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Abstract— We present a solution to the problem of long-range
obstacle/path recognition in autonomous robots. The system uses
sparse traversability information from a stereo module to train
a classifier online. The trained classifier can then predict the
traversability of the entire scene. A distance-normalized image
pyramid makes it possible to efficiently train on each frame
seen by the robot, using large windows that contain contextual
information as well as shape, color, and texture. Traversability
labels are initially obtained for each target using a stereo module,
then propagated to other views of the same target using temporal
and spatial concurrences, thus training the classifier to be view-
invariant. A ring buffer simulates short-term memory and en-
sures that the discriminative learning is balanced and consistent.
This long-range obstacle detection system sees obstacles and
paths at 30-40 meters, far beyond the maximum stereo range
of 12 meters, and adapts very quickly to new environments.
Experiments were run on the LAGR robot platform.

I. INTRODUCTION

The method of choice for vision-based driving in offroad
mobile robots is to construct a traversability map of the
environment using stereo vision. In the most common ap-
proach, a stereo matching algorithm, applied to images from
a pair of stereo cameras, produces a point-cloud, in which
the most visible pixels are given an XYZ position relative
to the robot. A traversability map can then be derived using
various heuristics, such as counting the number of points that
are above the ground plane in a given map cell. Maps from
multiple frames are assembled in a global map in which path
finding algorithms are run [7, 9, 3]. The performance of such
stereo-based methods is limited, because stereo-based distance
estimation is often unreliable above 10 or 12 meters (for
typical camera configurations and resolutions). This may cause
the system to drive as if in a self-imposed “fog”, driving into
dead-ends and taking time to discover distant pathways that
are obvious to a human observer (see Figure 1 left). Human
visual performance is not due to better stereo perception; in
fact, humans are excellent at locating pathways and obstacles
in monocular images (see Figure 1 right).

We present a learning-based solution to the problem of long-
range obstacle and path detection, by designing an approach
involving near-to-far learning. It is called near-to-far learning
because it learns traversability labels from stereo-labeled im-
age patches in the near-range, then classifies image patches in
the far-range. If this training is done online, the robot can adapt

Fig. 1. Left: Top view of a map generated from stereo (stereo is run
at 320x240 resolution). The map is ”smeared out” and sparse at long
range because range estimates from stereo become inaccurate above
10 to 12 meters.
Right: Examples of human ability to understand monocular images.
The obstacles in the mid-range are obvious to a human, as is the
distant pathway through the trees. Note that for navigation, directions
to obstacles and paths are more important than exact distances.

to changing environments while still accurately assessing the
traversability of distant areas.

In order to be effective, the long-range obstacle detec-
tion system must overcome some obstacles. A normalization
scheme must be used because of the problem of relative sizes
of objects in the near and far ranges. We use a distance-
normalized pyramid to train on large, context-rich windows
from the image. This allows for improved path and obstacle
detection (compared to just learning from color or texture).
Secondly, the traversability labels from the stereo module may
be sparse or noisy, so we maximize their usefulness by using
them to label not only the target window, but also all other
previously seen views of that target. Thus the classifier can
train on far-away views that were taken before the stereo label
was available. This process of spatial label propagation allows
the system to learn view-invariant classifications of scenes and
objects. Finally, we use a ring buffer to simulate short term
memory. The system allows the robot to reliably “see” 35-
40m away and opens the door to the possibility of human-level
navigation.

Experiments were run on the LAGR (Learning Applied
to Ground Robots) robot platform. Both the robot and the
reference “baseline” software were built by Carnegie Mellon
University and the National Robotics Engineering Center. In
this program, in which all participants are constrained to use



the given hardware, the goal is to drive from a given start to
a predefined (GPS) goal position through unknown, offroad
terrain using only passive vision.

II. PREVIOUS WORK

Considerable progress has been made over the last few years
in designing autonomous offroad vehicle navigation systems.
One direction of research involves mapping the environment
from multiple active range sensors and stereo cameras [10,
14], and simultaneously navigating and building maps [9, 21]
and classifying objects.

Estimating the traversability of an environment constitutes
an important part of the navigation problem, and solutions
have been proposed by many; see [1, 5, 15, 17, 18, 23]. How-
ever, the main disadvantage of these techniques is that they
assume that the characteristics of obstacles and traversable
regions are fixed, and therefore they cannot easily adapt to
changing environments. The classification features are hand
designed based on the knowledge of properties of terrain
features like 3-D shape, roughness etc. Without learning,
these systems are constrained to a limited range of predefined
environments. By contrast, the vision system presented in
this paper uses online learning and adapts quickly to new
environments.

A number of systems that incorporate learning have also
been proposed. These include ALVINN [16] by Pomerlau,
MANIAC [6] by Jochem et al., and DAVE [11] by LeCun
et al. Many other systems have been proposed that rely on
supervised classification [13, 4]. These systems are trained
offline using hand-labeled data, with two major disadvantages:
labeling requires a lot of human effort and offline training
limits the scope of the robot’s expertise to environments seen
during training.

More recently, self-supervised systems have been developed
that reduce or eliminate the need for hand-labeled training
data, thus gaining flexibility in unknown environments. With
self-supervision, a reliable module that determines traversabil-
ity can provide labels for inputs to another classifier. This is
known as near-to-far learning. Using this paradigm, a classifier
with broad scope and range can be trained online using data
from the reliable sensor (such as ladar or stereo). Not only is
the burden of hand-labeling data relieved, but the system can
robustly adapt to changing environments. Many systems have
successfully employed near-to-far learning in simple ways,
primarily by identifying ground patches or pixels, building
simple color histograms, and then clustering the entire input
image.

The near-to-far strategy has been used successfully for
autonomous vehicles that must follow a road. In this task, the
road appearance has limited variability, so simple color/texture
based classifiers can often identify road surface well beyond
sensor range. Using this basic strategy, self-supervised learning
helped win the 2005 DARPA Grand Challenge: the winning
approach used a simple probabilistic model to identify road
surface based on color histograms extracted immediately ahead
of the vehicle as it drives [2]. In a slightly more complicated
approach by Thrun et al.̇, previous views of the road surface

are computed using reverse optical flow, then road appearance
templates are learned for several target distances [12].

Several other approaches have followed the self-supervised,
near-to-far learning strategy. Stavens and Thrun used self-
supervision to train a terrain roughness predictor [20]. An
online probabilistic model was trained on satellite imagery
and ladar sensor data for the Spinner vehicle’s navigation sys-
tem [19]. Similarly, online self-supervised learning was used
to train a ladar-based navigation system to predict the location
of a load-bearing surface in the presence of vegetation [24]. A
system that trains a pixel-level classifier using stereo-derived
traversability labels is presented by Ulrich [22]. Recently Kim
et al. [8] proposed an autonomous offroad navigation system
that estimates traversability in an unstructured, unknown out-
door environment.

The work presented here uses self-supervised online learn-
ing to generalize traversability classification. Unlike other
methods, our method relies solely on visual data and is
efficient enough to re-train and re-classify each frame in
realtime (roughly 4-5 frames/second). The system requires no
human labeling or supervision.

III. THE LAGR VEHICLE: OVERVIEW OF PATH PLANNING
AND LOCAL NAVIGATION

This section gives an overview of the full navigation system
developed for the LAGR robot. Although reference “baseline”
software was provided, none was used in our system. Our
LAGR system consists of 4 major components (see Figure 2).

• Vehicle Map. The vehicle map is a local map in polar
coordinates that is fixed relative to the robot position.
It is 100◦ wide and has a 40m radius. It stores cost
and confidence data which is delivered by the different
obstacle detectors.

• Local Navigation. The local navigation is based on the
vehicle map. It determines a set of candidate waypoints
based on cost, confidence, and steering requirements.
The candidate waypoint is picked which lets the vehicle
progress toward the goal. Driving commands are issued
based on this choice.

• Global Map. The global map is a Cartesian grid map into
which cost and confidence information from the vehicle
map is copied after each processed frame. The global map
is the system’s “memory”.

• Global Planner. The global planner finds a route to the
goal in the global map, starting with candidate points
proposed by the local navigation module. The algorithm
is a modified A-Star algorithm which operates on rays
rather than grid cells.

IV. LONG-RANGE VISION FROM DISTANCE-NORMALIZED
MONOCULAR IMAGES

A. Motivation and Overview
Humans can easily locate pathways from monocular views,

e.g. trails in a forest, holes in a row of bushes. In this section,
we present a vision system that uses online learning to provide
the same capability to a mobile robot. Our approach, using
self-supervised learning, is to use the short-range output of



Long Range
Vision

Stereo-based
obstacle
detector

Cameras
Bumpers
IR

Vehicle Map

Global Map

Drive
Commands

Local Navigation
Global Planner

Route to goal

Global Map

Goal

Fig. 2. A flow chart of the full navigation system. The long-range obstacle detector and the stereo obstacle detector both populate the vehicle
map, where local navigation is done. The local map gets written to the global map after every frame, where route planning is done with the
global planner.

a reliable module (stereo) to provide labels for a trainable
module (a window-based classifier). There are three key
components to the approach. First, we do horizon leveling
and distance normalization in the image space, producing a
multi-resolution pyramid of sub-images. This transformation
is essential for generalizing the classifier to long-range views.
Second, the system propagates labels temporally using spatial
concurrences in a quad-tree. This allows us to directly train
on previously seen views that are out of stereo range. Last,
we use a ring buffer to hold a balanced set of traversable and
non-traversable training samples.

The sequence of operations are summarized here and details
are discussed in the following sections.

1) All points in the current frame are inserted into a quad-
tree according to their XYZ coordinates. The XYZ co-
ordinates are determined by mapping from image space
to world space, and can be computed if the parameters
of the ground plane are known. This is discussed in
section IV-B.

2) The stereo module labels the traversability of visible
points up to 12 meters.

3) Each point that was given a stereo label in the previous
step is now used as a query point for label propagation.
The quad-tree is queried to find all previously seen
points that are within a radius r of the queried location.
These points are labeled with the stereo label of the
query point.

4) All stereo-labeled query points and points returned by
the quad-tree are added to a ring buffer.

5) A discriminative classifier trains on the samples in the
ring buffer, which are labeled with -1 (ground) or 1
(obstacle).

6) The trained module classifies all windows in the pyra-
mid, at a range of 1 to 35 meters.

B. Horizon Leveling and Distance Normalization

Recent vision-based autonomous navigation systems have
trained classifiers using small image patches or mere pixel
information, thus limiting the learning to color and texture
discrimination. However, it is beneficial to use larger windows
from the image, thus providing a richer context for more
accurate training and classification. Recognizing the feet of
objects is critical for obstacle detection, and the task is easier
with larger windows.
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Fig. 3. This figure demonstrates the problem of distance scaling.
left: The trees in the image vary widely in size because of different
distances from the camera. This makes near-to-far learning extremely
difficult. center and right: If windows are cropped from the image
and resized such that the subsampling is proportional to their distance
from the camera, then a classifier can train on more uniformly sized
and positioned objects.

There is an inherent difficulty with training on large win-
dows instead of color/texture patches. In image space, the
size of obstacles, paths, etc. varies greatly with distance,
making generalization from near-range to far-range unlikely.
Our approach deals with this problem by building a distance-
invariant pyramid of images at multiple scales, such that the
appearance of an object sitting on the ground X meters away
is identical to the appearance of the same object when sitting
on the ground Y meters away (see Figure 3). This also makes
the feet of objects appear at a consistent position in a given
image, allowing for easier and more robust learning.

In order to build a pyramid of horizon-leveled sub-images,
the ground plane in front of the robot must first be identified
by performing a robust fit of the point cloud obtained through
stereo. A Hough transform is used to produce an initial
estimate of the plane parameters. Then, a least-squares fit
refinement is performed using the points that are within a
threshold of the initial plane estimate.

To build the image pyramid, differently sized sub-images
are cropped from the original RGB frame such that each
is centered around an imaginary footline on the ground.
Each footline is a predetermined distance (using a geomet-
ric progression) from the robot’s camera. For [row, column,
disparity, offset] plane parameters P = [p0, p1, p2, p3] and
desired disparity d, the image coordinates (x0, y0, x1, y1) of
the footline can be directly calculated.

After cropping a sub-image from around its footline, the
sub-image is then subsampled to make it a uniform height (20
pixels), resulting in image bands in which the appearance of
an object on the ground is independent of its distance from the
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Fig. 5. Spatial label propagation. At position/time A, the robot can see
the black location, but it is out of stereo range, so it cannot be labeled.
It is inserted into the quad-tree. At position/time B, the black area
is seen from a different, closer view and a stereo label is obtained.
Now the view of the location from position A can be extracted from
the quad-tree and trained on using the label from position B.

camera (see Figure 4). These uniform-height, variable-width
bands form a distance-normalized image pyramid whose 36
scales are separated by a factor of 2

1
6 .

C. Spatial Label Propagation

We expand the number of labeled training samples per
frame by propagating labels backward in time. This is done
using a quad-tree that indexes XYZ locations in the world
surrounding the robot. The quad-tree is a very efficient data
structure for storing spatial information, and concurrent views
can be inserted and queried in O(lgn) time. Given a labeled
window and its corresponding world XYZ location, we can
query the quad-tree to retrieve all previously stored views of
the same location (see Figure 5 and 6). Label propagation on
a graph is a variant of semi-supervised learning that exploits
knowledge about the robot’s position and heading to expand
the training set on every frame.

The stereo-labeled points and the query-extracted points are
stored in 2 large ring buffers, one for traversable points, and
one for non-traversable points. On each frame, the classifier
trains on all the data in both ring buffers. The ring buffer
acts like short-term memory, since samples from previous
frames persist in the buffer until replaced. The ring buffer
also balances the training, ensuring that the classifier always
trains on a constant ratio of traversable/non-traversable points.

D. Training Architecture and Loss Function

The long-range obstacle detector goes through a labeling,
training, and classification cycle on every frame. First, each
overlapping RGB window from the right camera is assigned
a traversability label (ground or obstacle) if it is within stereo
range (< 12 meters) and if stereo data is available. Then
feature vectors are computed for the windows in the pyramid

Fig. 6. Multiple views of a single object. The same label (non-traversable,
in this case) is propagated to each instance.
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Fig. 7. The online learning architecture for the long-range vision
system.X is the input window, D is the feature vector calculated
from the RBF layer, and W is a weight vector. The function g is a
logistic function for inference on y

using a small convolutional network that is trained offline. A
set of 120 radial basis functions was also implemented as a fea-
ture extractor, but tests showed that the trained convolutional
network produced more discriminative feature vectors. Details
on the feature extraction process, for the convolutional network
and the RBF (radial basis function) network, are provided. The
classification error rates, after offline training of the different
feature extractors, is given in Table I.

The RBF feature vectors are constructed using Euclidean
distances between a 12x3 RGB window and the 120 fixed
RBF centers. For an input window X and a set of n radial
basis centers K = [K1...Kn], the feature vector D is D =
[exp(−β1||X−K1||2) ... exp(−βn||X−Kn||2) where βi is the
variance of RBF center Ki. The radial basis function centers
K are trained in advance with K-means unsupervised learning.

Several convolutional networks were compared. The one
chosen is a three-layer network with a 15x15 pixel field
of view and an output vector of 120. The first layer (C0)
has 16 6x6 convolutional kernels; the second layer (S0) is a
2x2 subsampling layer, and the third layer (C1) has 64 5x5
convolutional kernels. Although this network did not achieve
the lowest offline error rate, it had the best speed/performance
balance out of all the tested networks.

A logistic regression on the feature vectors is trained using
the labels provided by stereo. The resulting classifier is then
applied to all feature vectors in the pyramid, including those
with stereo labels. The training architecture is shown in
Figure 7.

The classifier is a logistic regression trained with stochastic
gradient descent to produce binary labels (0 for traversable,
1 for non-traversable). Weight decay towards a previously
learned set of default weights provides regularization. The loss
function is cross-entropy loss. For weights W , feature vector
D, label y, and logistic function g(z) = 1

1+ez , the loss function



(a). sub­image extracted from 
far range. (21.2 m from robot). 

(b). sub­image extracted at 
close range. (2.2 m from robot). 

(a)

(b)

(c). the pyramid, with rows (a) and (b) 
corresponding to sub­images at left.

Fig. 4. Sub-images are extracted according to imaginary lines on the ground (computed using the estimated ground plane). (a) Extraction
around a footline that is 21m away from the vehicle. (b) Extraction around a footline that is 1.1m away from the robot. The extracted area
is large, because it is scaled to make it consistent with the size of the other bands. (c) All the sub-images are subsampled to 20 pixels high.

Test Baseline (sec) Our system(sec) % Improved
11.1 327 310 5.48
11.2 275 175 57.14
11.3 300 149 101.34
12.1 325 135 140.74
12.2 334 153 118.3
12.3 470 130 261.54
12.4 318 155 105.16

TABLE II
GOVERNMENT TESTING RESULTS. A DARPA TEAM TESTED OUR

SOFTWARE AGAINST THE BASELINE SYSTEM AT PERIODIC

INTERVALS, AT UNKNOWN LOCATIONS WITH UNKNOWN

ENVIRONMENTS AND OBSTACLES. THE PERFORMANCE OF EACH

SYSTEM WAS MEASURED AS THE TIME TAKEN TO REACH THE

GOAL. OUR SYSTEM TYPICALLY REACHED THE GOAL 2 TO 4
TIMES FASTER THAN THE BASELINE SYSTEM

and gradient of the loss function are

L = −
n∑

i=1

log(g(y · W ′D))
∂L

∂W
= −(y − g(W ′D)) · D

Learning is done by adjusting the weights with stochastic
gradient descent. Although the loss function is convex and
optimal weights could be found exactly, using stochastic
gradient descent gives the system a natural and effective inertia
that is necessary for generalizing well over successive frames
and environments.

After training on the feature vectors from labeled windows,
all the windows are classified. Inference on y is simple and
fast: y = sign(g(W ′D)) where g(z) = 1

1+ez as before.

V. RESULTS

The robot drives smoothly and quickly under the full
navigation system described in section 3. It typically gets
to a goal 2 to 4 times faster than the baseline system (see
Table II). The long-range vision module is efficient; it runs at
3-4 frames/second.

Fig. 8. ROC curves comparing classifier labels vs. stereo labels.
dotted/blue The classifier was initialized with random weights, and
the online learning was turned off. dashed/black: The classifier was
initialized with default trained weights, but online learning was turned
off. solid/red: The full system: trained default weights and online
learning.

To specifically assess the accuracy of the long-range clas-
sifier, the error of the classifier was measured against stereo
labels. If the classifier was initialized with random weights
and no online learning was used, then the error rate was,
predictably, 52.23%. If the classifier was initialized with a
set of default parameters (average learned weights over many
logfiles) but with no online learning, then the classifier had an
error of 32.06%. If the full system was used, i.e., initialized
with default weights and online learning on, then the average
error was 15.14%. ROC curves were computed for each test
error rate (see Figure 8).

Figure 9 shows examples of the maps generated by the
long-range obstacle detector. It not only yields surprisingly
accurate traversability information at distance up to 30 meters
(far beyond stereo range), but also produces smooth, dense
traversability maps for areas that are within stereo range. The



Feature extractor Input window size % Test error (offline) % Error (online)
RBF 24x6 45.94 23.11
RBF 6x6 47.34 22.65
RBF 12x3 48.49 21.23

CNN (3-layer) 15x15 20.71 11.61
CNN (3-layer) 20x11 20.98 12.89
CNN (3-layer) 12x9 24.65 14.56
CNN (1-layer) 24x11 16.35 11.28

TABLE I
A COMPARISON OF ERROR RATES FOR DIFFERENT FEATURE EXTRACTORS. EACH FEATURE EXTRACTOR WAS TRAINED, OFFLINE, USING

THE SAME DATA. RBF = RADIAL BASIS FUNCTION FEATURE EXTRACTOR. CNN = CONVOLUTIONAL NEURAL NETWORK FEATURE

EXTRACTOR.

goal

Small wooded 
path

Wider paved 
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Trees and 
scrub

Unknown area
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Fig. 10. This is a global map produces by the robot while navigating
toward a goal. The robot sees and follows the path and resists the
shorter yet non-traversable direct path through the woods.

stereo maps often have noisy spots or holes - disastrous to a
path planner - but the long-range module produces maps that
are smooth and accurate, without holes or noise.

The long-range module, when integrated with the whole
driving system and tested in offroad environments, generally
produced clear and accurate global maps (see Figure 10).

VI. SUMMARY AND FURTHER WORK

We demonstrated an autonomous, online learning method
for obstacle detection beyond the range of stereo. At each
frame, a pyramid of image bands is built in which the size of
objects on the ground is independent of their distance from
the camera. Windows on locations beyond stereo range are
stored in a spatially-indexed quad-tree for future reference.
Windows within stereo range are assigned labels, together
with windows at the same spatial location stored in the
quad-tree during previous frames. A simple online logistic
regression classifier fed with features extracted using a trained
convolutional network is trained on a ring buffer of such
windows. The system requires no human intervention, and
can produce accurate traversability maps at ranges of up to
40 meters.

The method, not including the label propagation strategy,
was implemented as part of a complete vision-based driving
system for an offroad robot. The system navigates through
unknown complex terrains to reach specified GPS coordinates

about 2 to 4 times faster than the baseline system provided
with the robot platform.
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