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Abstract— We propose a novel switching control law for the
posture stabilization of a wheeled mobile robot, that utilizes the
(energetic) passivity of the system’s open-loop dynamics with non-
negligible inertial effects. The proposed passivity-based switching
control law ensures that the robot’s(x, y)-position enters into an
arbitrarily small (as specified by user-designed error-bound) level
set of a certain navigation potential function defined on the(x, y)-
plane, and that its orientation converges to a target angle. Under
this passivity-based switching control, the robot moves back and
forth between two submanifolds in such a way that the navigation
potential is strictly decreasing during this inter-switching move.
Once the system’s(x, y)-trajectory enters such a desired level
set, at most one more switching occurs to correct orientation.
Simulation is performed to validate/highlight properties of the
presented control law.

I. I NTRODUCTION

Wheeled mobile robots define one of the most important
classes of robotic systems in practice. Let alone the ubiq-
uitous automobiles, we can find them in such a variety of
practical applications as material handling (e.g. Cobot [1]),
space exploration (e.g. NASA Rover [2]), smart wheelchairs
(e.g. NavChair [3]), and, recently, mobile sensor networks(e.g.
[4]).

In addition to its practical importance, this wheeled mobile
robot also constitutes a theoretically rich dynamical system
due to the presence of nonholonomic constraints (i.e. no-
slip condition of wheels). These constraints only restrictthe
admissible velocity space but not that of the configuration [5].
Because of these nonholonomic constraints, control designand
analysis become substantially more involved. For instance,
as shown in the celebrated work [6], any continuous time-
invariant state feedback, which would work just fine if there
is no nonholonomic constraints, now can not stabilize the
position and orientation of the wheeled mobile robot at the
same time (i.e. posture stabilization problem).

On the other hand, (energetic) passivity of open-loop robotic
systems (i.e. passive with kinetic energy and mechanical power
as storage function and supply rate [7]) has been a very pow-
erful concept in many control problems in robotics: general
motion control problem including adaptive and robust controls
[8], teleoperation and haptic interface [9], [10], biped walking
robot [11], and multirobot cooperative control [12], [13],to
name a few. This is one of the most fundamental properties of

robotic systems, holding for any choice of coordinate systems
(e.g. euler-angle or quaternion forSO(3)). However, so far,
it has been largely overlooked for the control problem of
wheeled mobile robots and nonholonomic mechanical systems
in general.

In this paper, we aim to bring this fundamental passivity
property1 into the posture stabilization problem of a wheeled
mobile robot with second-order Lagrangian dynamics. The
outcome is a novel switching control law, which, by utilizing
the passivity property and energetic structure of the wheeled
mobile robot, can ensure that the robot’s orientation converges
to a target value, while driving the robot’s(x, y)-trajectory to
a desired position on the plane within a user-specified error-
bound.

The main idea of our control design can be roughly summa-
rized as follows. Consider a wheeled mobile robot in Fig, 1.
We first decouple its(x, y)-dynamics and orientation dynamics
from each other by a certain feedback. Then, on the(x, y)-
plane, we design a navigation potential [14], which may also
incorporate other control objectives on the top of the posture
stabilization (e.g. obstacle avoidance). With this potential, we
switch the orientation angle betweenθ1 and θ2 (with some
damping control) in such a way that the wheeled mobile robot
will move between two one-dimensional submanifolds (each
specified byθ1 andθ2) while guaranteeing that the navigation
potential is strictly decreasing between the switchings. Thus,
with these switchings, the system’s(x, y)-position moves
toward the minimum of the navigation potential. Once the
system’s(x, y)-position is close enough (as specified by a
user-designed error-bound) to this minimum, at most one more
switching occurs for correction of orientation while keeping
the system’s position still close to the minimum as specified
by the error-bound.

Numerous feedback control methods have been proposed
for the posture stabilization of wheeled mobile robots (e.g.
[15], [16], [17], [18], [19], [20], [21]). However, to our
best knowledge, none of them (other than one exception of

1Here, we utilize this passivity property mainly as an intrinsic structural-
property of the (open-loop) system relating mechanical power and energy.
This passivity may also be related to the energy efficiency of the controller
system (e.g. biped walking), although this is not the direction taken in this
paper.
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Fig. 1. Wheeled mobile robot with the center-of-mass at(xc, yc)
and the geometric center at(xo, yo), both w.r.t. the reference frame
(O,X, Y ).

[22]) exploits this intrinsic passivity property of (open-loop)
wheeled mobile robots. In [22], the authors proposed a control
law, which stands upon the port-controlled Hamiltonian struc-
ture of the nonholonomic system and a time-varying canonical
transformation. This transformation preserves the open-loop
passivity, which is central to enure their stabilization. However,
a nontrivial partial differential equation needs to be solved
there to find this transformation. Moreover, convergence of
their obtained control law is very slow, as often found to be so
with time-varying controls (e.g. [16]). Some switching control
laws for the posture stabilization of wheeled mobile robots
have also been proposed. However, to our best knowledge, all
of them (e.g. [18], [19], [20]) are derived for the first-order
kinematic model of wheeled mobile robots, thus, it is not clear
how (of if) we can use them in many practical applications
where the actual control inputs are torques and/or the inertial
effect of the robot is not negligible.

Our passivity-based switching control relies on intrinsic
energetic/geometric concepts and entities (e.g. passivity, sub-
manifolds, dissipation, decoupling), which are not necessarily
limited to the wheeled mobile robot and its posture stabiliza-
tion problem. Rather, we think our passivity-based switching
control idea must be applicable to more general control
problems of possibly more general mechanical systems with
nonholonomic constraints as well. As an example of such
extensions, in this paper, we briefly present a preliminary result
of an application of this passivity-based switching idea tothe
coordination problem of multiple wheeled mobile robots (with
no motion planning). More detailed exposition of this and
other extensions will be reported in future publications.

The rest of this paper is organized as follows. Dynamics of
the wheeled mobile robot and its passivity property will be
derived in Sec. II, and the passivity-based switching control
law will be presented and analyzed in Sec. III. Simulation
results to validate/highlight properties of the proposed control
law will be given in Sec. IV. A preliminary result of extension
to the multiple wheeled mobile robots will be presented in
Sec. V, and summary and some concluding remarks on future
research will be made in Sec. VI.

II. W HEELED MOBILE ROBOT

In this section, we derive the dynamics of the wheeled
mobile robot projected on the admissible distribution (i.e.
along the direction of the velocity, which does not violate the
nonholonomic constraints). For more details, refer to [5].

Consider a 3-degree of freedom (DOF) wheeled mobile
robot with the configurationq = [x, y, θ] ∈ SE(2), where
(x, y) := (xo, yo) is the position of the geometric center and
θ ∈ S is the orientation of the robot w.r.t. the inertial frame
(O,X, Y ). See Fig. 1. Here, we assume that the wheeled
mobile robot has two independently-controlled rear wheels,
and one front passive castor to avoid tipping over of the robot.
We also assume that their inertias are negligible.

Then, the nonholonomic constraints (i.e. no slip condition)
can be written byA(θ)q̇ = 0 with

A(θ) :=
[

sin θ − cos θ 0
]

∈ ℜ1×3

and the admissible velocity (i.e. not violating the nonholo-
nomic constraints) of the wheeled mobile robot is given by

q̇ = S(q)

(

v
w

)

, S(q) :=





cos θ 0
sin θ 0

0 1



 (1)

wherev ∈ ℜ is the forward-velocity of the robot’s geometric
center andw = θ̇ (see Fig. 1). Here, the column vectors of
S(q) ∈ ℜ3×2 constitute the basis of the admissible velocity
space atq, i.e., ∆q := {q̇ ∈ ℜ3 | A(q)q̇ = 0}. This ∆q is a
2-dimensional linear vector space. By collecting this∆q over
all q, we can get the (regular) admissible distribution∆.

Then, the dynamics of the wheeled mobile robot projected
on ∆ can be written by

D(θ)ν̇ +Q(θ, θ̇)ν = u (2)

with ν := [v, w]T , u = [uv, uw]T ,

D :=

[

m 0
0 I

]

, Q :=

[

0 −mdθ̇

mdθ̇ 0

]

whered ≥ 0 the distance between(xc, yc) and(xo, yo), m is
the mass of the robot, andI := Ic + md2 is the moment of
inertia of the robot w.r.t.(xo, yo) with Ic being that of the robot
w.r.t. (xc, yc). Also, uv = 1

r
(τr + τl) and uw = c

r
(τr − τl),

where τr, τl ∈ ℜ are the torques of the right and left rear
wheels,r > 0 is the radius of the wheels, andc > 0 is the
half of the cart width. See Fig. 1. Since this is the dynamics
projected on the admissible distribution∆, no constraint force
(i.e. terms with Lagrange multiplier [5]) shows up here.

Using the skew-symmetricity oḟD− 2Q, we can show that
this wheeled mobile robot possesses the (energetic) passivity
property [10]:

d

dt
κ = uT ν (3)

whereκ := 1
2m(ẋ2 + ẏ2)+ 1

2Iw
2 = 1

2mv
2 + 1

2Iw
2 is the total

kinetic energy. Here,κ anduT ν serve as the storage function
and the supply rate of the standard passivity definition [7].



Note that the dynamics ofv andw in (2) are coupled with
each other via the Coriolis termsQν. Since the Coriolis matrix
Q is skew-symmetric, this coupling is energetically passive,
i.e. does not generate nor dissipate energy. This can be shown
s.t.: with κv := 1

2mv
2 andκw := 1

2Iw
2,

d

dt
κv = uvv +mdθ̇wv (4)

d

dt
κw = uww −mdθ̇vw (5)

where the last terms in (4) and (5), which represent the cou-
pling effects, are summed to be zero (i.e. define energetically
conservative internal energy shuffling). These coupling terms
disappear ifd = 0 (i.e. (xc, yc) and (xo, yo) coincide with
each other) or if the Coriolis termsQν in (2) are canceled out
as done in the next Sec. III. Then, we will get (4)-(5) without
the last terms. This implies that the (decoupled) dynamics of
v andw will then individually possess the passivity property
similar to (3).

III. PASSIVITY-BASED SWITCHING CONTROL DESIGN FOR

POSTURESTABILIZATION

In this section, we design the switching controlu in (2)
s.t. limt→∞(x(t), y(t)) and the desired position(xd, yd) is
close enough in the sense that a certain distance measure
between these two point is less than or equal to a user-specific
performance specificationδo > 0 and θ(t) → θd. Without
losing generality, here, we assume that(xd, yd, θd) = (0, 0, 0).

Now, we design the control law(uv, uw) s.t.
(

uv

uw

)

=

[

0 −mdθ̇

mdθ̇ 0

](

v
w

)

−

(

bv + ∂ϕv

∂x
c θ + ∂ϕv

∂y
s θ

bwθ̇ + kw(θ − θσ(t))

)

(6)

where s θ = sin θ, c θ = cos θ, b, bw > 0 are the damping
gains,kw > 0 is the spring gain, andσ(t) ∈ {1, 2} is the
switching signal s.t.θ1 = 0 and θ2 = θo with θo 6= θ1 + nπ
being a constant (n = 0,±1,±2, ...). Switching law forσ(t)
will be designed below (see Theorem 1). Here,ϕv(x, y) ≥ 0
is a smooth navigation potential function [14] defined on the
(x, y)-plane s.t. 1)ϕv(x, y) = 0 if and only if (x, y) = 0; 2)
(∂ϕv

∂x
, ∂ϕv

∂y
) = 0 if and only if (x, y) = 0; and 3) for any finite

constantsl ≥ 0, the level set

Ll := {(x, y) ∈ ℜ2 | ϕv(x, y) ≤ l} (7)

is a compact set containing(0, 0) and Ll1 ⊆ Ll2 if l2 ≥
l1 ≥ 0. In addition to the stabilization(x, y) → (0, 0),
this navigation potentialϕv(x, y) can also incorporate other
control objectives such as obstacle avoidance [23], although
how to design such a potential field without unwanted local
minima is beyond the scope of this paper. Here, we want to
emphasize that this potential functionϕv(x, y) can be designed
without considering the nonholonomic constraints as if the
given system is just a (unconstrained) point mass on(x, y)-
plane. Thus, we can use many of already available results for
the generation of thisϕv(x, y) (e.g. [14]).

Under this control (6), the closed-loop dynamics of (2)
becomes

mv̇ + bv +
∂ϕv

∂x
c θ +

∂ϕv

∂y
s θ = 0 (8)

Iθ̈ + bwθ̇ + kw(θ − θσ(t)) = 0 (9)

where, due to the decoupling control in (6) (first term) and
the fact thatϕv is a function of(x, y), these two dynamics
(8)-(9) are energetically decoupled from each other: 1) forthe
v-dynamics (8), the total energyVv := κv + ϕv(x, y) is a
function of only (v, x, y) and, from (4),

d

dt
Vv = −bv2 −

∂ϕv

∂x
v c θ −

∂ϕv

∂y
v s θ +

dϕv

dt
= −bv2 (10)

with v c θ = ẋ and v s θ = ẏ (from (1)); and 2) for thew-
dynamics (9), the total energyVw := κw + ϕw with ϕw =
kw(θ− θσ(t))

2/2 is a function of only(θ, θσ(t), w) and, from
(5), dVw/dt = −bww

2 between two consecutive switchings.
Due to this energetic decoupling between (8)-(9), switchings
in θσ(t), which induce jumps inVw, neither change the value
of Vv at the switching nor affect the dissipation relation of
(10). Also, note that, by the decoupling control in (6), thew-
dynamics (9) is completely decoupled from thev-dynamics
(8).

Proposition 1 Suppose thatσ(t) is fixed withσ(t) = σ ∀t ≥
0. Then, under the control(6), (v, w, θ− θσ) → 0 and the the
robot’s (x, y)-position converges to the following submanifold

Mσ := {(x, y) ∈ ℜ2 |
∂ϕv

∂x
c θσ +

∂ϕv

∂y
s θσ = 0}.

Proof: From (10), we haveVv(t) ≤ Vv(0). Therefore, for all
t ≥ 0, v (also, ẋ, ẏ from (1)) is bounded and(x, y) ∈ LVv(0),
where LVv(0) is a compact set containing(0, 0). Also, for
(9), if σ(t) = σ ∀t ≥ 0, we havedVw/dt = −bww

2 ∀t ≥ 0,
thus,(w, θ− θσ) is bounded∀t ≥ 0, too. Therefore, applying
LaSalle’s Theorem [24] to (8)-(9) withV := Vv + Vw

and dV/dt = −bv2 − bww
2 for all t ≥ 0, we have

(v, w, θ − θσ) → 0 and ∂ϕv

∂x
c θσ + ∂ϕv

∂y
s θσ → 0.

The main idea of our switching control is to make the
system to move back and forth between these two subman-
ifolds M1 and M2 (by switching θσ betweenθ1 and θ2),
while guaranteeing that the navigation potentialϕv is strictly
decreasing during these inter-switching moves. Here, notethat
M1 andM2 intersect with each other only at(x, y) = 0.

Now, suppose that two consecutive switchings occur atti
and ti+1 and σ(t) = σi for Ii := [ti, ti+1). Then, for this
time-intervalIi, by integrating (10), we have

ϕv(ti) − ϕv(ti+1) = κv(ti+1) − κv(ti) +

∫ ti+1

ti

bv2dt

≥ −κv(ti) +

∫ ti+1

ti

bv2dt (11)

sinceκv(t) ≥ 0. Thus, if we can ensure that, during the sys-
tem’s inter-switching move between the two submanifolds, the



energy dissipation via the dampingb is strictly larger than the
initial kinetic energyκv(ti), ϕv(t) will be strictly decreasing
between the switchings, thus, we can achieveϕv(t) → 0. This
would be trivially achieved ifκv(ti) = 0. However, detecting
this requires perfect velocity sensing and, even with that,it
requires the time-interval between two consecutive switchings
be infinite.

The next Lemma shows that, if the wheeled mobile robot’s
moving distance is large enough and the initial velocity is
small enough, the damping can always dissipate all the initial
kinetic energy.

Lemma 1 Suppose that, on the(x, y)-plane, the wheeled
mobile robot under the control(6) moves from(x0, y0) to
(x1, y1) with the distance between them beingD > 0. Suppose
further that the robot’s(x, y)-trajectory is twice-differentiable.
Then, ifκv(t0) < 2b2D2/m,

∫ t1

t0

bv2dt > κv(t0) (12)

wheret0 and t1 are the initial and (unspecified) final times.

Proof: This is trivially ensured if κv(t0) = 0, since
D > 0. Now, suppose thatκv(t0) > 0. Then, from the
standard result of the calculus of variation [25], among the
twice-differentiable trajectoriesa(t) = (xa(t), ya(t)) on ℜ2

connecting (x0, y0) and (x1, y1), the one that extremizes
∫

bv2
adt =

∫

b(ẋ2
a+ẏ2

a)dt is given by the Lagrangian equation,
that is, in this case, simply given bÿxa = ÿa = 0. This
implies that this extremizing trajectory (i.e. geodesics)is the
straight line connecting the two points with constant velocity
(and kinetic energy) along the line. This extremizer is also
the minimizer, since we can find another curves with higher
damping dissipation (e.g. fast oscillatory curve).

Thus, if the wheeled mobile robot moves from(x0, y0) to
(x1, y1) along a twice-differentiable trajectory withκv(t0) >
0, we have: withv̄a :=

√

2κv(t0)/m,
∫ t1

t0

bv2dt ≥ min
a(t)

∫

bv2
adt = bv̄2

a

D

v̄a

= bD

√

2κv(t0)

m

which is strictly larger thanκv(t0) if 0 < κv(t0) < 2b2D2/m.

This Lemma 1, thus, enables us to switch even whenκv 6= 0
while enforcing strict decrease ofϕv between the switchings,
providing that the switching occurs when the velocity is small
and the moving distance of the robot between two consecutive
switchings is not small. Here, the former condition can be
ensured simply by waiting for the system to slow down enough
into the switching submanifold (see Proposition 1), while the
latter by designing the two submanifoldsM1 and M2 far
enough from each other. In many cases, this separation would
be possible (at least locally) except very near the origin, where
M1 andM2 intersect with each other.

The Lemma 1 is directly applicable for the wheeled mobile
robot between two consecutive switchings, since, withθσ(t)
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t3

M1

M2

Fig. 2. Illustration of level setLδ2
o
, submanifoldsM1 and M2,

and their strips with thickness ofδm > 0 on the(x, y)-plane. Also,
shown is an exemplary system trajectory with switching times.

being a constant, both the dynamics (2) and the control (6)
are smooth, therefore, the system’s(x, y)-trajectory is also
smooth. This is all we need for our switching control design.
However, it is also interesting to see that this Lemma 1 is
still valid even in the presence of switchings. To check this,
recall from (1) thatẋ = v c θ. Thus,ẍ = v̇ c θ− v s θθ̇, where,
from (8)-(9), v̇, θ̇ are both bounded and continuous. Therefore,
ẍ(t) is also bounded and continuous∀t ≥ 0. Similar fact
can be shown for̈y(t), too. This implies that, although the
non-smooth switchingθσ(t) occurs in (9), the robot’s(x, y)-
trajectory is always twice-differentiable, therefore, Lemma 1,
which only requires that candidate trajectorya(t) is twice-
differentiable, still holds regardless of the switching.

We now present our main result with passivity (or energy)
based switching logic.

Theorem 1 Suppose that the navigation potentialϕv is de-
signed to satisfy the following condition:∃cm > 0 s.t., for any
(x, y) /∈ Lδ2

o
, if (x, y) ∈ M̄i,

dist((x, y),M̄j) ≥ cm
√

ϕv(x, y) (13)

whereLδ2
o

is the level set ofϕv in (7) with δo > 0 being
a user-specified performance measure,M̄k is the “strip” of
Mk with a thicknessδm > 0 s.t. cmδo ≫ δm (k = 1, 2, see
Fig. 2), and(i, j) ∈ {(1, 2), (2, 1)}. Trigger the switching at
a time t > 0, if

1) κv(t) ≤ 2b2c2mδ
2
o/m; and

2) dist((x(t), y(t)),Mσ(t−)) ≤ δm; and
3) a) (x(t), y(t)) /∈ Lδ2

o
; or

b) (x(t), y(t)) ∈ Lδ2
o

and σ(t−) /∈ 1.

Then, limt→∞(x(t), y(t)) ∈ Lδ2
o

and θ(t) → θd. Also, once
(x(t), y(t)) ∈ Lδ2

o
, at most one more switching occurs.

Proof: The system’s initial condition is given by
(q̇(0), q(0), σ(0)), where σ(0) ∈ {1, 2}. Then, from Prop.
1, θ → θσ(0) and (x, y) → Mσ(0). Let us denote the time



when the switching conditions 1)-2) are satisfied byt1 > 0,
i.e. κv(t1) ≤ 2b2c2mδ

2
o/m and dist((x(t1), y(t1)),M̄σ(0)) ≤

δm. Consider the following two cases separately, 1) when
(x(t1), y(t1)) /∈ Lδ2

o
; and 2) otherwise.

1) Outside of Lδ2
o
: If (x(t1), y(t1)) /∈ Lδ2

o
, according to the

switching logic, there will be a switching at thist1 s.t.σ(t1) =
1 if σ(0) = 2 or σ(t1) = 2 if σ(0) = 1. Then, following Prop.
1, (x, y) → M̄σ(t1) andθ → θσ(t1). Denote the time when the
system again satisfies the above switching conditions 1)-2)by
t2 > t1, i.e. the system converges intōMσ(t1) and slows down
enough. During this time-intervalI1 := [t1, t2), the potential
functionϕv(t) is strictly decreasing, since, following (11), we
have

ϕv(t1) − ϕv(t2) ≥ −κv(t1) +

∫ t2

t1

bv2dt > 0 (14)

where the last inequality is a direct consequence of Lemma
1, since, from (13) with(x(t1), y(t1)) /∈ Lδ2

o
, the mov-

ing distanceDI1
> 0 of the wheeled mobile robot from

(x(t1), y(t1)) ∈ M̄σ(0) to (x(t2), y(t2)) ∈ M̄σ(t1) satis-
fies DI1

≥ cm
√

ϕv(x(t1), y(t1)) > cmδo, but, κv(t1) ≤
2b2c2mδ

2
o/m < 2b2D2

I1
/m. If (x(t2), y(t2)) /∈ Lδ2

o
, another

switching will be triggered.
By continuing this process, since the navigation

potential ϕv(ti) is strictly decreasing, a sequence of
the times can be generated(t1, t2, ..., tn−1, tn), where
(x(tk), y(tk)) /∈ Lδ2

o
∀k = 1, 2, ..., n − 1 (i.e. t1, t2, ..., tn−1

are the switching times) and, at timetn (switching time
candidate:n ≥ 2), the switching conditions 1)-2) are satisfied
with (x(tn), y(tn)) ∈ Lδ2

o
. Then, it becomes the case 2)

discussed below.

2) Inside of Lδ2
o
: Now, suppose that, at sometn with

n ≥ 1, (x(tn), y(tn)) ∈ Lδ2
o

and the two conditions 1)-2)
are satisfied. Then, ifσ(t−n ) = 1, we are done and no more
switching will be triggered. Ifσ(t−) = 2, to correct the
orientation, another switching will be activated attn with
σ(tn) = 1 and the system will again converge intōM1.
Denote by tn+1 the time when the system again satisfies
the two switching conditions 1)-2) inM̄1. In this case,
(x(tn+1), y(tn+1)) must be still contained inLδ2

o
. This

can be shown by the following contradiction. Suppose that
(x(tn+1), y(tn+1)) /∈ Lδ2

o
. Then, from (13), the wheeled

mobile robot should move the distance strictly larger than
cmδo, since dist((x(tn), y(tn)), (x(tn+1), y(tn+1))) ≥
cm
√

ϕv(x(tn+1), y(tn+1)) > cmδo. Thus, with
κv(tn) ≤ 2b2c2mδ

2
o/m, the inequality (14) still

holds and ϕv(tn+1) < ϕv(tn). This implies that
(x(tn+1), y(tn+1)) ∈ Lϕv(tn+1) ⊂ Lϕv(tn) ⊂ Lδ2

o
, which is

contradictory to the above supposition. Therefore, we have
limt→∞(x(t), y(t)) ∈ Lδ2

o
andθ(t) → θd. This completes the

proof.

If the objective is only posture stabilization (without obsta-
cle avoidance), the frequently-used quadratic functionkv(x2+
y2) with kv > 0 can be directly used as the navigation

X

Y

Lδ 2
o

δm

O
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M2

δm

(x,    )

D(x)

ψ(x)

ψo

δψ

α
 δ

o

δm

Fig. 3. Illustration of some geometric entities ofϕv(x, y) = kv(x2+
y2)/2: with α =

√

2/kv, 1) Lδ2
o

is circle with radiusαδo > 0; 2)
if (x, y) ∈ M1 − Lδ2

o
, |y| ≤ δm and |x| > αδo; and 3)sinψ(x) =

(D(x) + δm)/
√
x2 + δ2m and 0 < ψo − δψ ≤ ψ(x) ≤ ψo ≤ π/2.

Here, we conveniently choose an arbitrarilyx-axis as aligned toM1.

potentialϕv. This is because 1) this quadratic function satisfies
all the conditions forϕv given in the beginning of this Sec.
III; and 2) if we set αδo ≫ δm and chooseθ1, θ2 s.t.
the two switching submanifoldsMi = {(x, y) | kvx c θi +
kvy s θi = 0} (i.e. straight line obtained by rotatingy-axis
by θi counterclockwise w.r.t. origin) are far enough from
each other, it also ensures the condition (13) withcm ≤
α [sin(ψo − δψ) − sin δψ], whereα =

√

2/kv, 0 < ψo ≤ π/2
is the angle betweenM1,M2, and δψ = sin−1(δm/(αδo)).
This is because, from Fig. 3, if(x, y) ∈ M̄1 − Lδ2

o
,

dist((x, y),M̄2)
√

ϕv(x, y)
≥ α

D(x)
√

x2 + δ2m

= α

(

sinψ(x) −
δm

√

α2δ2o + δ2m

)

> α [sin(ψo − δψ) − sin δψ] . (15)

On the other hand, in practice, the switching conditions 1)-
2) in Theorem 1 can be easily ensured by separating two
consecutive switchings by a large enough dwell-timeτD > 0
[26].

The decoupling control in (6) is necessary here, since, if we
omit it, energy can be transferred between (8) and (9) via the
coupling terms in (4)-(5). Then, some portion of theθ-spring
energyϕw = 1

2kw(θ−θσ(t))
2, which jumps at every switching,

may flow back to the navigation potentialϕv and recharge it.
If this amount is more than the damping dissipation viab,
we may lose the strict decrease ofϕv(t) between switchings.
More detailed analysis on the effect of this (uncompensatedor
partially-compensated) coupling is a topic for future research.

IV. SIMULATION

For this simulation, we use the quadratic navigation poten-
tial ϕv(x, y) = 1

2kv(x2 +y2) with kv > 0. We also use a long



enough dwell-timeτD > 0 to ensure the switching conditions
1)-2) of Theorem 1. For the first simulation, we chooseθ1 = 0
and θ2 = π/2 so that the two submanifoldsM1 and M2

are respectively given by they-axis andx-axis. As stated in
the paragraph after Theorem 1, these chosenϕv and θ1, θ2
are legitimate for use in our switching control. Simulation
results are presented in Fig. 4. Total thirty-six switchings are
occurred. After the thirty-fifth switching (around17.5sec), the
system’s(x, y)-trajectory enters into the desired level set, but,
its orientation is not correct. So, another thirty-sixth switching
occurs (around18sec.) to correct the orientation. After this last
switching, the system’s(x, y)-position is in the desired level
set, the orientation converges to the target value, and no more
switching occurs.

For the second simulation, we useθ1 = −π/2 and θ2 =
π/2, thus, M1 and M2 are the same: both of them are
given by kvy = 0 (i.e. x-axis). However, by tuning the
gains, we make thev-dynamics (8) much faster than that
of w (9), so that the robot’s(x, y)-trajectory converges on
the straight lineMθ(t) = {(x, y) | kvx c θ(t) + kvx s θ(t) =
0} fast enough, as this line rotates slowly back and force
between the positivex-axis and the negativex-axis. By doing
so, althoughM1 = M2, we can ensure that, between the
switchings, the robot moves between the two strips on the
positive x-axis and the negativex-axis separated byLδ2

o
.

This ensures the condition (13), since, if(x, y) ∈ Mi −
Lδ2

o
and

√

2/kvδo ≫ δm, dist((x, y),M̄j)/
√

ϕv(x, y) ≥
√

2/kv(|x|+ δm)/
√

x2 + δ2m >
√

2/kv, thus, any0 < cm ≤
√

2/kv would work to enforce (13). Results for this simulation
are shown in Fig. 5. Compared to the results in Fig. 4, much
less number of switchings (only ten switchings) is required
to move into the desired level set, since the moving distance
between two switchings is larger than that of Fig. 4.

Similar to the second simulation, we may slowly rotate
the submanifold more than2π. For this, again, by tuning the
dynamics ofv much faster than that ofw, we could get an even
faster convergence and less number of switchings. A detailed
analysis and exposition for this rotating submanifold result
will be reported in a future publication.

V. A PPLICATION TO MULTIPLE WHEELED MOBILE

ROBOTSCOORDINATION

In this section, as one example of extensions to more general
problems/systems, we apply the passivity-based switching
control for the coordination problem of multiple wheeled
mobile robots. No motion planning is necessarily here. More
detailed exposition will be reported in future publications.

Considern (strongly-connected) wheeled mobile robots,
and definepe := (xe, ye) ∈ ℜ2(n−1) and θe ∈ ℜn−1, with
⋆e := (⋆1 − ⋆2, ..., ⋆n−1 − ⋆n) ∈ ℜn−1. Then, for simplicity
(while without losing generality), by the coordination, we
mean(pe, θe) → 0. Then, for eachk-th agent, we design its
control to be (6) with its second term replaced by

−

(

bvk + ∂ϕ̄v

∂xk

c θk + ∂ϕ̄v

∂yk

s θk

bwθ̇k + ∂ϕ̄w

∂θk

+ kw(θk − θσ(t))

)

(16)

whereϕ̄v(pe) and ϕ̄w(θe) are (smooth) navigation potentials
defined on thepe andθe spaces respectively.

Then, similar to Prop. 1, using Barbalat’s lemma with
smoothness of suitable terms, we can show that, with fixed
σ(t) = σ, the system converges in thepe-space to the
submanifoldTσ := {pe | ∂ϕ̄v

∂x
c θσ + ∂ϕ̄v

∂y
s θσ = 0}, where

∂ϕ̄v

∂⋆
:= (∂ϕ̄v

∂⋆1
, ..., ∂ϕ̄v

∂⋆n

) ∈ ℜn. Also, being unconstrained,
θk → θσ. Moreover, between switchings, similar to (11), we
have

ϕ̄v(ti) − ϕ̄v(ti+1) ≥ −κ̄v(ti) +
n
∑

k=1

∫ ti+1

ti

bv2
kdt

≥ −κ̄v(ti) +

∫ ti+1

ti

b̄||ve||
2dt

where b̄ > 0, ve = dpe/dt (i.e. system velocity onpe-space),
and κ̄v =

∑

1
2mkv

2
k. Here, we can obtain the last inequality

by using the passive decomposition [13].
Therefore, we can achieve similar results as those in Sec.

III on the pe-space. In other words, if we design̄ϕv on the
pe-space s.t. the switching submanifoldsTi are far enough
from each other and trigger the switchings whenκ̄v is small
enough, we can ensure thatθe → 0 and pe approaches to0
within some user-specific performance bound. See Fig. 6 for
simulation results of this as applied to four wheeled mobile
robots. Here, our coordination control is centralized, although
it can be partially decentralized by defininḡϕv as the sum of
the potential between two robots. Its complete decentralization
is beyond the scope of this paper and will be published
elsewhere.

VI. SUMMARY AND FUTURE WORKS

In this paper, we propose a novel passivity-based switch-
ing control law for the posture stabilization of a wheeled
mobile robot. The proposed control law is derived using the
fundamental (open-loop) passivity property, which has been
extensively used in other control problems in robotics, butnot
been so at all for systems with nonholonomic constraints.

Since it is based on fairly intrinsic concepts and entities (e.g.
passivity, dissipation, decoupling, submanifolds), we believe
that our proposed framework could be extended for more gen-
eral control problems (e.g. coordination problem of multiple
wheeled mobile robots as presented in Sec. V), or even further,
control of general mechanical systems with nonholonomic
constraints on a differential manifold. The latter may require
that those systems have dynamics/energetic structure similar
to, but probably more generalized than, that of the wheeled
mobile robot. Real implementation of this passivity-based
switching control and its experimental comparison with other
schemes may also further shed lights on its strength/weakness
and robustness/practicality as well.

We also wish that this work serves as an initiating step
toward fully utilizing the passivity property in the control of
wheeled mobile robots and more general robotic systems with
nonholonomic constraints.
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Fig. 4. First simulation results withθ1 = 0 andθ2 = π/2.
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Fig. 6. Coordination of multiple wheeled mobile robots.


