(n), vi(n) < B with high Consider a tiling of the plane with b_eads of lendth-or any
probability. - - p > 0 and for any set of target points, the length;_; of
Let us now turn our attention to the phases such th@tPath visiting once and only once each meta-bead with a
i > i*(n). The total number of targets visited after thig)™ non-empty intersection with a rectange of width W and

phase is dominated by a binomial variaén, 12log,n/n); €Nt at phase numbe2j — 1), j € N satisfies

in particular,
_i |pPWH TTp p
. < 95— p 7 . L
Laj1 =2 { 2 (1 3W) r 0(6)}

PR o (P) + o oft
+322% +p 0(£)+2 [3€+p o(p)].

Lemma 2.6 (Path length at even-numbered phases):

Pr |viy1 > Biyin| 51} Pri&] < Pr

that is, Pr [—‘ i+1| 51] <

1
Pr [ﬁ i+1] < 2 + Pr[ﬁgi] <

Pr [vi*ﬂ > 24 1log, n &-*} - Pr[&;+]

<Pr {ZY} > 2410g2n}
t=1

< Pr[B(n,12log, n/n) > 24logyn] < 27121827, Consider a tiling of the plane with beads of length
For any p > 0, a rectangleQ of width W and length
Dealing with conditioning as before, we obtain H and any set of target points, paths in each phase of
1 1 logyn the BEAD-TILING ALGORITHM can be chosen such that
Pr [vi*-l-l > 24 logQ n] < W + Pr[_‘gi*} < ﬁ + n2 - ng < 2L2j+1, for all RS N.

In other words, the number of targets that are left unvisited Finally, we can summarize these intermediate bounds into

after the(i*)™ phase is bounded by a logarithmic function of® main result of this section. We létrpra ,(P) denote

n with high probability. m the length of the Dubins path computed by thed®RSIVE
In summary, Theorem 2.3 says that after a sufficiently larg&EAD-TILING ALGORITHM for a point setP.

number of phases, almost all targets will be visited, wigghhi ~ Theorem 2.7 (Path length for the algorithm)et P < P,

probability. The second key point is to recognize that (g thbe uniformly randomly generated in the rectangle of witith

length of the first phase is of orde/3 and (i) the length @nd heightH. For anyp > 0, with high probability

of each phase is decreasing at such a rate that the sum of

the lengths of thdlog, n] recursive phases remains bounded |im w < lim M

and proportional to the length of the first phase. (Since we "~ n?/3 ~ notoo n?/3

are considering the asymptotic case in which the number of < 243/pWH (1 + 77Tp> .

targets is very large, the length of the beads will be veryllsma 3w

in the remainder of this section we will tacitly consider the  Proof: For simplicity we letLgrgra,,(P) = LreraA-

asymptotic behavior a&/p — 07.) Clearly, Lrpra = Lpgra + Ligra, Where Lipgpa
Lemma 2.4 (Path length for the first phas&onsider a is the path length of the firsflog,n] phases of the

tiling of the plane with beads of length For anyp > 0 and RECURSIVEBEAD-TILING ALGORITHM and L}, is the

for any set of target points, the lengfhy of a path visiting length of the path required to visit all remaining targetsr A



immediate consequence of Lemma 2.6, is that A. Model and problem statement

[og,(n)] [og,(n)/2] In this subsection we describe the vehicle and sensing model
LBTA = Z L, <3 Z Laj_1. and the DTRP definition. The key aspect of the DTRP is
im1 =1 that the Dubins vehicle is required to visit a dynamically

. . . . . rowing set of targets, generated by some stochastic @oces
The summation on the right hand side of this equation can g\?e assume that the Dubins vehicle has unlimited range and
expanded using Lemma 2.5, yielding target-servicing capacity and that it moves at a unit spaéd w
minimum turning radiugp > 0.
log, (m)/2] Information abogt the ogtstanding tfar_gets representi@g th
<3 pWH 1 Tmp p? 3 05— demand at timet is described by a finite set of positions
< 1z T3 Tre D(t) C Q, with n(t) := card(D(t)). Targets are generated,
and inserted intd), according to a homogeneous (i.e., time-
N (32PH +peo (P)) Fogz nw invariant) spatio-temporal Poisson process, with timerisity
14 14 2 A > 0, and uniform spatial density inside the rectangleof
[og,(n)/2] width W and heightH. In other words, given a s&§ C O,
+[30+p-0(t/p)] 21 \ the expected number of targets generated imithin the time
= interval [t,t'] is

!
LRBTA

[2

j=1

Since Zle 277 < Z;Fj 9 =1, and Z;?:l 9i — ok+1 _  E[card(D(t')NS) — card(D(t) N S)] = A(t' —t) Area(S).

k41 i ; Sl
2 < 2%, the previous equation can be simplified to (Strictly speaking, the above equation holds when targets a

, pWH 7P p not being removed from the queue.) Servicing of a target
rpTA S 3032 |\ —H— (14597 | +p-0 (z) and its removal from the sdb, is achieved when the Dubins
H / looe 1 vehicle moves to the target position.
+ (32/)4 +p-0 (p)) {g;" A feedback control policy for the Dubins vehicle is a map

® assigning a control input to the vehicle as a function of
+[B+p-o(t/p)]- (4vn)}. its configuration and of the current outstanding targets. We
Recalling that? = 2(pW H/n)1/3 + o(n~1/3) for largen, the also consider policies that compute a coqtrol input bafsed on
N a snapshot of the outstanding target configurations atiserta
above can be rewritten as . ! . .
time sequences. Lels = {1 }reny be a strictly increasing
: 7T p sequence of times at which such computations are startéu: wi
L <24/ pWHnR? (1 + —m— 2/3). : : . .
RBTA = PR ( * 37TW) +o(n™) some abuse of terminology, we will say thatis a receding

Now it suffi how thai” . liaible with horizon strategy if it is based on the most recent target data
ow it suffices to show thaly;p, is negligible with respect Din(t), where

to Lz, for largen with high probability. From Theorem 2.3,
we know that with high probability there will be at most Din(t) = D(max{tm € To | trn < t}).
241og, n unvisited targets after thBog, n| recursive phases. . _ _ . .
From [23] we know that, with high probability, the lengthThe (receding horizon) policy> is a stable policy for the
of a ALTERNATING ALGORITHM tour through these points DTRP if, under its action
satisfies ) )
ne = lim E[n(t)| p= ®(p, Dm)] < +o0,
" t——+o00
Lgpra < £[12logy n|mp + o(logy n). o _ o _
that is, if the Dubins vehicle is able to service targets at a
B rate that is, on average, at least as fast as the rate at which
Remark 2.8:Theorems 2.1 and 2.7 imply that, with highnew targets are generated. [Z&tbe the time that thg!" target
probability, the RCURSIVE BEAD-TILING ALGORITHM is  spends within the séb, i.e., the time elapsed from the time the
% (1+ §7if)-factor approximation (with respect t0) to ;™ target is generated to the time it is serviced. If the system
the optimal DTSP and thddTSP,(P) belongs to©(n?/?). is stable, then we can write the balance equation (known as
The computational complexity of the ERURSIVE BEAD- Little’s formula [33]):
TILING ALGORITHM is of ordern. O
ne = )\T@,

Ill. THE DTRPFORDUBINS VEHICLE whereTy := lim;_,; - E[T}] is the steady-state system time

We now turn our attention to the Dynamic Traveling Refor the DTRP under the polic®. Our objective is to minimize
pairperson Problem (DTRP) that was introduced by Bertsimgse steady-state system time, over all possible feedbautkato
and van Ryzin in [22]. When compared with previous workpolicies, i.e.,

the novel feature of the following work is the focus on the ) )
Dubins vehicle. Torrp = inf{Ts | ® is a stable control policy.



B. Lower and constructive upper bounds M/D/1 queue in the literature [33], and its system time is

In what follows, we design a control policy that provide&nown to be
a constant-factor approximation of the optimal achievable T 1 1+1 AB
performance. Consistently with the theme of the paper, we MDY= 2up —Ag )
pons@er the case dn‘eayy Ioad.|.e., the problem as the tlmeUsing the computed bounds o; and iz, and taking the
intensity A\ — +oo. We first review from [29] a lower bound limit as \ — +oo. we obtain
for the system time, and then present a novel approximation '
algorithm providing an upper bound on the performance thaty;,, Ty < lim Thy/p

2

holds with high probability. A—foo A2 T Aofoo A2
Theorem 3.1: (Lower bound on the system time for the< 16pW H < 1 Crra )
DTRP)For anyp > 0, the system timd; for the DTRP = = 5 =
Jror anyp d Choa 1+ 3nfe) T\ 2(1+Gnfs) "~ Com

in a rectangle of widtH?" and heightH satisfies 3)
T 81
li DIRP ~ 2 )WH. Since equation (3) holds foany bead intersectingQ, the

11m
Remark 3.2:Theorem 3.1 implies that the system time fopOund derived for7; holds for all targets and is therefore

. . . . . a bound onTgra. The expression on the right hand side
the Dubins vehicle depends quadratically on the time inyns .
A, whereas in the Euclidean case it depends only linearly gf, (3) is a constant that depends on problem parameters

it, e.q., see [22] W and H, and on the design paramet€gra, as defined in
We now propose a simple strategy, theeAD-TILING equation (2). Stability of the queue is established by mptin

71 e .
ALGORITHM, based on the concepts introduced in the previOltEI)%aéOBT‘?nz (&a;ol/ i()’z;r rﬁi/rmizeé /?r?:Izoﬂ?mntgiigzoéﬁe(g)
section. The strategy consists of the following steps: BTA q g

N i yielding the numerical bound in the statement. ]
() Tile the plane Wr:th beads of length? := " pemark 3.4:The achievable performance of theg®o-
min{Cpra /A, 4p}, where TILING ALGORITHM provides a55.7 (1 + %w%):‘-factor ap-

7—V17 7T p -1 proximation to the lower bound established in Theorem 3.1.
Cpra = 4 <1 37TW> ) Also, there exists no stable policy for the DTRP when the
. - targets are generated in an adversarial worst-case faglition
(i) Traverse all non-empty beads once, visiting one targgt > (rp)~. This fact is a consequence of the linear lower
. per non-empty bead. bound on the worst-case DTSP derived in [23]. |
(i) Repeat step (ii).
The following result characterizes the system time for the IV. CONCLUSIONS
closed loop system induced by this algorithm and is based orin this paper, we have studied the TSP problem for vehicles
the bound derived in Lemma 2.4. that follow paths of bounded curvature in the plane. For the

Theorem 3.3: (System time for tBBEAD-TILING ALGO- stochastic setting, we have obtained upper bounds that are
RITHM) For any p > 0 and A > 0, the BEAD-TILING within a constant factor of the lower bound established in
ALGORITHM is a stable policy for the DTRP and the resultindjterature [29]; the upper bounds are constructive in thesse
system timelgr, satisfies: that they are achieved by novel algorithm. Similar analpsis

3 been done for a vehicle modeled as a double integartor in [34]

lim Torre < lim Tsra <705 pWH <1 + 77Tp> . The same paper extends the results to the three dimensional

A—too A2 Ta—deo A2 T 3 case too. It is interesting to compare our results with the
Proof: Consider a generic bead, with non-empty Eyclidean setting (i.e., the setting in which curves do not
intersection withQ. Target points within3 will be generated haye curvature constraints). The results are summarizéin

according to a Poisson process with rate satisfying following table, whered € N is the dimension of the space.
Ap = )\Area(Bﬂ Q) < )\Area(B) _ Cira _+o (12> ' Simple Dubins
WH WH 16pW HA A vehicle vehicle
The vehicle will visit B at least once every.; time units, Length of @(nl—é) [17] O(n)
where L, is the bound on the length of a path through all TSP tour (d=2,3)
beads, as computed in Lemma 2.4. As a consequence, targets | (worst case) [23]
in B will be visited at a rate no smaller than Exp. Length of @(n1_5) [17] @(nl—ﬁ)
C3ra 7 p\ " 1 TSP tour w.h.p.
m=eowme \'T3Tw ) To\ae ) (stochastic) (d=2,3)
System time | ©(A\¥"1) [22] | ©(\2(¢D)

In summary, the expected tin¥g; between the appearance of
a target inB and its servicing by the vehicle is no more than for DTRP (d=1) (d=2,3)
the system time in a queue with Poisson arrivals at Aaje Remarkably, the differences between the various TSP
and deterministic service ratez. Such a queue is called abounds play a crucial role when studying the DTRP problem;




e.g., stable policies exist only when the TSP cost growstktri [11] A. M. Shkel and V. J. Lumelsky, “Classification of the Dubi set,”

sub-linearly withn. For the DTRP problem we have propose
the novel BEAD-TILING ALGORITHM and shown its stability

for a uniform target-generation process with intensityit is

?12]

known that the system time for the DTRP problem for Dubin?3
vehicle belongs t62(\?) and based on the new policy, we have!

shown that the system time belongs26\?). Thus the system

time of the DTRP problem for Dubins vehicle belongs to'4l
©(A?). This result differs from the result in the Euclidean Caseys)

where it is known that the system time belongto\). As a

consequence, bounded-curvature constraints make thlem;yst1 6]
much more sensitive to increases in the target generatten ré

Future directions of research include findingiagle algo-

rithm which would provide constant factor approximation t&'7]

the DTSP for the worst cases well asthe stochastic setting.

It is also interesting to consider theon-uniform stochastic [18]
DTSP when the points to be serviced are sampled according
to a non-uniform probability distribution. Other avenuels o

future research are to use the tools developed in this paper

to study Traveling Salesperson Problems for other dyndmid&®]

vehicles, study centralized and decentralized versionthef
DTRP and general task assignment and surveillance problems

for multi-Dubins (and other dynamical) vehicles.
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