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Abstract— Multi-robot systems require efficient and accurate interest if they are within robots’ sensing range. Sensogea
planning in order to perform mission-critical tasks. However, on these robots are not necessarily uniform. The envirohmen

algorithms that find the optimal solution are usually computa- a1 haye static or dynamic obstacles, and the robots need to
tionally expensive and may require a large number of messages id th . der t f their task
between the robots as the robots need to be aware of the2VO! em In order to perform their tasxs.

global spatiotemporal information. In this paper, we introduce We propose an emergent solution to the task allocation
an emergent task allocation approach for mobile robots. Each problem for heterogeneous robots. The tasks we are inderest

robot uses only the information obtained from its immediate jn are: (i) covering all regions of interest(ii) providing
neighbors in its decision. Our technique is general enough to be communication between as many robots as possibig

applicable to any task allocation scheme as long as a utilization troli . total f b Il th bott
criteria is given. We demonstrate that our approach performs controling maximum total surface by a e robptgv)

similar to the integer linear programming technique which finds €Xploring new regionsOur objective is to maximize these
the global optimal solution at the fraction of its cost. The items while satisfying the constraints such as avoiding the
tasks we are interested in are detecting and controlling multiple gbstacles or moving within the speed capabilities of irginail
regions of interest in an unknown environment in the presence 44t Additional constraints we are considering are tira-c
of obstacles and intrinsic constraints. The objective function L . . P
contains four basic requirements of a multi-robot system serving mun|cat|on-between two rqbot; (which exists only if eitheot
this purpose: control regions of interestprovide communication fobots are in the communication range of each other or there
between robotscontrol maximum areand detect regions of interest is a route between them through other robots satisfying the
Our solution determines optimal locations of the robots to communication constraints), and, the sensing of the olestac
maximize the objective function for small problem instances while 54 yegions of interest when they are within the robots’ sens
efficiently satisfying some constraints such as avoiding obstacles . .
and staying within the speed capabilities of the robots, and fa“g‘?- Our approgch IS gener.al gnough to .be gasny adapted to
finds an approximation to global optimal solution by correlating ~additional constraints and objectives, making it custabie
solutions of small problems. for various mobile robot problems.
Several linear programming based solutions have been
proposed for mobile robot task allocation problem. Althloug
Several real life scenarios, such as fire fighting, seartiese proposals are generally successful in finding thenapti
and rescue, surveillance, etc., need multiple mobile robsdlution, they usually require collecting information aball
coordination and task allocation. Such scenarios generalbbots and regions of interest, and processing this infooma
include distinct regions of interest that require the dttenof at a central location. As a result, these approaches can be
some robots. If the locations of these regions are not knownfeasible in terms of the computation time and communica-
the mobile robots need to explore the environment to firttbn cost for large groups. In order to provide scalabilihda
them. In this paper, we propose a solution to the probleefficiency, we are proposing an emergent approach. In this
of detecting and controlling multiple regions of interest iapproach, each robot solves a partial problem based on its
an unknown environment using multiple mobile robots. Inbservations, then exchanges information (such as iotenti
our system, we assume a bounded environment that isated directives) with the robots in the communication rarme t
be controlled by a group of heterogeneous robots. In thsaintain coordination. The system is fully distributed @i
environment, there are regions of interest which need to bkows this technique to be applied to any number of robots
tracked. These regions are dynamic, i.e. they can appeay at with computation and communication cost limited by constan
point, anytime and can move, spread or disappear. Eachhregi@rameters which can be defined according to the application
may require more than one robot to track and control. Robaeguirements. We experimentally show that this approagtsgi
do not have initial information about the environment, amel t results comparable to global optimal solution, and perform
environment is only partially-observable by the robotscliea hundreds of times faster with little communication cost.
robot has wireless communication capability, but its raigge Since we use mixed integer linear programming for the
not uniform. Two robots can communicate between each othemiution of the partial problems, our contributions alsdidle
only if both of them are in the communication range of each customizable multi-robot task allocation solver which ca
other. They can have different speed limits and are equippeel used to find global optimal solution under the given
with the sensors to identify the obstacles and the regions ahstraints. In contrast to other linear programming $mhst,

I. INTRODUCTION



we also present an efficient way to check obstacle collisiomaission completion time while UAVs visiting predetermined
While we are concentrated on the mobile robots, our solwaypoints and avoiding no-fly zones. The solution to this
tion is applicable to other distributed task allocationkpeon problem is formulated as finding all possible combinations
as long as a function to evaluate the goodness of the solistiolf task allocations, and choosing the best combinations Thi
defined. The technical report version of this paper thatites definition of task allocation is actually quite differentati
the details of the mixed integer linear programming sotuticour problem definition. Our aim is to explore environment,
with the description of constraints and variables, as well &nd regions of interest, and assign tasks optimally obeying
some proofs including the convergence of our approach ttee constraints imposed at that moment. In other words, we
the global solution, extensions that show the flexibility oére finding a solution in real-time, instead of finding aniait
the approach, and a larger set of experiments on differgiian and executing it.
environments can be found at [1].
The rest of the paper is organized as follows. The next
section gives a summary of the related research and brief IIl. PROBLEM DEEINITION
comparison to our approach when it is applicable. Sectibn Il
gives the problem definition. Section IV describes our mixed
integer linear programming solution, and Section V exgain N our problem definition, there are regions of interest we
the emergent behavior task allocation approach. We pres@f@nt robots to explore and cover. In the rest of the paper,

simulation results in Section VI and Section VII conclude¥® Will call these regions “targets”. Since larger areas loan
our paper. represented with multiple points, without loss of gendyali

we assume targets are represented as points in planar gpace.
Il. RELATED WORK target is assumed to be covered if there are enough robats tha

Multi-robot task allocation has been studied extensiveljave the target in their sensing range. The number of robots
because of the importance of app”cation areas. One qmwuired to cover a target varies for each target. We assume
popular approach to this problem is utilizing negotiatian dhe future locations of known targets after a time period can
auction based mechanisms. In this approach, each distdbuee predicted. Our primary purpose is to find locations of
agent computes a cost for completing a task, and broadcd8#ots in order to cover as many targets as possible using the
the bid for that task. Auctioneer agent decides the bettimated locations of targets. While covering all the temge
available bid, and winning bidder attempts to perform thi§ also desirable to provide communication between as many
task. Fo"owing the contract-net protoco| [2], severaliatons robots as pOSSible because this will allow robots to eXCBang
of this method has been proposed [3]-[7]. Another importaF’ﬂe information about the environment and the targets. In
approach is using behavior based architecture. ALLIANCE [@ centralized approach, this also leads to a better solution
is a behavior-based architecture where robots use maunalti Since the SOIVer will be aware Of more information. It iS alSO
behaviors such as robot impatience and robot acquiesceri€ferable that robots need to cover as much area as possible
These behaviors motivate robots to perform tasks that ¢ana#dition to covering targets to increase the chances ottiege
be done by other robots, and give up the tasks they canber undiscovered targets. Similarly, in order to discovew
not perform efficiently. BLE [9] is another behavior-baseéfrgets and avoid waiting at the same location when no trget
architecture which uses continuous monitoring of tasksrggnoare being tracked, the robots are expected to explore new
robots and best fit robot is assigned to each task. A detail&@!0ns.
analysis and comparison of these methods can be foundVe define the state of the system as current locations of
at [10], [11]. These methods propose distributed algorithntargets, number of robots needed to cover a target, current
where resource allocation is an approximation to the globadsitions of the robots, positions of the obstacles, preshpo
optimum. The main difference between these methods and explored regions, and each robot’'s speed, communication
approach is that we are using a formulation that can providegnge and sensing range. The output of our algorithm is the
global optimum solution when information propagation isptimal locations of the robots for the next state of theeayst
not limited. However, instead of finding the global optimahfter a brief period of time. Please note that, we assume we
solution using all the information which has high computati can predict the location of the targets at the next step.€elher
and communication cost, we distribute computation andrinfaare approaches for motion prediction that can be used for
mation processing among robots and reach an approximattbis purpose [21]. We also assume that there are no sensor
to the global optimal solution through iteration. or odometry errors, however, implementation of our method

Task allocation problem is also studied in the contexin real robots can introduce these errors. The method we are
of cooperation of Unmanned Aerial Vehicles (UAVs). Sevplanning to utilize for handling noisy measurements, senso
eral methods are proposed for search and attack missienors and mechanical errors like slippage or odometryr&rro
of UAVs [12]-[20]. Our method is similar to the methodgakes advantage of communication among nearby robots. We
proposed in [13], [14], [17], [20], since these methods afgelieve our approach promotes robots to stay in the contact
also using mixed-integer linear programming task allarati as much as possible and make it possible to share as much
However, in these papers, the problem is defined as minimizisensor information as possible.
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Fig. 1. SR stands for sensing range, and CR stands for communication rangetdérget is covered when it is in sensing range of some
robots, where number of robots is determined according to the recghitsnof the target. RobotR, and R coverTi, while Rs covers

Ts. T5 is not covered. (b) Two robots can communicate if both robots are imuoritation range of each othé®z can communicate with
R, and R3, and works as a hub betwedt and Rs which cannot communicate directly. (¢) Maximum area coverage is @utafrsensing
range of robots do not overlap. In the figure, sensing regions aitsdimrely touch each other (d) Robots mark regions they exploredebefo
and move towards unexplored regiors. and R move upward toward unexplored region after marking dark (bluepnegs explored

IV. MIXED INTEGERLINEAR PROGRAMMING FORTASK  as rectangular meshes. When considering obstacles, we are
ALLOCATION not finding a path to avoid them, but we are finding whether

Although our main contribution is the emergent task alloc&" Not it is possible to avoid them with the robot speed and
tion, we first would like to show how a centralized approachMestep as the constraints. As it is mentioned before, uutp
can be utilized to find the optimal placement of robots aftéf the linear program is the final positions of the robots.

a defined time period. In the next section, we will show hoWVhen computing these positions, we utilize Manhattan paths
individual robots can use the same approach to solve thigridentify if there is a way for a robot to avoid an obstacls. A
partial problems to achieve emergent task allocation. long as there is a Manhattan p_ath that bypasses the obstacle

Our centralized approach utilizes a mixed integer line&nd has a length that is possible for the robot to traverse
program. Either a designated robot runs the solver or edéhder the given speed constraints, we consider the final
robot in a group executes the same solver with the same da@sition of the robot as a feasible configuration. Otherwise
to find its placement. A group consists of the robots that aff@@t configuration is eliminated. Once a position is selicte
in the communication range of each other, hence states dR@reé advanced navigation algorithms can be utilized to find
observations of all the robots are known to the solver(s). Tore efficient paths. The alternative approach, i.e., figdin
there are multiple groups of robots that cannot communict&act path, requires finding intermediate states of thesyst
with each other, each group will have its own task allocatigh fine resolution which increases complexny drasticallgaBe _
based on its world view. If two groups merge, they can shaf@te that we are not aware of any other linear programming
their knowledge. The program runs periodically to find th@PProach that addresses navigation problem.
best placements for each robot. It also runs if a new event Target Coverage
happens, such as the discovery of an obstacle or a target. The . .
linear program should satisfy some constraints: (i) anuateti A f@rget can be considered covered only if the number of
location is not acceptable if the robot cannot reach theheei "0P0tS f°||°V¥'n9 it is greater than or equal to its coverage
because of its speed limits or because of an obstacle, tﬁﬂmrement. A.robot can sense and control ata_rget only ifits
two robots cannot communicate if one of them is outside ttf&"SiNg range is greater than or equal to the distance hetwee
communication range of the other, (jii) an obstacle or taige itself an'd the target. A sample organization of thfa robot$ an
detectable only if it is within the sensing range of the robof2"9ets is shown in Fig. 1(ajz; and R, are covering target
Our goal is then to maximize the number of targets trackef! @Nd % is coveringTs while T is not covered by any of
the number of robots that can communicate with each othl¢ robots.
the area of the envir(_)nment covered by the robot sensors, #dcommunication
the area of the environment that was explored. In the next L
subsections, we will first discuss different objective fiioras Each robot has a cpmmumcatlon range. A robot can have
and constraints, then we will show our overall optimizatioﬁ dup_lex communlcau_on _Imk to another robot only if each
criterion and we will discuss the complexity. We give onlg th robot is in the communication range of the other one. However

overview of the linear program because of space Iimitatior@ﬁOts an corgmgplcate bgtween each dgthe: with the h.e Ip of
but detailed formulations and explanations can be fountien tother robots. So, It two robots cannot directly communicate

technical report version [1]. with each oth_er, but they share a common robot both of which
can communicate, we assume that they can communicate. In
A. Obstacle Avoidance other words, transitive links are allowed in the system. It

In our system, we assume there are only rectangular shaped

. .. . . . Please see the technical report [1] for the proof that oumvpation
obstacles for the sake of simplicity of defining linear egprz. criterion results in continuous target coverage of allégsgif this optimization

However, more general shaped obstacles can be represenieaighest priority.



should be noted that this condition implies communication Communication: We utilize the number of pairs of robots
between robots with the help of multiple intermediate rgbotthat can communicate with each other, i.e.,

i.e. one or more robots can participate in a transitive link n n
between two robots. A communication pattern of the robots C = ZZcommunicationij 2)
is shown in Fig. 1(b) R, can communicate with botR; and i=1 j=1

R3. R; and R3 do not have a direct communication link, bu

) i 1i/vhere n=number of robots,communication;; is 1 when
they can communicate with the help &6. ‘)

robots: and j are within their communication range or they
D. Area Coverage can communicate with the help of other robots, 0 otherwise.

Robots have limited and constant sensing range, so the onl%'/b‘rea Coverage: We utilize the number of pairs of robots

way to maximize area coverage is by preventing the overlap\% Ose sensor ranges do not intersect, i.e.,

sensing ranges of robots. An ideal area coverage for thésobo n n

is represented in Fig. 1(c), where robots have no overlgppin A= Z Z area;; 3)
sensing range. i=1 j=1

E. Exploration where n=number of robots;rea,; is 1 when robots and j
cover non-overlapping regions, 0 otherwise.

In order to explore the environment, robots need to kno Exploration: We utilize the number of robots in unexplored
places they have visited recently. We store this infornmaéie rggioﬁs i e ' P

rectangular regions defining explored areas. Then therline
program tries to move robots into unexplored regions by E:ZZexpzomtionij (4)
checking the final position of the robots. So, the prograregiv i=1 j—1

a final position not located in an explored regiém sample_ where n=number of robots, m=number of explored regions,

gxploraﬂon scenario 1S shown in Fig. 1(d). Dark (blue) oegi exploration,; is 1 if the roboti is not in the explored region
is explored in the first step, so robots try to locate theneselv

outside of the explored area j, 0 otherwise,
P ' Optimization Criterion: Our objective function is weighte

sum of the above components.

n m

maximize oI + BC +~vA+0F (5)

whereq, (3, v, andd are constants defining priorities.

Figure 2 represents an optimal distribution of robots atcor
ing to this optimization criterion. Robots arrange themess!
so that they cover all targets, provide communication betwe
each other, and cover as much area as possible.

Fig. 2. An example distribution of robots providing optimum targeG- Complexity

coverage, communication and area coverage. Réhatovers target  Qur formulation results in a mixed-integer linear program,

T, and R, covers targeTQ.Rg,. is located to provide communi_cationwhich is NP-Hard in the number of binary variables, so
between them, and its sensing range does not overlap with others, lexity of is dominated by th b f
Dark colored circles represent communication range, light color&@MPIEXIy OF Our program IS dominated by the number o

circles represent sensing range. binary variables. Definitions and properties of binary &hles
can be found at the technical report [1]. For a problem with
n targets,m robots,p obstacles ang explored regions, there
aren + nm + 2nn + 5mq + 4mp binary variables. So, the
Optimization criterion consists of four componentarget complexity can be stated &(n + nm + n? + mq + mp).
coverage communication between robotrea covered by the
robotsandthe number of robots located in unexplored regions. V. EMERGENT TASK ALLOCATION
Target Coverage: We utilize the number of targets that areAs we have mentioned in the previous section, finding the
covered, i.e., . optimal solution is an NP-Hard problem. While it may be
ossible to solve simple problems with on-board processors
T= Z coverage; (1) 1Ei)nding solution for Iarger r?etworks is very expensivF()a even f
=t a more powerful central server (because of both the cost of
wheren=number of targets;overage; is 1 when the number computation and the number of messages). In order to over-
of robots that are coveringirget; is greater than or equal to come this problem, we propose a distributed approach where
the minimum requirement for that target, O otherwise. each robot in the network finds a local solution based on the in
2Please see the technical report [1] for the proof that giwdiicgent number forma.tlon f.rom the YICIHIty of the robot. Thls'appr.oach lZ(.ﬂiS
of robots for communication and target tracking, our algonitill result in the mixed integer linear program we described in Section IV.
the exploration of the all environment. The local vicinity of the robot contains the region covergd b

F. Optimization Criterion
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Fig. 3. Information exchange for emergent task allocation: (a) IntentionsDfkectives, (c) Intentions and Directives, (d) Intentions,
Directives and Target Assignment. The dashed-circles connecte@ toetghboring robotsR ;..,» represent their intentions, the dashed-
circles connected to th®&; represent the directives to that robot by its neighbors.

the robot and its first-degree neighbors (1-hop away). Eagahd neighbor information), each robot sends this locat@on t
robot uses the information about targets and obstacles that neighbors as its intended location. When a robot gets
can be sensed by the robot itself and 1-hop neighbor robattentions from all neighbors, it assumes that these lonati

in its computation. In order to increase efficiency, we farth are final, and computes its own location that would maximize
restrict the vicinity to k-closest robots if the number ohdp the utility. Note that, we still use the algorithm of Sectit
neighbors is large. While this segmentation of the problehowever, other robots’ positions now become constraints of
makes the individual problems solvable by the mobile robothe system. Figure 3(a) represents this approach for robot
each robot is concentrated on its own problem which is ugual
different than those of neighboring robots. As a result, i
solution may be different from another robot's solution. In In the second approach, each robot computes a location
order to provide coordination between the neighboring mbofor its neighbor, and sends this location to the neighbor as
the robots exchange information among the neighbors (ma"ﬂ directive. When a robot gets location information from all
contains intentions and/or directives) and update theiallo Neighbors, it uses the list of locations as the potentiatioas,
solutions based on this information. This exchange makes #&nd finds the one that gives the highest value of the objective
solution of emergent task allocation comparable to that 8fnction using the linear program. The information transfe
centralized approach. Algorithm 1 summarizes this apgroador roboti is shown in Figure 3(b).

C. Intentions and Directives
In the third approach, each robot computes optimal location

. Directives

Algorithm 1 Coordination (robot)
1: Find a solution with local information

2. for all k-closestl-hop neighborj do of itself and its neighbors, and sends these locations to
3:  Send solution information tg the neighbors. When a robot gets these locations, for each
4:  Receive solution information from potential location given by the neighbors, it evaluates the
5: end for _ _ _ _ utility of that directive based on the intended locations of

6: Update solution according to new information all neighbors. The directive that gives the highest value of
7: returnposition (i)

the objective function is selected as the next location Hiat t
robot. This is represented in Figure 3(c) for rokot

Although it is possible to iterate through lines — 6
several times, i.e., continuously updating the solutiotilun D- Intentions, Directives and Target Assignment Infororati
converges, we are interested in only a single exchange fofThe last approach is similar to the third approach, but in
efficiency purposes. In the technical report [1], we show thaddition to the information about locations, target assignt
as the number of iterations increases, the solution coasergnformation is also sent to the neighbors. Target assigmmen
to the global optimum. Similarly, if there is sufficient comp states whether or not a robot is assigned to cover a target.
tational power on individual robots, the size of neighbardho This information can be used in different ways, but we use
can be increased to include the robots that are more hops awtay so that no two robots try to cover the same target, unless
for obtaining better solution. that target needs to be covered by more than one robot. This

The information exchange between the robots could rangpproach provides better exploration and better area ageer
from single position information which may require a singlas robots can ignore a target and spread out when the target is
message between the robots to all the state informationtwhimvered by another robot. Figure 3(d) represents this agpro
may require multiple messages. We have selected the follofer robot i.

ing methods for the information exchange: . . T
9 g E. Comparison to Centralized Global Optimization

A. Intentions Global optimization through centralized computation re-
In the most simple approach, after finding a position thauires all information about the environment to be colldcie
maximizes its utility (based on the current sensor inforamat one location. Assuming the central server is physicallated



in the center of the network and average hop count from othltbemselves according to the environment which they estimat

robots to the central server jg average message count in théo be in 4 steps. In the experiments, we chose constants at

system for one planning phase @(p * n), wheren is the the optimization criterion asx > 5 > v > 4. In other

number of robots. On the other hand, number of messagesrds, the linear program optimizes (9rget coverage(2)

at the emergent approach Asfor each robot, wheré is the communication between robot§3) area coverageand (4)

maximum number of neighbors that a robot can have. To&tplorationfrom highest to lowest priority, respectively.

number of messages in the systemCék + n) at emergent . o

approach. It should be noted thais dependent on the networkB: Centralized Global Optimization (CGO)

size, wheread: is a constant and for practical applications We show a sample execution of our program to highlight

p >> k. Average delay for transmitting messages at the globile properties of the solution. Robots start exploring tina-e

approach isD(p), whereas average delay is constant and 1 mnment by moving out of the region they explored when they

emergent approach when each robot communicates to owlgre all at(0,0). The initial explored region is the rectangle

1-hop neighbors. {(0,0),(1,1)} because the robot with highest sensing range
Once all the information is collected at a central locatiortan sense a region of radius 2.

the linear program can find the global optimal solution if the Since there are no targets detected yet, and the communica-

problem instance is not too big for the processing capgbilition constraints are satisfied, the robots try to cover ashmuc

and the memory available. On the other hand, the solutidm wirea as possible while obeying the movement constraints. Th

emergent approach is found using limited information, s® tmew environment is shown in Fig. 4(a) where blue (darker)

solution may not be optimal. However, as the information @reas indicate explored regions. Exploration revealstarg

shared among neighbors, the quality of the solution impovend to, and predicts their positions to b@®,4) and (2,2),

and optimal solution can be obtained if information sharingespectively. Optimal allocation is shown in Fig. 4(b). Rtb

is continued until the system reaches a stable state, which§ andrg cover targets, and other robots continue exploration

when all robots find the same solution. The proof showing thahile staying within the communication range. Next, target

these iterations finally converge can be found at [1]. t3 is found, which requires two robots to be covered. Robots
ro, r3 andr; continue exploration ands works as the com-
VI. SIMULATION RESULTS munication bridge while remaining robots are assigned ¢o th

In our simulations, we want to evaluate how well emergetargets. Distribution of robots is shown in Fig. 4(c). Twhet
task allocation (ETA) behaves with respect to centralizadrgets,t, andts; are discovered at the next step. Moreover,
global optimization approach (CGO) using mixed integdargetst; andi, move faster than their controller robots,and
linear programming. For this purpose we have designed an which cannot catch them. However, global optimization
experimental scenario and run ETA with different inforroati finds a solution to this problem by assigning the covering tas
exchange methods and CGO. Next, we will discuss the entd-other robots that can reach the targets (Fig. 4(d)). Targe
ronment, present the behaviors of individual techniques ais discovered at the next step. At this time, it is not possibl
compare them. Since our main application is mobile sensoesyer all the targets while keeping the communication betwe
we are interested in finding how well either technique caall robots. Since target coverage is given more importance,
cover targets. For this purpose we compared the numberrobots are distributed into two independent groups. Robpts
targets covered by each technique as well as the soluti@mdrs form one team, while others form the other team. Each
times. We also experimented with larger networks of robotsam has communication in itself, but cannot reach to theroth
and targets on bigger environments to show the scalabifity team. An optimal solution is found and applied for each team.
ETA. Simulation results with 20 robots - 10 targets and 3Big. 4(e) represents result of two optimal solutions. Terge

robots - 15 targets can be found at [1]. t; andts; leave the environment at the next step. Team of
. robotsrs andrs has one target to follow, so while one robot
A. Environment follows target, the other robot, in this casg which is the

The environment is bounded and has siz2 x 12. faster robot, continues exploration. The other team cosatrs
There are three rectangular obstacles, which are locatedtzaets, and provides communication in itself. Fig. 4(fpwh
{(0,4),(5,6)}, {(4,8),(8,10)} and {(8,2),(10,6)} (darkest the final state of the environment which is totally explored.
(dark blue) regions in Figs. 4 and 5). In the environmentegher Our experiment shows that we can successfully assign tasks
are 8 robots which are located at poiit 0), and 6 targets to the robots. We can successfully cover individual targets
whose locations are unknown initially. The targets folloskeep communication distance as long as possible, provide
predefined paths and we assume we can predict their locatiomsximum area coverage and explore the environment.
for the next timestep, if their locations are known at theent .
step. Robots are heterogeneous with sensing range and sfeefmergent Task Allocation
differing between 1-2, and communication range 4. Detailed In this section, we present the performance of the diseibut
parameters can be found at [1]. All targets except the targghergent approach under the same scenario. We have run
t3 require a single robot for coverage, whereggsrequires emergent approach for each information exchange method
two robots. Timestep is selected to be 4, so robots arramdgscribed in Section V with k-closest neighbors where 4.
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5 ® 5 ‘ ETA w/Dir. 212 || 33 || 3/5 || 4/6 || 2/4
N N ® ETA w/Int.Dir. 22 || 33 ][ 35 || 416 || 2/4
3 3 ® [
zf? ® ® 2 e ETA w/Int.Dir.Tgt || 2/2 || 3/3 || 5/5 || 6/6 || 4/4
1‘ [ t CGO 2/2 || 3/13 || 5/5 | 6/6 || 4/4
1 2 3 4 5 6 7 8 910 112 1 2 3 4 5 6 7 8 910 112
Y (c) Y (d)
ulo W 4 ul e & @ [ Assignment” where ETA can cover all the targets. Figures 5
1o & (a) to (f) shows the behavior of ETA in this case. We also

©
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@
QJ
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i<}
=
o

run ETA on larger environments and networks to measure the
scalability of this approach [1]. These experiments shoat th

the quality of the solution is satisfactory also in largewarks,
- & and execution time per robot stays constant irrespectivheof
network size.

® [

PN WA OO N ®
&l
PN WA OO N ®©

iE} Please remember that we chose to exchange information
o @ among neighbors only once for each planning phase because of
12345678 910 112 123450678 910 ni thetime limitations of real world applications. Howeveach
(e) )] update increases the performance and if updates are cedtinu

Fig. 4 Sample execution of the Centralized Global OptimizatiotiNtil the system reaches a stable state, the final state @ill b
Robots are represented as circles, and targets are representeglager to the global optimal solution.

squares. Dark blue (darkest) regions are obstacles, blue (darker)

regions are explored regions, and gray (light gray) regions de Comparison of CGO and ETA

unexplored regions. As it is seen at Table Il, the performance of ETA with

“Intentions, Directives and Target Assignment” is simitar

CGO. On the other hand, ETA is 400 times faster than CGO
Table | presents running times for each method. It can be sd@able ). This shows the main drawback of CGO which is
that there is no significant difference in computation timefe infeasible computation time as the number of robots and
among ETA methods. On the other hand, as the amounttafgets increase (e.g., when the number of robots is 8 and
shared information increase, the performance of ETA irsgga number of targets is 6, the execution time can reach 2 hours).
(see Table Il which shows the number of targets covered
at each time step). We obtain the worst performance if we
just utilize “Intentions”, i.e., the least number of targeas We have presented an emergent task allocation method to
covered. The performance of the “Directives” and “Intenio solve the task allocation problem of multiple heterogeseou
and Directives” are similar and both are better than “Intemebots for detecting and controlling multiple regions dkeirest
tions” which suggests that “Directives” are more importanin an unknown environment under defined constraints. We
However, both fail to capture all targets. This is because mompared our results to a mixed integer linear programming
target information is shared among neighbors, so multiptwproach which finds the global optimal solution for the
robots can assign themselves to the same target indepbndegiven state of the robots, targets and environment. Emergen
Finally when the target information is distributed, we adbta approach guarantees that each robot in the system computes
the best performance with “Intentions, Directives and €arga limited sized problem, no matter what the number of robots

VIl. CONCLUSIONS
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Fig. 5. Sample execution of the Emergent Task Allocation. Robots

are represented as circles, and targets are represented as.doagd{es

blue (darkest) regions are obstacles, blue (darker) regions dm@exp
regions, and gray (light gray) regions are unexplored regions.

(19]

or targets in the environment is. Our simulation results aref!
analysis show that our approach performs similar to global

optimal solution at the fraction of its cost (hundreds ofdsnm

[21]

faster). We are planning to implement this approach to in-

network task allocation for sensor networks.
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