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Abstract— Three-dimensional digital terrain models are of the structure of the underlying function using local gratlie
fundamental importance in many areas such as the geo-sciencesfeatures and the local marginal data likelihood (see Figure

and outdoor robotics. Accurate modeling requires the ability 1o ¢4 g jlustration). Indeed, this idea is akin to adaptiveage
deal with a varying data density and to balance smoothing against thi tudied i ’ t . h the task is t
the preservation of discontinuities. The latter is particularly Smoothing studied In computer vision, where the task IS 10

important for robotics applications, as discontinuities that arise, achieve de-noising of an image without reducing the contras
for example, at steps, stairs, or building walls are important of edges and corners [17, 8]. Although these approaches from
features for path planning or terrain segmentation tasks. In the computer vision literature are not specifically desibfue

this paper, we present an extension of the well-established dealing with a varying density of data points or with potehti

Gaussian process regression approach that utilizes non-stationa to fill. th thel d . iration d
covariance functions to locally adapt to the structure of the gaps to 1ill, they nevertneless served as an inspiration dor o

terrain data. In this way, we achieve strong smoothing in flat Kernel adaptation approach.
areas and along edges and at the same time preserve edges
and corners. The derived model yields predictive distributions
for terrain elevations at arbitrary locations and thus allows to

fill gaps in the data and to perform conservative predictions in
occluded areas.
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The modeling of three-dimensional terrain has been widely e e e e s s eses]

studied across different research areas like the geoesmgeor ' ' _ '
robotics. Important applications in the later case nelato-  £i, &, 21, itiele sgresson pobie (1), Thetimmus oo
bile robotics for agriculture, search and rescue, or sUaveie. achieves this by adapting local kernels to the terrain daght].
In these domains, accurate and dense models of the three-
dimensional structure of the environment enable the robot t . ] ]
estimate the traversability of locations, to plan its pata goal ~ 1h€ Paper is structured as follows. We first discuss related
location, or to localize itself using range sensor measargegn  WOrk in the next section. In Section Ill, we formalize the-ter
Building a digital terrain model means to transform a set §fin modeling problem using Gaussian processes and inteodu
sensory inputs, typically a 3D point cloud or the raw rang@Ur @pproach to non-stationary adaptive regression. @etdi
sensor readings, to a function mapping 2-dimensional pogr@sents our experimental results on real and simulateairier
coordinates to elevation values. While geological appiticst data sets.
often operate on a larger spatial scale, in which local iterra
features can be neglected, autonomous robots greatly rely
on distinct structural features like edges or corners tagui A broad overview over methods used for modeling terrain
navigation, localization, or terrain segmentation. We¢fmre data is given by Hugentorp [7]. Elevation maps have been
have two, at the first glance contradicting requirements fused as an efficient data structure for representing dense
terrain models: First, raw sensory data needs to be smoothedain data [1, 10] and have later been extended to multi-
in order to remove noise and to be able to perform elevatitevel probabilistic surface maps [19]. iFr et al. [5] present
predictions at all locations and, second, discontinuitiesd to an approach to filling local gaps in 3D models based on local
be preserved as they are important features for path plgnnilinear interpolation. As their approach has yielded pramgis
localization, and object recognition. results in city mapping applications, we compare its maodgli

In this paper, we present a novel terrain modeling approaahcuracy to our approach in Section IV.
based on an extended Gaussian process formulation. OuGaussian processes (GPs) have a long tradition in the geo-
model uses non-stationary covariance functions as prdposeiences and statistics literature [14]. Classical apgves for
by Pacioreket al. [9] to allow for local adaptation of the dealing with non-stationarity include input-space wagpjih5,
regression kernels to the underlying structure. This adapil6] and hierarchical modeling using local kernels [9]. The
tion is achieved by iteratively fitting the local kernels tdatter approach provides the general framework for thiskwor

IIl. RELATED WORK



Recently, GPs have become popular in robotics, e.g., foroximity of the sensor location is usually more densely
learning measurement models [4, 2, 12], action models [&ampled than areas farther away. Third, small gaps in the dat
or failure models [11]. To deal with varying target functiorshould be filled with high confidence while more sparsely sam-
properties in the context of perception problems, Willig@®] pled locations should result in higher predictive unceites.
uses mixtures of GPs for segmenting foreground and badlo illustrate the last point, consider an autonomous vehicl
ground in images in order to extract disparity informaticonfi  navigating in off road terrain. Without filling small gapsjem
binocular stereo images. Rasmussen and Ghahramani [48iBgle missing measurements may lead to the perception of
extend ideas of Tresp [18] and present an infinite mixture ah un-traversable obstacle and consequently the plannbd pa
experts model where the individual experts are made up franight differ significantly from the optimal one. On the other
different GP models. A gating network assigns probabditichand, the system should be aware of the increased uncgrtaint
to the different expert models based completely on the inputhen filling larger gaps to avoid overconfidence at these
Discontinuities in wind fields have been dealt with by Cordfo locations. As a last non-trivial requirement, the modelutio
et al. [3]. They place auxiliary GPs along the edge on botpreserve structural elements like edges and corners as they
sides of the discontinuity. These are then used to learn Géte important features for various applications includiragh
representing the process on either side of the discongiflait planning or object recognition.
contrast to our work, they assume a parameterized segmentdn this paper, we propose a model to accommodate for all
tion of the input space, which appears to be disadvantageatdigthe above-mentioned requirements. We build on the well-
in situations such as depicted in Figure 1 and on real-workdtablished framework of Gaussian processes, which isa non
terrain data sets. parametric Bayesian approach to the regression problem. To

The problem of adapting to local structure has also beedeal with the preservation of structural features like adge
studied in the computer vision community. Taketaal. [17] and corners, we employ non-stationary covariance funstion
perform non-parametric kernel regression on images. Thay introduced by Paciorek and Schervish [9] and present a
adapt kernels according to observed image intensitiesir Theovel approach to local kernel adaptation based on gradient
adaptation rule is thus based on a nonlinear combination fetures and the local marginal data likelihood.
both spatial and intensity distance of all data points in theIn the following, we restate the standard Gaussian process
local neighborhood. Based on singular value decompositiompproach to non-parametric regression before we introduce
of intensity gradient matrices, they determine kernel modextensions to local kernel adaptation.
fications. Middendorf and Nagel [8] propose an alternative . )
kernel adaptation algorithm. They use estimates of grayevalA- Gaussian Process Regression
structure tensors to adapt smoothing kernels to gray valueAs stated in the previous section, the terrain modeling task
images. is to derive a model fop(y*|x*, D), which is the predictive
distribution of terrain elevationg*, called targets at input
locations x*, given a training setD = {(x;,y;)}", of

Data for building 3-dimensional models of an environmerglevation samples. The idea of Gaussian processes (GPs) is
can be acquired from various sources. In robotics, lasggerano view any finite set of sampleg; from the sought after
finders are popular sensors as they provide precise, highstribution as being jointly normally distributed,
frequency measurements at a high spatial resolution. Other
sensors include on-board cameras, which are chosen because  P(¥1;- - ¥n | X1, %) ~ N(p, K) @

of their low weight and costs, or satellite imagery, WhiCQ\/ith meanp € R™ and covariance matri%. p is typically

covers larger areas, e.g., for guiding unmanned areal Vegjs'sumedo and K is specified in terms of a parametric
cles (UAVs) or autonomous cars. After various PreProce&RSIRyy ariance functiork and a global noise variance parameter

steps, the raw measurements are typically represented as 3 Kij = k(xi,x;) + 020;;. The covariance functiork

I11. DIGITAL TERRAIN MODELING

from data points, that yield predictive distributions ferrain
elevations at arbitrary input locations. ) 13 (Xig — Xj1)>

The terrain modeling problem can be formalized as follows. k(X X;) = oFexp { =5 ) ] @
Given a setD = {(x;,y;)}", of n location samplex; € R? k=1
and the corresponding terrain elevatiops= R, the task is to whereo; denotes the amplitude (or signal variance) gpdre
build a model forp(y*|x*, D), i.e., the predictive distribution the characteristic length-scales of the individual dinems
of elevationsy* at new input locations*. This modeling task (see [14]). These parameters plus the global noise variance
is a hard one for several reasons. First, sensor measuremarg called hyperparameters of the process. They are tlpical
are inherently affected by noise, which an intelligent modéeenoted a®® = (o¢,¢,0,). Since any set of samples from
should be able to reduce. Second, the distribution of availa the process is jointly Gaussian distributed, the predictba
data points is typically far from uniform. For example, tha@ew target value,* at a given locationk* can be performed



by conditioning then + 1-dimensional joint Gaussian on thekernel matrixY¥; is internally represented by its eigenvectors
known target values of the training s@. This yields a and eigenvalues. Paciorek and Schervish build a hierachic

predictive normal distributioy* ~ N (u*,v*) defined by model by placing additional Gaussian process priors orethes
i . T 5 1 kernel parameters and solve the integration using Markov-
po= Ey)=k (K+oI) vy, (3 chain Monte Carlo sampling. While the model presented in [9]

vt = V(y) =k 402 - kT (K + 0721])*1 k, (4) provides a flexible and general framework, it is, as alsodote

by the authors, computationally demanding and clearly not
with K € R™", K;; = k(x;,%x;), k € R", k; = k(x",x;), feasible for the real world terrain data sets that we arerajmi
k* = k(x*,x*) € R, and the training targety € R". for in this work. As a consequence, we propose to model
Learning in the Gaussian process framework means finding the kernel matrices in Equation (5) as independent random
parameters®® of the covariance functioit. Throughout this variables that are initialized with the learned kernel of th
work we use a conjugate gradient based algorithm [14] thé§rresponding stationary model and then iteratively asthpt
fixes the parameters by optimizing the marginal data likelth to the local structure of the given terrain data. Concretely
of the given training data set. Alternatively, the param®tewe assign to every input locatior; from the training set
could be integrated over using parameter-specific pridri€is p a local kernel matrixz;, which in turn is represented by
butions, which results in a fully Bayesian model but which igne orientation parameter and two scale parameters for the
also computationally more demanding as one has to emple\gth of the axes. Given these parameters, the evaluation
Markov-Chain Monte Carlo sampling for approximating thef Equation (5) is straightforward. In the following sectjo

intractable integral. we will discuss in detail, how the kernel matricEs can be
The standard model introduced so far already accounts f@fapted to the local structure of the terrain.

three of the requirements discussed in the previous section .

namely de-noising, dealing with non-uniform data densjtieC- Local Kernel Adaptation

and providing predictive uncertainties. As a major dradhac The problem of adapting smoothing kernels to local struc-
however, by using the stationary covariance function ofd=quture has been well studied in the computer vision community.
tion (2), which depends only on ttdifferencesbetween input It is therefore not surprising that, although image proicess
locations, one basically assumes the same covariance stalgorithms are typically restricted to dense and uniformly
ture on the whole input space. In practice, this signifiganttistributed data, we can use findings from that field as an
weakens important features like edges or corners. The lgfspiration for our terrain adaptation task. Indeed, Miude
diagram of Figure 1 depicts a synthetic data-set which éasitadorf and Nagel [8] present a technique for iterative kernel
homogenous regions which should be smoothed, but akgaptation in the context of optical flow estimation in image
a sharp edge that has to be preserved. Our model, whiggdguences. Their approach builds on the concept of the so
is detailed in the next section, addresses this problem bglled grey-value structure tensor (GST), which captuhes t
adapting a non-stationary covariance function to the locical structure of an image or image sequence by building

terrain properties. the locally weighted outer product of grey-value gradidnts
] ] i the neighborhood of the given image location. Analogously t
B. Non-Stationary Covariance Functions their work, we define the elevation structure tensor (EST) fo

Most Gaussian process based approaches found in #hgiven locationx; as
literature use stationary covariance functions that de —_—
the difference between input locatioms— x’ rather thar?ez)mn EST(x;) = Vy(Vy)T (%) , ©)
the absolute values andx’. A powerful model for building where y(x) denotes the terrain elevation at a locatian
non-stationary covariance functions from arbitrary stairy and = stands for the operator that builds a locally weighted
ones has been proposed by Paciorek and Schervish [9]. kgérage of its argument according to the kerBgl For two-
the Gaussian kernel, their non-stationary covariancetiomc dimensionalx;, Equation (6) calculates the locally weighted
takes the simple form average of the outer product &fy = (F2, 54)T. This
local elevation derivative can be estimated directly frdm t
Zit 3 (5) raw elevation samples in the neighborhood of the given input
2 location x;. We cope with the noise stemming from the
r(Zi+ 5 -1 raw data by averaging over the terrain gradients in the local
exp | —(xi = x;) ( 9 > (xi =%;) | . neighborhood.

Equation (6) yields a tensor, representable &sxa2 real-
where each input locatior’ is assigned an individual Gaus-valued matrix, which describes how the terrain elevation
sian kernel matrix:’ and the covariance between two targetshanges in the local neighborhood of locatien To get an
y; andy; is calculated by averaging between the two individuahtuition, what £ST'(x;) encodes and how this can guide
kernels at the input locations; andx;. In this way, the local the adaptation of the local kern&l;, consider the following
characteristics at both locations influence the modeledrsov situations. Let\; and \» denote the eigenvalues &fST(x;)
ance of the corresponding target values. In this model, esaid 5 be the orientation angle of the first eigenvectorx]f

1
2

kxix) = 15} |zj|i|




is located in a flat part of the terrain, the elevation gragiendf(x;), which is the normalized observation likelihood of the

Vy are small in the neighborhood a&f;. This results in two correspondingy; from the training set relative to the current

equally small eigenvalues df'ST(x;). In contrast, ifx; was predictive distribution (see Equation (l1I-A)), and therikel

located in an ascending part of the terrain, the first eidesva complexity approximated as = 1/|3;|. Both quantities are

of EST(x;) would be clearly greater than the second one anded to form a learning rate parameter calculated by means

the orientation3 would point towards the strongest ascent. of a modified sigmoid functiony; = sigmoid —df(x;) - ¢;; ),
Intuitively and as discussed in more detail by Middendoxfhere the additional parameta¥sare determined empirically.

and Nagel [8], the kernell; describing the extent of the locallntuitively, we get a high adaptation speed when the data-fit

environment ofx; should be set to the inverse BIST'(x;). In  relative to the kernel size is small. Algorithm 1 summarizes

this way, flat areas are populated by large, isotropic kernethe adaptation procedure.

while sharp edges have long, thin kernels oriented along the

edge directions. Corner structures, having strong elavatiAlgorithm 1 Local Kernel Adaptation

gradients in all dimenSionS, result in I’elatively small dbc Learn g|oba| paramete@ for the Stationary Squared expo-

kernels. To prevent unrealistically large kernels, Midien nential covariance function.

and Nagel describe how this inversion can be bounded tojnitialize all local kernelss; with ©.

yield kernels, whose standard deviations lie between givenyhijle not convergedio

valueso,,;, ando,,.... Based on their findings, we give three for all ©; do

concrete local adaptation rules that have been compareatin o Estimate the local learning ratg
experimental evaluation. To simplify notation, we intredu Estimate ESTx;) according to%;
A = A/(AM1+ A2), k= 1,2 and the re-parameterization %« ADAPT(EST(x;))
Ui = miXi + (L —n)%
_ ar 0 _ i Ni2a; ;) 245
% =R T(o a2>R ! () end for
end while

where o; and ap scale in orthogonal directions and is a
rotation matrix specified by the orientation angle

1) Direct Inverse Adaptatiany; = EST(x;) !

2) Bounded Linear Adaptation

IV. EXPERIMENTAL EVALUATION

The goals of the experimental evaluation presented in this

ap = A Oy + (1= M) 0y ok =1,2 section are (a) to show that our terrain modeling approach is
3) Bounded Inverse Adaptation indeed applicgble to real data sets, (b) that our _model is abl
s s to remove noise while at the same time preserving important

a T mazPmin k=1,2 structural features, and (c) that our model yields more rateu

M 02+ (1= Xg) 02,0 and robust elevation predictions at sparsely sampled input

The two boundedadaptation procedures prevent unrealist/ocations than an alternative approach to this problem.
cally small and large kernels. THeounded Inversestrongly ~ AS @n evaluation metric, we use the mean squared error
favors the larger eigenvalue dimension and produces mo#SE(X) = o 2y (yi —y;)” of predicted elevationg;
pronounced kernels (larger difference between semiaxei w relative to ground truth elevations on a set of input locations
the Bounded LinearLinear tends to produce more balanced’ = {xi}iZ:-
and larger kernels. This is whBounded Linearperforms
better in the presence of sparse data as it is less vulneiabl
overfitting. In this work, the bounds,,,;, ando,,., are esti- The first set of experiments was designed to quantify the
mated empirically. We are currently working on determiningenefits of local kernel adaptation and to compare the three
optimal values with respect to the marginal data likelihood different adaptation rules. As a test scenario, we took the

So far, we have described how to perform one localtificial terrain data set depicted in Figure 2 consistirig o
adaptation step for an arbitrary kerngl. As the complete 441 data points, which contains uniform regions as well as
learning and adaptation procedure, which is summarized sharp edges and corners, which are hard to adapt to locally.
Algorithm 1, we propose to assign to each input locatign Note, for example, that the edge between the lowest and the
of the training setD a kernel matrixX;, which is initialized second lowest plateau has a curvature and that three differe
with a global parameter vect®, that in turn has been learnedheight levels can be found in the local neighborhood of the
using standard GP learning with the corresponding statjonaorner in the middle of the diagram. We sgt,;,, = 0.001
covariance function. The local kernels are then iterativeindo,,., = 5.0 for the bounded adaptation rules.
adapted to the elevation structure of the given terrain dataTo generate training data sets for the different experiment
set until their parameters have converged. To quickly adagported on here, we added white noise of a varying stan-
the kernels at locations where the regression error is highrd deviationo to the true terrain elevations and randomly
(relative to the given training data set), we propose to ntage removed a portion of the samples to be able to assess the
adaptation speed for each dependent on the local data fitmodel's predictive abilities.

@. Evaluation on Artificial Terrain Data
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Fig. 3. Prediction accuracy for the scenario depicted irufeigd with (a) all data points available, (b) 15% of the dadas randomly removed and (c)
30% randomly removed. Each figure plots the mean squared eredewdtion predictions for a varying level of added whiteseoiThe values are averaged
over 10 independent runs per configuration. (In the case)pthe error ofDirect Inversewas always greater than 4.0).

09 e mean squared prediction error for different amounts of {goin
orf\ removed from the noisy data set. After at mésiterations,
g o \\ the errors have settled close to their final value.
oaf N\ In a different set of experiments, we investigated the pre-
ol diction performance of our approach for all three adaptatio
f e rules presented in Section IlI-C. For this experiment, weead
(a) Terrain (b) Convergence white noise of a varying noise level to the artificial terrain

Fig. 2. An artificial terrain data set used in the experimeetaluation, that glven_ in Figure 2. The dlagrams in Figure 3 give the_ results
exhibits several local features that are hard to adapt taTéx data sets are for different amounts of points removed from the noisy data

generated by adding white noise and randomly removing a poofithe data set. When no points are removed from the test seBthended

points. The mean squared error (MSE) of predicted elevatonserges with : :
an increasing number of adaptation steps (b). Iterali@ives the MSE for Inverseadaptation rule performs best for small noise values.

the learned standard GP. Values are averaged over ten impteruns. For large noise valuesBounded Linearand Direct Inverse
achieve better results. In the case of 15% and 30% data
Figure 4 visualizes a complete adaptation process for thgints removedDirect Inverseand Bounded Inversare not
case of a data set generated using a noise rate of 0.3. competitive. In contrastBounded Linearstill achieves very
On average, a single iteration per run took 44 seconds on t@i#d results for all noise levels.
data-set using a PC with a 2.8 GHz CPU and 2 GB of RAM. Thus, Bounded Linearproduces reliable predictions for
Figures 4(c)-4(f) show the results of standard GP regrassi@ll tested noise rates and data densities. This finding was
which places the same kernels at all input locations. Whitgipported by experiments on other real data sets not pegsent
this leads to good smoothing performance in homogenedigre.
regions, the discontinuities within the map are also smembth ) )
as can be seen from the absolute errors in the third colunfh, Evaluation on Real Terrain Data
Consequently, those locations get assigned a high learaieg  In order to demonstrate the usefulness of our approach on
see right column, used for local kernel adaption. real data sets, we acquired a set of 3D scans of a scene
The first adaptation step leads to the results depicted uising a mobile robot equipped with a laser range finder,
Figures 4(g)-4(j). Itis clearly visible, that the steps @atners see Figure 5(a). We compared our prediction results to an
are now better represented by the regression model. This bBpproach from the robotics literature [5] that has beeniegpl
been achieved by adapting the kernels to the local structuseccessfully to the problem of 3-dimensionally mappinganrb
see the first column of this row. Note, how the kernel sizeseas. We employed tigounded Lineaadaptation procedure
and orientations reflect the corresponding terrain praggert for our learning algorithm where we set,;, = 0.25 and
Kernels are oriented along discontinuities and are small 1, = 4.0. Figure 5 gives the results of this experiment. An
areas of strongly varying elevation. In contrast, they hawbstacle, in this case a person, is placed in front of thetrobo
been kept relatively large in homogeneous regions. Aftezeth and thus occludes the sloped terrain behind.
iterations, the regression model has adapted to the disgent We evaluated our approach for the situation depicted in
ities accurately while still de-noising the homogeneowgares the figure as well as for three similar ones and compared
(Figures 4(k)-4(n)). Note, that after this iteration, treedl its prediction accuracy to the approach ofuRret al. [5],
learning rates have all settled at low values. who perform horizontal linear interpolation orthogonatty
Figure 2 gives the convergence behavior of our approatife robot's view. These scenarios used are actually rati®r e
using theBounded Linearadaptation rule in terms of theones for [5], as the large gaps can all be filled orthogonally t
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Fig. 4. The local kernel adaptation process on an artifieigbin data set: the original data set, depicted in FiguexBibits several local features that are
hard to adapt to. The test data set (a) was generated by adtitgnoise, resulting in the errors shown in (b). The seaandof diagrams gives information
about the initialization state of our adaptation process,the results of standard GP learning and regression. dllving two rows depict the results of
our approach after the first and after the third adaptatieraiton respectively. In the first column of this figure, weusdiize the kernel dimensions and
orientations after the corresponding iteration. The séamiumn depicts the predicted means of the regression. Tha ¢blumn gives the absolute errors
to the known ground truth elevations and the right-most colgias the resulting learning rates for the next adaptation step resulting from the estimated
data likelihoods.



the robot’s view, which is not the case in general. To estmat f %ﬁ%arg Lmearo"ltfép' 5] Adag tggoep 'mp‘r‘%\'g&em
the kernels at unseen locations, we built a weighted average 2 0.058 0.040 31.0%

over the local neighborhood with an isotropic two-dimensio 3 0.074 0.023 69.9%
Gaussian with a standard deviation of 3 which we had found 4 0.079 0.038 51.9%

to produce the best results. Table | gives the results. In all TABLE |

four cases, our approach aChieved h|gher prediction aciﬂsr,a PREDICTION PERFORMANCE IN TERMS ORMMSE RELATIVE TO A SECOND,
reducing the errors by 30% to 70%. Figure 5(b) depicts the NOT OCCLUDED SCAN

predictions of our approach in one of the situations. In @sit
to Frih et al, our model is able to also give the predictive

L . . Adaptation procedure | MSE
uncertainties. These variances are largest in the centtireof Standard GP 0071
occluded area as can be seen in Figure 5(c). Direct Inverse 0.103

In a second real-world experiment illustrated in Figure 6, Bounded Linear 0.062
. . - . Bounded Inverse 0.059
we investigated the ability of our terrain model approach to
TABLE II

preserve and predict sharp discontinuities in real terdaita.
We positioned the robot in front of a rectangular stone block PREPICTION PERFORMANCE ON A LARGE CAMPUS ENVIRONMENT

such that the straight edges of the block run diagonally to

the robot’s line of view. A person stood in between the robthe results of this experiment for the different adaptation
and the block, thereby occluding parts of the block and ofiles. TheBounded Lineaand theBounded Inversadaptation
the area in front of it. This scenario is depicted in 6(a). Therocedures outperform ttgtandard GPmodel where kernels
task is to recover the linear structure of the discontinaityl are not adapted, whil®irect Inverseis not competitive.
fill the occluded area consistent with the surrounding terraTogether with the results of the other experiments, thisidea
elevation levels. The adaptation procedure converge@dyre to the conclusion thaBounded Lineaiis an adequate choice
after two iterations. The learned kernel structure, ilatgtd in  as an adaptation rule in synthetic and real-world scenarios
Figure 6(c), enables the model to correctly represent threest

blocks as can be seen from the predicted elevations viggaliz V. CONCLUSIONS

in 6(d). This figure also illustrates the uncertainties afsth In this paper, we propose an adaptive terrain modeling

g_retd_lgtlgns, cgrrespondmgf :O the v?nanlges othhhe prgmctt approach that balances smoothing against the preservation
Istributions, by means ot two contour lInes. 1his INAISAE,¢ oy oty ra) features. Our method uses Gaussian processes
that a mobile robot would be relatively certain about th

o i ' N&ith non-stationary covariance functions to locally adépt
b!OCk structure W”h'.” the gap although not'havmg obsent/edthe structure of the terrain data. In experiments on syitthet
directly. In contrast, it would be aware that it cannot rehon

) _ . and real data, we demonstrated that our adaptation prazedur
its terrain model in the occluded areas beyond the blockseth P P

b " ithi ble dist d the produces reliable predictions in the presence of noise and
are no observations within a reasonaple distance an S’ig able to fill gaps of different sizes. Compared to a state-
predictive variances are large.

of-the-art approach from the robotics literature we achiav

To show that our approach is applicable to large, real""’c’gﬂediction error reduced by approximately 30%-70%.
problems, we have tested it on a large data-set recorded af, e future, we intend to evaluate our approach in

the Unlversn()j/ of Frelbu(rjg ca(rjnphhsThe raw terrz:r_] dat:\gﬁ online path planning applications for mobile robots. Since
preprocessed, corrected, and then represented in a " our approach retrieves terrain properties in terms of Keyne

surface map with a cell ls,lz;aggfbloizn7locm. ThFe sca_mn?_d_its application to terrain segmentation is promising. Aot
area slpans apdproxtljmﬁte?/ dy meters. Ior simp 'F'Hfrection of further research are SLAM techniques where the
we only considered the lowest data-points per location, "?rajectory of the robot is also unknown and the model has to be

we remov_ed overhanging _structures like tree tOp_S or Ce"q“n%pdated sequentially. We also intend to evaluate our approa
The resulting test set consists of 531,920 data-pointsp&ed on typical test cases in computer vision and to compare it

up computations, we split this map into 542 overlappin‘g,ith the algorithms of this community. Finally, we work on

sub-maps. This is possible without loss of accuracy as W analytical derivation for optimal kernels based solaty o
can assume compact support for the local kernels mvolva ta likelihoods and model complexity.

in our calculations (as the kernel sizes in our model are
bounded). We randomly removed 20% of the data-points per
sub-map. A full run over the complete data-set took about 50
hours. Note that the computational complexity can be redluce The authors would like to thank Kristian Kersting for the
substantially by exploiting the sparsity of our model (doe tstimulating discussion as well as Rudolph Triebel and Eatri
the bounded kernels) and by introducing additional sparsffaff for providing the campus data-set and their sourcescod
using approximative methods, e.g., sparse GPs. Table ¢sgifor multi-level surface maps. This work has been supported b
the EC under contract number FP6-004250-CoSy and by the
1Additional material for the campus experiment can be found ag’erman Federal Ministry of Education and Research (BMBF)
http:/Aww.informatik.uni-freiburg.defplagem/rss07terReg under contract number 01IMEO1F (project DESIRE).
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(a) The first test scenario

(b) Observations (points) and predicted means (lines)

(c) Predictive uncertain-
ties (white: zero)

Fig. 5. A real-world scenario, where a person blocks the tshdew on an inhomogeneous and sloped terrain (a). Figurgi(es the raw data points as
well as the predicted means of our adapted non-stationargssign model. Importantly, our model also yields the predictincertainties for the predicted
elevations as depicted in Figure (c).

(a) The second test scenario
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Fig. 6. A real-world scenario where a person blocks the rehd¢w on a stone block, i.e., a sharp linear discontinuity Figure (b) visualizes the kernels
that have adapted to the observed block edges illustratéc).ifrigure (d) illustrates the predicted terrain elevasi@nd two contour lines for two different
predictive uncertainty thresholds.
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