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Abstract— We propose a novel switching control law for the robotic systems, holding for any choice of coordinate syste
posture stabilization of a wheeled mobile robot, that utilizes the (e.g. euler-angle or quaternion folO(3)). However, so far,
(energetic) passivity of the system’s open-loop dynamics with me 4 hag peen largely overlooked for the control problem of

negligible inertial effects. The proposed passivity-based switchin . . .
control law ensures that the robot's (z, y)-position enters into an wheeled mobile robots and nonholonomic mechanical systems

arbitrarily small (as specified by user-designed error-bound) leve in general.
set of a certain navigation potential function defined on the(z, y)- In this paper, we aim to bring this fundamental passivity
plane, and that its orientation converges to a target angle. Under property into the posture stabilization problem of a wheeled

this passivity-based switching control, the robot moves back and mobile robot with second-order Lagrangian dynamics. The
forth between two submanifolds in such a way that the navigation . | itchi [ hich. b 'I'. .
potential is strictly decreasing during this inter-switching move. ©OUtcome Is a novel switching control law, which, by utiligin

Once the system's(z,y)-trajectory enters such a desired level the passivity property and energetic structure of the veteel
set, at most one more switching occurs to correct orientation. mobile robot, can ensure that the robot’s orientation cayes
Simulation is performed to validate/highlight properties of the o a target value, while driving the robot(s, y)-trajectory to
presented control law. a desired position on the plane within a user-specified rror
bound.

The main idea of our control design can be roughly summa-

Wheeled mobile robots define one of the most importafted as follows. Consider a wheeled mobile robot in Fig, 1.
classes of robotic systems in practice. Let alone the ubife first decouple it§z, y)-dynamics and orientation dynamics
uitous automobiles, we can find them in such a variety @fom each other by a certain feedback. Then, on (they)-
practical applications as material handling (e.g. Cobd}, [1plane, we design a navigation potential [14], which may also
space exploration (e.g. NASA Rover [2]), smart wheelchaifscorporate other control objectives on the top of the pestu
(e.g. NavChair [3]), and, recently, mobile sensor netwdekg. stabilization (e.g. obstacle avoidance). With this pagnive
[4]). switch the orientation angle betwedh and 6, (with some

In addition to its practical importance, this wheeled mebildamping control) in such a way that the wheeled mobile robot
robot also constitutes a theoretically rich dynamical eyst will move between two one-dimensional submanifolds (each
due to the presence of nonholonomic constraints (i.e. ngpecified byd; andé,) while guaranteeing that the navigation
slip condition of wheels). These constraints only resttfi# potential is strictly decreasing between the switchingsusT
admissible velocity space but not that of the configuratijn [ with these switchings, the systemis:,y)-position moves
Because of these nonholonomic constraints, control design toward the minimum of the navigation potential. Once the
analysis become substantially more involved. For instaneg/stem’s (z, y)-position is close enough (as specified by a
as shown in the celebrated work [6], any continuous timeser-designed error-bound) to this minimum, at most oneemor
invariant state feedback, which would work just fine if therewitching occurs for correction of orientation while kemgpi
is no nonholonomic constraints, now can not stabilize thRe system’s position still close to the minimum as specified
position and orientation of the wheeled mobile robot at thgy the error-bound.
same time (i.e. posture stabilization problem). Numerous feedback control methods have been proposed

On the other hand, (energetic) passivity of open-loop icbofor the posture stabilization of wheeled mobile robots .(e.g
systems (i.e. passive with kinetic energy and mechanic@épo [15], [16], [17], [18], [19], [20], [21]). However, to our
as storage function and supply rate [7]) has been a very pavest knowledge, none of them (other than one exception of
erful concept in many control problems in robotics: general
motion control problem including adaptive and robust colstr  'Here, we utilize this passivity property mainly as an intinstructural-
[8], teleoperation and haptic interface [9], [10], bipedikimg ~Property of the (Opeln"ogp) System relating mechanical poarl energy.
robot [11], and mUltirObOt Cooperative Control [12], [13¢] IS passivity may also be related to the energy e |C|enc3he dontroller

o " system (e.g. biped walking), although this is not the dicectaken in this
name a few. This is one of the most fundamental propertiespaber.

I. INTRODUCTION



Il. WHEELED MOBILE ROBOT

In this section, we derive the dynamics of the wheeled
mobile robot projected on the admissible distribution.(i.e
along the direction of the velocity, which does not violdte t
nonholonomic constraints). For more details, refer to [5].

Consider a 3-degree of freedom (DOF) wheeled mobile
robot with the configuratiory = [z,y,0] € SE(2), where
(z,y) :== (x,,¥0) is the position of the geometric center and

o % § € S is the orientation of the robot w.r.t. the inertial frame
(O,X,Y). See Fig. 1. Here, we assume that the wheeled
Fig. 1. Wheeled mobile robot with the center-of-mass(at,y.) Mobile robot has two independently-controlled rear wheels
and the geometric center ét,,v,), both w.r.t. the reference frame and one front passive castor to avoid tipping over of the tobo
(0, X,Y). We also assume that their inertias are negligible.

Then, the nonholonomic constraints (i.e. no slip condjtion

can be written byA(6)¢ = 0 with

[22]) exploits this intrinsic passivity property of (opéwep) A(0) :==[ sinf —cosf 0 ]eR3

Wheeleq mobile robots. In [22], the authors proppsec_i aObmt’:md the admissible velocity (i.e. not violating the nonholo

law, which stands upon the port-controllgd Hamll.tonlarms{r' nomic constraints) of the wheeled mobile robot is given by

ture of the nonholonomic system and a time-varying candnica

transformation. This transformation preserves the opep-| v cosf 0

passivity, which is central to enure their stabilizatiomvwéver, Gg= S(q)< ), S(g):=| sinf 0 Q)

a nontrivial partial differential equation needs to be sdlv 0 1

there to find this transformation. Moreover, convergence \()Uherev € % is the forward-velocity of the robot's geometric

their obtained control law is very slow, as often found to be Senter andw — @ (see Fig. 1). Here, the column vectors of

with time-varying controls (€.g. [16]). Some switching ewh (q) € R3*? constitute the basis of, the admissible velocity

laws for the posture stabilization of wheeled mobile robo%nace al, i, A, == {g € R | A(q)j = 0}. This A, is a
e, Ay = = 0}. q

have also been proposed. However, tc_) our best knqwledge, -dimensional linear vector space. By collecting this over

of them (e.g. [18], [19], [20]) are derived for the flrst—ordea” ¢, we can get the (regular) admissible distributidn

kinematic model of wheeled mobile robots, thus, it is noacle Tr;en the dvnamics of the wheeled mobile robot proiected

how (of if) we can use them in many practical applicationgn A ca'n be v)\:ritten b pro)

where the actual control inputs are torques and/or theiahert Y

effect of the robot is not negligible. D&+ Q(G,é)u =u (2)

Our passivity-based switching control relies on intrinsigi, ;, =
energetic/geometric concepts and entities (e.g. pagssub-
manifolds, dissipation, decoupling), which are not neagks D— { m 0 ] Q-
limited to the wheeled mobile robot and its posture stadiliz ' 0 I |’

tion problem. Rather, we think our passivity-based switghi whered > 0 the distance betweefe, y.) and (o, yo), m is

control idea must be applicable to more general contrgl .
. . the mass of the robot, anB:= I. + md? is the moment of

roblems of possibly more general mechanical systems wi . ’ e .

P P y 9 y rﬂertla of the robot w.r.t{z,, y,) with I, being that of the robot

nonholonomic constraints as well. As an example of sué\:Nrt ( ). AlSO, 1y = L(m +7) anduy = (7, — 7)
extensions, in this paper, we briefly present a preliminesyit w.h.e.rexc,yc T a;rzvth_e Tto:r ue;l of theu?i t Tar:(rd Ie;tl ear
of an application of this passivity-based switching idedht® T € q 9

coordination problem of multiple wheeled mobile robotstfwi wheels,r > 0 is the radius of the wheels, and> 0 is the

no motion planning). More detailed exposition of this angalf. of the cart W'dth'. Sge F'g‘ 1 S!nce this is thg dynamics
other extensions will be reported in future publications. projected on the admissible distributidy no constraint force

(i.e. terms with Lagrange multiplier [5]) shows up here.

The rest of this paper is organized as follows. Dynamics of Using the skew-symmetricity ab — 2Q, we can show that
the wheeled mobile robot and its passivity property will behis wheeled mobile robot possesses the (energetic) figssiv
derived in Sec. Il, and the passivity-based switching @ntrproperty [10]:
law will be presented and analyzed in Sec. Ill. Simulation d
results to validate/highlight properties of the proposedtiol “rk=uly 3)
law will be given in Sec. IV. A preliminary result of extensio dt
to the multiple wheeled mobile robots will be presented iwherer := Jm(i2 +5?) + 3 Tw? = Lmuv?+ 3 Tw? is the total
Sec. V, and summary and some concluding remarks on futkiaetic energy. Herex andu” v serve as the storage function
research will be made in Sec. VI. and the supply rate of the standard passivity definition [7].

v, w7, u = [y, uy) T,

[ 0o —mab
| mdb 0



Note that the dynamics af andw in (2) are coupled with  Under this control (6), the closed-loop dynamics of (2)
each other via the Coriolis terng . Since the Coriolis matrix becomes
Q is skew-symmetric, this coupling is energetically passive

. ()0 ) <p )
i.e. does not generate nor dissipate energy. This can benshow mo + bv + a—gj cf+ 3—; s6 =0 (8)
Wi 1,2 1,2 . X
s.t.: with s, := Lmo? andk,, := 1 Tw?, 10 + b0 + k(0 — 051y) = 0 9)
— Ky = Uy + mdOwv (4) where, due to the decoupling control in (6) (first term) and
Ellt the fact thaty, is a function of(z,y), these two dynamics
g e = W — mdfvw (5) (8)-(9) are energetically decoupled from each other: 1)lier

v-dynamics (8), the total energy, = k, + ¢,(z,y) is a
where the last terms in (4) and (5), which represent the counction of only (v, z,y) and, from (4),
pling effects, are summed to be zero (i.e. define energhtical 9 9 d
conservative internal energy shuffling). These couplingie >V, = —bw? — 20— 2% 59 + 220
disappear ifd = 0 (i.e. (z.,y.) and (z,,y,) coincide with Oz 0y .
each other) or if the Coriolis term@v in (2) are canceled out With vcf = @ andvs6 = y (from (1)); and 2) for thew-
as done in the next Sec. Ill. Then, we will get (4)-(5) withouglynamics (9), the total energy,, := k., + @ With ¢, =
the last terms. This implies that the (decoupled) dynamfcs b (6 — 65(+))?/2 is a function of only(6, 0, ), w) and, from
v andw will then individually possess the passivity property5), dV.,/dt = —b,w> between two consecutive switchings.
similar to (3). Due to this energetic decoupling between (8)-(9), switghin
in 05, which induce jumps i, neither change the value
[11. PASSIVITY-BASED SWITCHING CONTROL DESIGN FOR  of V, at the switching nor affect the dissipation relation of
POSTURESTABILIZATION (10). Also, note that, by the decoupling control in (6), the

In this section, we design the switching controlin (2) ~dynamics (9) is completely decoupled from thedynamics
St limg_.oo (z(t), y(t)) and the desired positiofwy, ya) is  (8)-
close enough in the sense that a certain distance measure o )
between these two point is less than or equal to a user-spedifoPosition 1 Suppose thak (¢) is fixed witho (¢) = o vt >
performance specificatio, > 0 and 6(t) — 6,. Without Y- Th,e”' under the contrdb), (v, w, ¢ —6,) — 0 and the the
losing generality, here, we assume tha, y4, 64) = (0,0,0). robot’s (z, y)-position converges to the following submanifold

Now, we design the control la,, u,,) S.t. Oy Oy
cl, +
or Jy

(uv>_[ 0 —mdé} <v> bv—i—%c&—i—%sﬂ

Uny mdo 0 w bl + ko (0 — Boe)) Proof: From (.10.), we havé/_v(t) < V4,(0). Therefore, for all
©) t>0,v (also,_x,y from (1)) is boundeq gn(lr,y) € Lv, (0)

where Ly, ) is a compact set containing,0). Also, for

wheres® = sinf, ¢ = cosf, b,b, > 0 are the damping (9), if o(t) = o V¢t > 0, we havedV,,/dt = —b,w? Vt > 0,

gains, k,, > 0 is the spring gain, and(t) € {1,2} is the thus,(w,f—#6,) is boundedvt > 0, too. Therefore, applying

switching signal s.td; = 0 andf, = 6, with 8, # 0, +nm LaSalle’s Theorem [24] to (8)-(9) withV = V, + V,,

being a constantn(= 0,+1,+2,...). Switching law foro(t) and dV/dt = —b? — b,w? for all ¢ > 0, we have

will be designed below (see Theorem 1). Hepe(x,y) >0 (v,w,0 —6,) — 0 and % chy + 353 sf, — 0. n

is a smooth navigation potential function [14] defined on the

(z,y)-plane s.t. 1)p,(z,y) = 0 if and only if (z,y) = 0; 2) The main idea of our switching control is to make the

(922, %) = 0if and only if (z,y) = 0; and 3) for any finite System to move back and forth between these two subman-

= —b? (10)

My = {(z,y) e R? |

sf, = 0}.

constantd > 0, the level set ifolds M; and M, (by switching 6, betweenf; and 65),
) while guaranteeing that the navigation potentialis strictly
Ly:={(z,y) € R | pu(2,y) <1} ) decreasing during these inter-switching moves. Here, thate

M; and M, intersect with each other only &t,y) = 0.

I, > 0. In addition to the stabilizatior(z,y) — (0,0), Now, suppose that two consecutive switchings occut; at

this navigation potentiap, (x,y) can also incorporate other@Nd tix1 and o(t) = o; for I; := [t;,1i11). Then, for this
time-interval I;, by integrating (10), we have

control objectives such as obstacle avoidance [23], aithou
how to design such a potential field without unwanted local v

minima is beyond the scope of this paper. Here, we want to v ti) = ¢oltivs) = ko (i) — wo(ts) + /t bu™dt
emphasize that this potential functign(z, y) can be designed tit1 '

without considering the nonholonomic constraints as if the > —ry(ti) +/ bvdt (11)
given system is just a (unconstrained) point massany)- ts

plane. Thus, we can use many of already available results fimce, (t) > 0. Thus, if we can ensure that, during the sys-
the generation of this, (z,y) (e.g. [14]). tem’s inter-switching move between the two submanifolds, t

is a compact set containing),0) and £;,, C L, if o >



energy dissipation via the dampimgs strictly larger than the Y ., M2
initial kinetic energyx.,(t;), ¢, (t) will be strictly decreasing
between the switchings, thus, we can achigyé) — 0. This e e
would be trivially achieved ifi, (t;) = 0. However, detecting T /"
this requires perfect velocity sensing and, even with that,
requires the time-interval between two consecutive switrh
be infinite. Lsz
The next Lemma shows that, if the wheeled mobile robot's
moving distance is large enough and the initial velocity is
small enough, the damping can always dissipate all theainiti
kinetic energy.

o/ B
Lemma 1 Suppose that, on théz,y)-plane, the wheeled T
mobile robot under the contro{6) moves from(z,y) to ~ M
(1, y1) with the distance between them beilg> 0. Suppose

further that the robot'yx, y)-trajectory is twice-differentiable. Fig. 2. lllustration of level setls2, submanifoldsM; and Mo,
Then, ifx,(to) < 2b2D2/m and their strips with thickness &, > 0 on the (z, y)-plane. Also,
shown is an exemplary system trajectory with switching times.

ty
/ bodt > k., (to) (12)
to

being a constant, both the dynamics (2) and the control (6)
are smooth, therefore, the systent’s, y)-trajectory is also
Proof:  This is trivially ensured ifx,(ty) = 0, since smooth. This is all we need for our switching control design.
D > 0. Now, suppose thak,(t,) > 0. Then, from the However, it is also interesting to see that this Lemma 1 is
standard result of the calculus of variation [25], among tHill valid even in the presence of switchings. To check,this
twice-differentiable trajectoriea(t) = (x4(t),ya(t)) on ®2 recall from (1) thatt = vc6. Thus,z = v —vshf, where,
connecting (xo,yo) and (z1,y1), the one that extremizesfrom (8)-(9),v, 6 are both bounded and continuous. Therefore,
[ bwZdt = [ b(i2+92)dt is given by the Lagrangian equation/Z(t) is also bounded and continuow$ > 0. Similar fact
that is, in this case, simply given by, = i, = 0. This can be shown forj(t), too. This implies that, although the
implies that this extremizing trajectory (i.e. geodesuss)he non-smooth switchind, ;) occurs in (9), the robot'sz, y)-
straight line connecting the two points with constant vigjoc trajectory is always twice-differentiable, therefore nira 1,
(and kinetic energy) along the line. This extremizer is alsghich only requires that candidate trajectaryt) is twice-
the minimizer, since we can find another curves with highéifferentiable, still holds regardless of the switching.
damping dissipation (e.g. fast oscillatory curve). We now present our main result with passivity (or energy)
Thus, if the wheeled mobile robot moves framy, o) to  based switching logic.
(x1,y1) along a twice-differentiable trajectory with, (ty) >

wherety, and¢; are the initial and (unspecified) final times.

0, we have: witho, := \/2k,(tg)/m, Theorem 1 Suppose that the navigation potentia) is de-
. signed to satisfy the following conditiodz,, > 0 s.t., for any

/ budt > min / budt = bv _ ppy | 2elto) (z,y) & Lz, i (2,y) € M,

m _
! dist (), M) > e/ (2.9) (13)

which is strictly larger tham, (to) if 0 < mv(tg) < 2b2D?/m.
n where L2 is the level set ofp, in (7) with §, > 0 being
a user-specified performance measutd,, is the “strip” of
This Lemma 1, thus, enables us to switch even wheget 0 M, with a thickness),, > 0 s.t. ¢;,0, > 6., (K = 1,2, see
while enforcing strict decrease gf, between the switchings, Fig. 2), and (4, j) € {(1,2),(2,1)}. Trigger the switching at
providing that the switching occurs when the velocity is Bmaa timet > 0, if
and the moving distance of the robot between two consecutivel) g, (t) < 2b%c2,§2/m; and

switchings is not small. Here, the former condition can be 2) dist((x(t),y(t)), Myu-)) < 6m; and

ensured simply by waiting for the system to slow down enough 3) a) (z(t),y(t)) ¢ 552 or

into the switching submanifold (see Proposition 1), whiie t ) (z(t),y(t)) € £52 ando(t™) ¢ 1.

latter by designing the two submanifoldst; and M, far  then hmmoo( (t),y(t)) € L2 and 6(t) — 6,. Also, once
enough from each other. In many cases, this separation WOH{% (1)) € Ls2, at most one more switching occurs.

be possible (at least locally) except very near the origimens

M and M, intersect with each other. Proof: The system’s initial condition is given by

The Lemma 1 is directly applicable for the wheeled mobil&;(0), ¢(0),c(0)), where s(0) € {1,2}. Then, from Prop.
robot between two consecutive switchings, since, Wighy 1, 0 — 0, and (z,y) — Mg(). Let us denote the time



when the switching conditions 1)-2) are satisfied thy> 0,

i.e. ky(t1) < 2b%c2,62/m and dist((z(t1), y(t1)), My(0)) <

0m. Consider the following two cases separately, 1) when
(z(t1),y(t1)) & Ls2; and 2) otherwise.

1) Outside of Ls2: If (z(t1),y(t1)) ¢ L5z, according to the
switching logic, there will be a switching at thig s.t.o(t1) =
1if 0(0) =2 oro(t;) =2if ¢(0) = 1. Then, following Prop.
1, (z,y) — My@,) andf — 6,(,. Denote the time when the
system again satisfies the above switching conditions by2)
to > t1, i.e. the system converges in&tg(tl) and slows down
enough. During this time-interval, := [t1,12), the potential
function ¢, (t) is strictly decreasing, since, following (11), we
have

2
Polt) — pu(te) = —ry(t) + / bv?dt >0 (14) Fig. 3. lllustration of some geometric entities f, (z,y) = k. (2*+
h y?)/2: with o = /2/k,, 1) L2 is circle with radiusad, > 0; 2)
where the last inequality is a direct consequence of Lemni&z,y) € My — Ly, |y| < Sm and|z| > ad,; and 3)sint(z) =
1, since, from (13) with(x(t1),y(t1)) ¢ Ls2, the mov- (D(z) + om)/Vz2 + 62, and0 < ¢ — 69 < P(z) < o < 7/2.
ing distanceD;, > 0 of the wheeled mobile robot from Here, we conveniently choose an arbitraribaxis as aligned tovi;.
(x(t1>7y(t1)) € Mo‘(()) to ((L’(tg),y(tg)) € Mﬂ(tl) satis-

fies D11 > Cm @1J($(t1)7y(tl)) > C’m(soy bUt1 K:’U(tl) < . . . . . i
W22, 62 /m < 202°D2 /m. If (z(t2),y(t2)) ¢ Ls2, another potentialy,,. This is because 1) this quadratic function satisfies
1 ? o’

m% all the conditions forp, given in the beginning of this Sec.

switching will be triggered. _ )
By continuing this process, since the navigatiol]’: and 2) if we setad, > 4, and choosed,,d; s.t.

potential o, (t;) is strictly decreasing, a sequence of!€ WO switching submanifold$t; = {(z,y) | kvact; +
the times can be generate@:,ts,....tn_1,t,), where ky,ys®; = 0} (i.e. straight line obtained by rotating-axis
(@), y(te) & Loz Yk = 1,2, sn — 1 (i€ £, bay s bs by 6; counterclockwise w.r.t. origin) are far enough from

are the switching times) and, at timg, (switching time eac'h other, it alsg ensures the condition (13) wifh <
candidaten > 2), the switching conditions 1)-2) are satisfied! [S12(¥o — 0%) — sind¢], wherea = /2/k,, 0 < ¢, < 7/2

_ wn-l
with (z(tn),y(tn)) € Ls:. Then, it becomes the case 2JS the angle betweendy, My, anddy = sin™ (0, /(ads)).
discussed below. ° his is because, from Fig. 3, {fr,y) € M1 — Lsz,

2) Inside of Ls:: Now, suppose that, at somg, with dist((z,y), M>) > o D(x)
n > 1, (z(tn),y(tn)) € L5z and the two conditions 1)-2) [oo(z,y) 22+ 62

are satisfied. Then, i&(¢;;) = 1, we are done and no more 5
switching will be triggered. Ifo(t~) = 2, to correct the —a (Siru/)(m) _ $>
orientation, another switching will be activated &t with Va2 + 62,

o(t,) = 1 and the system will again converge intbt;. > a[sin(v, — 6v)) — sin 6¢] . (15)
Denote byt,,; the time when the system again satisfies

the two switching conditions 1)-2) inM;. In this case, ON the other hand, in practice, the switching conditions 1)-
(2(tnt1),y(tns1)) must be still contained inls.. This 2) in Theorem 1 can be easily ensured by separating two
can be shown by the following contradiction. Suppose thg@nsecutive switchings by a large enough dwell-time> 0
(2(tns1),y(tns1)) ¢ Ls2. Then, from (13), the wheeled [26]-

mobile robot should move the distance strictly larger than The decoupling control in (6) is necessary here, since, if we
cmbo,  Since dist((z(tn),y(tn)), (#(tns1), y(tarr))) > OMIitit, energy can be transferred between (8) and (9) via the
cm/Po(@(tni1),y(tni1)) > cmdo. Thus, with coupling terms in (4)-(5). Then, some portion of #epring
Ko(tn) < 20%¢2,62/m, the inequality (14) still €nergyp. = zku(0—0,(1)?, which jumps at every switching,
holds and ¢,(tn41) <  @u(t,). This implies that may flow back to the navigation potential, and recharge it.
(@(tnt1),Y(tnt1)) € Loy(tnir) € Louitny C Lsz, Which is If this amount is more than the damping dissipation &ja
contradictory to the above supposition. Therefore, we hawe may lose the strict decreaseof(t) between switchings.
limy_ o0 (2(t), y(t)) € Ls2 and(t) — 64. This completes the More detailed analysis on the effect of this (uncompensated
proof. ’ a Partially-compensated) coupling is a topic for future est.

If the objective is only posture stabilization (without tdos IV. SIMULATION

cle avoidance), the frequently-used quadratic functigx? + For this simulation, we use the quadratic navigation poten-
y?) with k, > 0 can be directly used as the navigatiotial ,(z,y) = %kq,(:c2+y2) with &, > 0. We also use a long



enough dwell-timerp > 0 to ensure the switching conditionswhere g, (p.) and ¢,,(6.) are (smooth) navigation potentials
1)-2) of Theorem 1. For the first simulation, we choése= 0  defined on the). andf. spaces respectively.

and #; = 7w/2 so that the two submanifoldd1; and M, Then, similar to Prop. 1, using Barbalat's lemma with
are respectively given by thg-axis andz-axis. As stated in smoothness of suitable terms, we can show that, with fixed

the paragraph after Theorem 1, these chogerand 61,6> o(t) = o, the system converges in the.-space to the

are legitimate for use in our switching control. Simulatiosubmanifold7, := {p. | 356; cl, + aay” sf, = 0}, where

results are presented in Fig. 4. Total thirty-six switclsimge 92. ._ (g@v g@u) c . Also being unconstrained
e o ) , ,

occurred. After the thirty-fifth switching (arouniy.5sec), the QZ**) 9,. Moreover, between switchings, similar to (11), we
system’s(z, y)-trajectory enters into the desired level set, bufgye
its orientation is not correct. So, another thirty-sixthtshing 0
occurs (around8sec.) to correct the orientation. After this last =y g
switching, the system’éz,)-position is in the desired level Folts) + ; /t bujdt
set, the orientation converges to the target value, and rme mo tinn
switching occurs. > —Ry(ty) +/ bl|ve||*dt
For the second simulation, we ue = —7/2 and 6, = ti
/2, thus, M; and M, are the same: both of them ar
given by k,y = 0 (i.e. z-axis). However, by tuning the
gains, we make the-dynamics (8) much faster than tha
of w (9), so that the robotgz, y)-trajectory Converges on “rporefore we can achieve similar results as those in Sec.
the straight lineMy,) = {(z,y) | kv cO(t) + kozs0(t) = || o the p,-space. In other words, if we desigs, on the
0} fast enough,_:?ls th|§ line rotates slpwly t,)aCk a”‘?' for%%-space s.t. the switching submanifolds are far enough
between the positive-axis and the negative-axis. By doing from each other and trigger the switchings whenis small
so, alt_hough/\/ll = M, we can ensure that, betyveen th%nough, we can ensure tht — 0 and p, approaches to
swﬂ_c_hmgs, t_he robot moves t_)etwee_n the two strips on tWfthin some user-specific performance bound. See Fig. 6 for
positive z-axis and the negative-axis separated bYls:.  gimylation results of this as applied to four wheeled mobile
This ensures the condition (13), since, (if,y) € M, robots. Here, our coordination control is centralizechaligh
Lsz and \/2/kydo > Om, dist((z,y), M;)//pu(z,y) it can be partially decentralized by definigg as the sum of
V2/ko (|2 + 6im)/ /22 + 62, > \/2/ky, thus, any0 < ¢, the potential between two robots. Its complete decenatidia

v/2/k. would work to enforce (13). Results for this simulations peyond the scope of this paper and will be published
are shown in Fig. 5. Compared to the results in Fig. 4, muglisewhere.

less number of switchings (only ten switchings) is required

to move into the desired level set, since the moving distance VI. SUMMARY AND EUTURE WORKS

between two switchings is larger than that of Fig. 4. _ o _
Similar to the second simulation, we may slowly rotate In this paper, we propose a novel passivity-based switch-

the submanifold more tha®w. For this, again, by tuning the ing control law for the posture stabilization of a wheeled

dynamics ofv much faster than that af, we could get an even Mmobile robot. The proposed control law is derived using the

faster convergence and less number of switchings. A ddtaiféindamental (open-loop) passivity property, which hasnbee

analysis and exposition for this rotating submanifold heswextensively used in other control problems in robotics, rimit
will be reported in a future publication. been so at all for systems with nonholonomic constraints.

Since it is based on fairly intrinsic concepts and entiteeg.(
V. APPLICATION TOMULTIPLE WHEELED MOBILE passivity, dissipation, decoupling, submanifolds), wéieve
ROBOTS COORDINATION that our proposed framework could be extended for more gen-
In this section, as one example of extensions to more geneasgdl control problems (e.g. coordination problem of mitip
problems/systems, we apply the passivity-based switchingheeled mobile robots as presented in Sec. V), or even furthe
control for the coordination problem of multiple wheeledontrol of general mechanical systems with nonholonomic
mobile robots. No motion planning is necessarily here. Mogonstraints on a differential manifold. The latter may fiegju
detailed exposition will be reported in future publicaon  that those systems have dynamics/energetic structuréasimi
Considern (strongly-connected) wheeled mobile robotso, but probably more generalized than, that of the wheeled
and definep. := (z.,y.) € ®*"~Y andf. € R"~!, with mobile robot. Real implementation of this passivity-based
*e 7= (%1 — %2, ..., *kn—1 — *,) € R"1. Then, for simplicity switching control and its experimental comparison witheoth
(while without losing generality), by the coordination, wechemes may also further shed lights on its strength/weakne
mean(p., f.) — 0. Then, for eachk-th agent, we design its and robustness/practicality as well.
control to be (6) with its second term replaced by We also wish that this work serves as an initiating step
< buy, + 222 0, + 222 50, ) toward fully utilizing the passivity property in the controf

Y

P (ti) — P (ti+1)

Qvhereb > 0, v, = dp./dt (i.e. system velocity om.-space),
andr, =Y %mkvi. Here, we can obtain the last inequality
'by using the passive decomposition [13].

INIV

Oy, Ok (16) wheeled mobile robots and more general robotic systems with

j 4 0% "
buwbi + G5 + kw0 = Oor)) nonholonomic constraints.
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Fig. 5. Second simulation results with = —7/2 andf, = /2.
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6. Coordination of multiple wheeled mobile robots.



