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Abstract— This paper considers the problem of learning to rec-
ognize different terrains from color imagery in a fully automatic
fashion, using the robot’s mechanical sensors as supervision. We
present a probabilistic framework in which the visual information
and the mechanical supervision interact to learn the available
terrain types. Within this framework, a novel supervised dimen-
sionality reduction method is proposed, in which the automatic
supervision provided by the robot helps select better lower
dimensional representations, more suitable for the discrimination
task at hand. Incorporating supervision into the dimensionality
reduction process is important, as some terrains might be visually
similar but induce very different robot mobility. Therefore,
choosing a lower dimensional visual representation adequately
is expected to improve the vision-based terrain learning and
the final classification performance. This is the first work that
proposes automatically supervised dimensionality reduction in a
probabilistic framework using the supervision coming from the
robot’s sensors. The proposed method stands in between methods
for reasoning under uncertainty using probabilistic models and
methods for learning the underlying structure of the data.

The proposed approach has been tested on field test data
collected by an autonomous robot while driving on soil, gravel
and asphalt. Although the supervision might be ambiguous
or noisy, our experiments show that it helps build a more
appropriate lower dimensional visual representation and achieves
improved terrain recognition performance compared to unsuper-
vised learning methods.

I. INTRODUCTION

We consider the problem of learning to recognize terrain
types from color imagery for the purposes of autonomous
navigation. This is necessary because different terrains induce
different mobility limitations on the vehicle. For example, the
robot might get stuck in sand or mud, so it has to learn to
avoid such terrains. Visual information is used as a forward-
looking sensor to determine the terrain type prior to the
robot entering the terrain, so that a better planning can be
done. In this paper the robot learns automatically using its
own mechanical measurements while traversing the terrains.
In particular, the amount of robot slip is used as supervision
for learning different terrain types and the robot’s mobility on
them.

Learning fully automatically is important, because in the
context of autonomous navigation huge amounts of data are
available and providing manual supervision is impractical. To
avoid manual labeling, the so-called self-supervised learning
methods have proposed to use the vehicle’s sensors as su-
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pervision for learning [4], [11], [13], [16], [19]. The key
idea of self-supervised learning is that one of the sensors can
provide the ground truth for learning with another sensor and
the underlying assumption is that the former sensor can be
reliably clustered or thresholded [4], [11], [13], [16].

However, some signals obtained from the robot do not nec-
essarily provide a unique clustering into well separable classes,
but can be still useful for providing supervision. For example,
different terrain types might induce similar robot mobility, i.e.
the supervision might be ambiguous. In the particular case
of slip, which is slope dependent, the robot can have the
same slip on flat ground but different slip when traversing
slopes. Our previous work [3] proposed a unified learning
framework for this case, but its limitation is that the visual
representation is low dimensional and the method can become
numerically brittle or require prohibitive amounts of training
data for higher dimensional inputs. Robotics applications often
need to process data obtained from multiple sensors which
is high dimensional. In particular, feature representations of
visual data are typically of high dimensionality, especially if
fine distinctions between terrains need to be done or a lot of
intra-class variability has to be accommodated.

To cope with high dimensional input spaces, we propose
to use the supervision, automatically obtained by the robot,
to affect the dimensionality reduction process. The intuition
is that two visually similar terrains which are not normally
discriminated in the visual space, and are mapped to the same
cluster in the lower dimensional space, might be discriminated
properly after introducing the supervision. In our case the
mechanical supervision is in the form of robot slip and might
be ambiguous or noisy. To solve the problem in this setup,
we present a probabilistic framework in which the mechanical
supervision provided by the robot is used to learn the represen-
tation and classification of terrain types in the visual space au-
tomatically. This essentially means having the supervision help
choose more appropriate and meaningful, with respect to the
learning task, low dimensional projections of the initial visual
data. Most previous dimensionality reduction techniques are
completely unsupervised [17], [21], whereas here we propose
to learn a more useful lower dimensional visual representation
which at the same time allows for better discrimination of
terrains determined to be different by the automatic mechanical
supervision from the robot. The significance of the approach is



that a fully automatic learning and recognition of terrain types
can be performed without using human supervision for data
labeling. Moreover, the method allows the supervision signal
obtained by the robot to be noisy or ambiguous, i.e. it might
not have a one-to-one correspondence to the visual data.

II. PREVIOUS WORK

Learning to recognize terrains from vision and to deter-
mine their characteristics regarding traversability or robot
mobility has been widely applied for autonomous vehi-
cles [11], [16], [24]. However, current methods are not
automated enough and human supervision or some other
heuristics are still needed to determine traversability [9], [16].
Recently, the concept of learning from the vehicle’s sensors,
referred to as learning from proprioception [16], or self-
supervised learning [4], [13], [19], has emerged. This idea has
proved to be particularly useful for extending the perception
range [4], [9], [16], [19] which is crucial to increasing the
speed and efficiency of the robot [4]. Self-supervised learning
approaches require good separability in the space of sensor
responses, so that a unique terrain class assignment for each
example is obtained. The latter is not always possible, e.g.
driving at slower speed cannot produce definitive enough
vibration patterns to discriminate terrains [6].

Dimensionality reduction techniques have also become very
popular in robotics applications, because the input visual data
is of high dimensionality and more efficient representations are
needed [8], [12], [22]. Most previous dimensionality reduction
methods are unsupervised [7], [17], [21], as they have been
intended for data representation. However, in our robotics
application, where additional mechanical sensor measurements
are available, it is more rational to use them as supervision in
selecting better lower dimensional data representation. Some
recent work has proposed to include prior information into the
dimensionality reduction framework, for example, by using
known class labels [20] or by assuming the projections of
some examples are given [25]. In our case, the supervision,
i.e. the knowledge about class-membership, is fairly weak and
neither of these approaches can be applied.

This work extends the probabilistic formulation for di-
mensionality reduction using Mixture of Factor Analyzers
(MoFA) [7], [12], [17] with the major distinction that addi-
tional measurements, obtained independently by the robot, are
used as supervision in the dimensionality reduction process.
Moreover, in [17], [12] the lower dimensionality representation
is observed (obtained by applying the unsupervised dimen-
sionality reduction algorithm Isomap [21] prior to learning),
whereas here it is unknown and needs to be learned. The
particular application addresses recognizing terrain types and
inherent mobility related to robot slip using visual input,
similar to [2], with the difference that learning is done with au-
tomatic supervision, provided by the robot, and does not need
manual labeling of terrain types, as in [2]. Being able to pre-
dict certain mechanical terrain properties remotely from only
visual information and other sensors onboard the vehicle has

significant importance in autonomous navigation applications,
because more intelligent planning could be done [16], [24].

IIT. PROBLEM FORMULATION

Consider the problem of predicting the mobility characteris-
tics Z of the robot in each map cell of the forthcoming terrain
using as input the visual information x € €2 in the cell and
some information about the terrain geometry y € @, e.g. local
terrain slope (€2 is the visual space, ® is the space of terrain
slopes). The input variables x and y can be obtained by the
robot from a distance, which will allow the prediction of the
output variable from a distance too. Let us denote the function
that needs to be evaluated as Z = F(x,y).

This problem can be reduced to recognizing the terrain type
from visual information. That is, we can assume that there are
a limited number (K) of terrain types that can be encountered
and that on each terrain type the robot experiences different
behavior (e.g. mobility):

F(x,y) = fi(y),

where 2; € ) are different subsets in the visual space, {2; N
Q; =0,i# jand f;(y) are (nonlinear) functions which work
in the domain ¢ and which change their behavior depending
on the terrain. In other words, different mobility behaviors
occur on different terrain types which are determined by visual
information. Now the question is how to learn the mapping
Z = F(x,y) from training data D = {(x;,¥:), 2}V 1,
where x; are the visual representations of patches from the
observed terrain, y; are the terrain slopes, and z; are the slip
measurements when the robot traverses that terrain.

The input space X, representing the visual data, can be
of a very high dimension, which impedes working with it.
Instead, we work with a lower dimensional embedding U of
the input space X. For that purpose we need to learn the
embedding R : X — U itself. As the learning of this mapping
requires prohibitive amount of data whenever the input is high
dimensional, we assume, similar to [7], [12], that it takes a
particular form. Namely:

if x € Q; (1)

X = Ajuj +v; for x € Qj 2)

where A; is the projection matrix and uj, v; are normally
distributed: u; ~ N(uj,%;), v; ~ N(n;,¥;). That is,
we assume that a locally linear mapping is a good enough
approximation for patches that belong to the same terrain class.

Figure 1 visualizes the problem when measurements of slip
as a function of terrain slope are used as supervision. Robot
slip is a measure of the lack of progress and is essentially
the complement of robot mobility [2]. The measurements in
Figure 1 are obtained from actual robot traversals and are
computed as the difference between Visual Odometry (VO)
based pose estimates [15] and the pose estimates from the
kinematic model of the robot. The mechanical slip mea-
surements are received completely automatically, as only the
vehicle’s sensors are needed to compute slip. A nonlinear
model can approximate the slip behavior as a function of
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Left: Slip measurements to be used as automatic supervision in our learning setup. Each training example consists of an image patch represented as a

high dimensional point and a corresponding slip measurement represented as a function of the estimated slope angle. Middle: Lower dimensional projections
of the visual data, obtained by the unsupervised dimensionality reduction algorithm Isomap [21]. The rectangle is expanded to the right and visualizes the
original image patches. The ground truth terrain types in this figure are provided by human labeling, but our system works without human supervision and
relies on the goodness-of-fit of nonlinear slip models to the slip measurements as automatic supervision to learn the terrain representation (dimensionality
reduction), terrain classification, and the nonlinear slip models from the available training data.

slope for each terrain type. These models essentially act as
supervision, but they are unknown and have to be learned
from the data. The slopes can be easily estimated by the robot
remotely using range data from stereo, ladar, etc., and a tilt
sensor on the robot, which is readily available from the IMU,
for example. We consider only the slip in the forward motion
direction as dependent on the longitudinal slope, similar to
slip measurements done for the Mars Exploration Rover [14],
which is a simpler and more straightforward representation of
slip than in [2]. This representation is also more convenient
for using the slip measurements as supervision during learning.
After the robot has learned how to visually discriminate the
terrains, it is conceivable to learn more complex slip models
using additional input variables (e.g. both longitudinal and
lateral slopes, roughness, etc.), as in [2].

Figure 1 also shows the vision part of the input data,
represented as described in Section V-B, projected into 2D
by using the unsupervised dimensionality reduction algorithm
Isomap [21]. As seen, there is a significant overlap between
terrain classes which have visually similar patches. Because
of the overlap, performing unsupervised, purely vision-based
classification is not sufficient. So, to be able to learn to
correctly discriminate these terrains and predict a potentially
different mobility behavior on them, some form of supervision
is needed. The key idea is that the dimensionality reduction
process can also take advantage of the supervision information
obtained from additional mechanical sensors.

The main problem in our formulation is that the slip signal
to be used as supervision can be of very weak form and
using slip measurements as supervision cannot be reduced to
supervised learning, as in [4], [11]. In particular, because of
the nonlinearity of the slip models f;(y), it is possible that
some of the models overlap in parts of their domain (i.e.
for some 4,j,i # j, fi(y) = fi(y), for y € @, for some
®y C ). For example, several terrains might exhibit the same
slip for ~ 0° slope, as seen in Figure 1, or simply two visually
different terrain types might have the same slip behavior. Since

some of the supervision (for some of the training examples)
is inherently ambiguous, the slip supervision signals cannot
be directly clustered into well separable classes. However, if
two terrains exhibit different slip behavior for any slope range,
the supervision should still be able to force a better discrim-
ination in the visual space, even though not all examples can
definitively exercise supervision. The intuition is that examples
for which the supervision signal is strong will propagate it
to the examples of ambiguous supervision in the same class
through their visual similarity. Finally, as the supervision is
collected automatically by the robot’s mechanical sensors, it
is rather noisy. To cope with noisy and ambiguous supervision
signals necessitates a framework which allows reasoning under
uncertainty.

To summarize, our goal is to learn the function Z = F'(x,y)
from the available training data D = {x;,y;, 2} ;. Thus,
after learning, the mechanical behavior z for some query input
example (x4,y,) will be predicted as z = F(x,,y,). We do
not want to use manual labeling of the terrain types during
training, so the slip measurements z;, which are assumed to
have come from one of several unknown nonlinear models,
act as the only supervision to the whole system. The main
problem is that using the mechanical measurements as the only
ground truth, or supervision, we have to learn both the terrain
classification and the unknown nonlinear functions for each
terrain. In particular, a combinatorial enumeration problem
needs to be solved as a subproblem, which is known to be
computationally intractable [10]. Furthermore, the supervision
is noisy and ambiguous.

IV. PROBABILISTIC FRAMEWORK FOR DIMENSIONALITY
REDUCTION USING SUPERVISION

To solve the problem defined in Section III, we propose
a probabilistic framework (Section IV-C) which performs
dimensionality reduction and terrain classification by using
automatic supervision and which can cope with both noisy
and ambiguous supervision. A maximum likelihood estimation
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Left: Graphical model of unsupervised clustering in the initial visual space. Middle: Graphical model of unsupervised dimensionality reduction

based on MoFA [12], [17] (see also [7]). Right: Graphical model of automatically supervised dimensionality reduction in which mechanical measurements
obtained automatically from the robot are used as supervision (proposed in this paper). The automatic supervision influences the selection of appropriate low
dimensional representations and helps learn the distinction between different terrain types. The observed random variables are displayed in shaded circles.

will be done in this framework. To ease the exposition, we first
describe two related probabilistic models.

A. Unsupervised clustering

The most straightforward approach to learn to classify
examples corresponding to different terrains is to apply un-
supervised learning (clustering). The corresponding graphical
model is shown in Figure 2, left. The parameters u;,;
are the means and covariances of each of the K clusters
of visual data X and 7; are the prior probabilities of each
class. The indicator variables L are latent, i.e. hidden, and
are added to simplify the inference process; they define the
class-membership of each training example, ie. L;; = 1 if
the *" training example x; belongs to the ;" class. The
model is used to learn the parameters of each class and the
classification boundaries between them. However, inference in
high dimensional spaces is numerically brittle and is limited
by the amount and the diversity of the available training data.

B. Unsupervised dimensionality reduction

As operating in high dimensional spaces is not desirable,
we wish to find a lower dimensional representation U of the
initial visual space X. As previously shown [7], dimensionality
reduction can be done using Mixture of Factor Analyzers
(MoFA), which can be expressed probabilistically as follows:

K
P(X,U) = 3 P(X|U,C = )PUIC = HP(C = j) ()
j=1
in which it is assumed that {X|U,C = j} ~ N (A;U+n;, ¥;)
and U ~ N (p;,X;). In other words, the joint probability of
X and U is assumed to be modeled as a mixture of K local
linear projections, or factors (see Equation (2)) [7], [17]. In
this paper we assume that U are latent variables. This is a
more general case than both [7] and [17]. After introducing
auxiliary latent variables L;;, as above, we can write Equation
(3) in the following way (which corresponds to the graphical
model in Figure 2, middle):

P(X7 UaL|@0) :P(X|U7L7@0)P(U|La(—:)O)P(L|@O)a

where ©9 = {u;, %, Aj,n;, ¥, ;1< contains the un-
known parameters of the model. Because of the particular
assumptions about the model, made in Equation (2), the

probability of a data point x; belonging to a terrain class j,
given a latent representation u;, and the probability of the
latent representation u;, given the class j, are expressed as:

=5 (xi=Ajui—n;) T O (xi—Ajui—n;)

(2m) /2|, |1/

P(xi|ui,Lij = 1) =

1
@m)2[5, 72
where D and d are the dimensionalities of the initial visual
space and the projected representation, respectively. Those

distributions are modeled, so that a tractable solution to the
maximum likelihood estimation problem is achieved.

=3 (=) TE (i py)
)

P(ui|Li; = 1) =

C. Automatically supervised dimensionality reduction

Previous approaches have assumed the projections U of
the data are known [12], [17] or have obtained them by
unsupervised learning [7]. In this work we wish to have the
automatic supervision influence which projections are chosen
to best represent and consequently discriminate the visual
classes. For that purpose we introduce supervision into the
whole maximum likelihood framework, thus solving the initial
problem in Equation (1), considering all the data available to
the system. That is, the ambiguous mechanical supervision
also takes part in the maximum likelihood decision.

In particular, we have two parts, a vision part, in which
dimensionality reduction is done, and a mechanical behavior
part, in which the slip measurements act as supervision. They
are linked through the fact that they refer to the same terrain
type, so they both give some information about this terrain. In
other words, during learning, we can use visual information to
learn something about the nonlinear mechanical models, and
conversely, the mechanical feedback to supervise the vision
based dimensionality reduction and terrain classification. Our
goal is to make those two different sets of information interact.

The main problem is that the decision about the terrain
types and learning of their mechanical behavior are not directly
related (i.e. they are done in different, decoupled spaces) but
they do refer to the same terrains. We can do that decoupling
by using again the hidden variables L which define the class-
membership of each training example (here L;; = 1 if the ith
training example (x;,y;,z;) has been generated by the j'"
nonlinear slip model and belongs to the j*” terrain class). As



Input: Training data {x;,y;, zq;}fil, where x; are the vision domain data, y; are the geometry domain data,
z; are the mechanical supervision measurements. Qutput: Estimated parameters © of the system.

Algorithm: Initialize the unknown parameters ®°. Set ¢+ = 0. Repeat until convergence:

P(x'i|Lij:lﬂet)P(y'ivzi‘Lij:L@t)"";
Zg L P(xi|Lik=1,0%) P(y;,z;|Lip=1,0%)7}
upt = AL (W) —mp) + (55)

L —

'ub], where T =

t+1 t+1 1.
‘U’J Zz 1l21 ij ZJ ]

1. (E-step) Estimate the expected values of L;;, u;; (we denote u;; = E(ulx;,
, where x; ~ N(A§uf +nf, W5 + ASSE(AY))
[(Z5)~
2. (M-step) Select the parameters ©'*! to maximize CL(X,U,Y, Z, L|©") . Let lﬁ'l
B S Y Y T = S
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Fig. 3.

an additional step, a dimensionality reduction of the visual
part of the data is done, so now the supervision can affect the
parameters related to the dimensionality reduction too. This
essentially means preferring projections which fit the data, and
therefore also the supervision, well. Now, given the labeling
of an example is known, the slip supervision measurements
and the visual information are independent. So, the complete
likelihood factors as follows:

P(X,U,Y,Z,L|©) =

P(X|U,L,0)P(U|L,©) P(Y,Z|L,©) P(L|O®)
——

Autom. supervision Prior

Vision part, dim. red.

where © = {1, %;,A;,n;, ‘I/j,9370'j,71‘]}j 1 contains all the
parameters that need to be estimated in the system. 6; are
the parameters of the nonlinear fit of the slip data and lof
are their covariances (here they are the standard deviations,
as the final measurement is one dimensional). The graphical
model corresponding to this case is shown in Figure 2, right.
This model allows the automatically obtained mechanical
supervision to affect both the dimensionality reduction and
the clustering process, thus improving a purely unsupervised
learning for the purposes of the task at hand. Note that here
the lower dimensional representation is hidden and that the
supervision part can influence the visual learning and the
dimensionality reduction through the latent variables L;;.
The supervision part is as follows. The mechanical mea-
surement data are assumed to have come from a nonlinear fit,
which is modeled as a General Linear Regression (GLR) [18].
GLR is appropriate for expressing nonlinear behavior and is
convenient for computation because it is linear in terms of
the parameters to be estimated. For each terrain type j, the
regression function Z(Y) = E(Z|Y) is assumed to have
come from a GLR with Gaussian noise i(Y)=2(Y) =
Z(Y)+e;, where Z(Y) = 90"’27» 1059-(Y), €5 ~ N(0,05),
and g, are several nonlinear functions selected before the
learning has started. Some example nonlinear functions to be

EM algorithm updates (see [1] for details).

used as building blocks for slip approximation are: z, 2,

e, logz, tanhx (those functions are used later on in our
experiments with the difference that the input parameter is
scaled first). The parameters 99 . 79] ,0; are to be learned
for each model j. We assume the following probability model
for z; belonging to the j** nonlinear model conditioned on
Yi-

1 —ﬁ(zi—G(wﬂj))Q
= e %
(2m)Y/20; ’

0 + S8 050.(y) and ;=
(69,05, ...,07%). P(y;) is given an uninformative prior (here,
uniform over a range of slopes).
With the help of the hidden variables L, the complete log
likelihood function (C'L) can be written as:

P(zilys, Lij = 1,05,05) =

where G(y,0;) =

N K
CL(X,U,Y, Z,L|O) = ZZLij[logP(xi\ui,Lij =1,A;,m;,0,)+

i=1 j=1
log P(u;|Lij = 1, pj, £5) + log P(ys, zi|Lij = 1,6;,05) + logm;]

The introduction of the hidden variables L is crucial to sim-
plifying the problem and allows for it to be solved efficiently
with the Expectation Maximization (EM) algorithm [5], which
tries to maximize the complete log likelihood (C'L). The EM
algorithm updates applied to our formulation of the problem
are shown in Figure 3 (the detailed derivations of the updates
are provided in [1]). In brief, the algorithm performs the
following steps until convergence. In the E-step, the expected
values of the unobserved variables u;; and label assignments
L;; are estimated. In the M-step, the parameters for both the
vision and the mechanical supervision side are selected, so as
to maximize the complete log likelihood. In other words, at
each iteration better parameters © are selected, in a sense that
they increase the likelihood of the available data. As the two
views are conditionally independent, the parameters for the
vision and the mechanical side are updated independently of



one another in the M-step. Note that it is through the variable L
that the visual data and the mechanical supervision interact and
that the automatic supervision can affect the local projections
defining the dimensionality reduction through the variable U.
The interaction happens in the E-step of each iteration, by
updating the expected values of L and U which depend on
both the visual data and the supervision. The new variables
introduced in Figure 3 are defined as follows: L§. is a diagonal
NxN matrix which has Lﬁj, ...Lﬁvj on its diagonal, G is a
Nx(R+1) matrix such that G = g,(yi), Gi(rs+1) = 1, and
Z is a Nx1 vector containing the measurements z; [1].

D. Discussion

The main difference from previous ap-
proaches [7], [12], [17] is that we have incorporated
automatic supervision into the framework, which directly
affects the lower dimensionality projections and the terrain
classification. Furthermore, the variables U corresponding to
the low dimensional representation are latent (unlike [12],
where they are known and obtained from Isomap, prior to
learning) and can have arbitrary means and covariances which
are learned (unlike [7], where they are assumed to be zero
mean and unit variance). This is an important point, because
it is through the latent variables U that the supervision
can influence the dimensionality reduction process during
learning.

The proposed maximum likelihood approach solves the
abovementioned combinatorial enumeration problem [10] ap-
proximately by producing a solution which is guaranteed to
be a local maximum only. Indeed, the EM solution is prone
to getting stuck in a local maximum. For example, one can
imagine creating adversarial mechanical models to contradict
the clustering in visual space. In practice, for the autonomous
navigation problem we are addressing, our intuition is that the
mechanical measurements are correlated to a large extent with
the vision input and will be only improving the vision based
classification. This is seen later in the experiments.

V. EXPERIMENTAL EVALUATION

In this section we apply the proposed automatically su-
pervised dimensionality reduction algorithm to vision-based
learning of different terrain types, using slip supervision
obtained by the robot.

The learning setup is as follows. The robot collects data
by building a map of the environment and obtaining geom-
etry and appearance information for each map cell. When a
particular cell is traversed, the robot measures the amount of
slippage occurring and saves a training example composed
of a visual feature vector (corresponding to a terrain patch),
geometry feature vector (here only the slope angle), and
the corresponding slip. The collected training examples are
used for learning of the mapping between the input visual
and geometric features and the output slip. This strategy is
commonly applied to learning traversability or other terrain
properties from vision [2], [11], [24]. VO [15] is used for
robot localization.

Soil

Gravel

Asphalt

Fig. 4. Top: Example frames from driving on soil (left) and on gravel (right).
Bottom: Patches from the classes in our dataset. The variability in texture
appearance is one of the challenges present in our application domain. The
dataset is collected under various weather conditions.

A. Dataset

The dataset has been collected by an autonomous LAGR!
robot while driving on three terrains with different mobility
in a natural park: soil, gravel and asphalt. Figure 4 shows
example patches from the terrains and Figure 1 shows the
collected slip measurements in the dataset. It is not known
to the algorithm which terrain classes the input examples
belong to: the slip and slope measurements (Figure 1) are the
only information to be used for automatic supervision. The
dataset is quite challenging as it is obtained in outdoor, off-
road environments. In particular, a lot of intra-class variability
can be observed in the appearance of the terrain patches and
the mechanical slip measurements are very noisy.

B. Visual representation

Each terrain patch is represented as the frequency of oc-
currence (i.e. a histogram) of visual features, called textons,
within a patch [23]. The textons are collected by using k-
means of 5x5 pixel neighborhoods extracted at random from
a pool of training images coming from all the classes (see [23]
for details). In this case, 5 textons are selected for each
terrain class in the data, constructing a 15-dimensional input
feature vector. This representation, based on both color and
texture, has been shown to achieve satisfactory classification
results for generic textures [23], as well as for natural off-road
terrains [2].

'LAGR stands for Learning Applied to Ground Robots and is an experi-
mental all-terrain vehicle program funded by DARPA



C. Mechanical supervision

Robot slip is defined as the difference between the com-
manded velocity of the robot, obtained from its kinematics
model and wheel encoder sensors, and its actual velocity
between two consecutive steps [2]. The VO algorithm [15],
running onboard the robot, is used to compute its actual
velocity. Thus, the slip-based supervision is measured fully
automatically by the robot. In these experiments we focus
on slip in the forward motion direction as dependent on the
longitudinal slope. The terrain slope is retrieved by performing
a least-mean-squares plane fit on the average elevations of the
map cells in a 4x4 cell neighborhood.

D. Experimental results

In this section we present experimental results of the dimen-
sionality reduction with automatic supervision. We quantita-
tively evaluate the performance of the proposed algorithm for
automatically supervised learning (Figure 2, right) compared
to both unsupervised learning (Figure 2, middle [7]) and
human supervised learning. While testing, terrain classification
is performed first to find the most likely class index j* given
the input data X (let us denote P(L;) = P(C = j)):

Jj* =argmaz; P(C = j|X) x P(X|C = j)P(C =j) =

/P(Xlu’ Lj)P(u|lLj)duP(L;) = P(X|Unr, Lj) P(L;),

in which we approximate the integral by using the maximum
likelihood lower dimensional projection (Ux, ). Note that only
the visual input is used to make this decision. Then, the
expected slip is predicted by evaluating the j*-th learned slip
model f;-(Y) = 69. + S 07%.g-(Y) for the given slope Y.

The average terrain classification and slip prediction errors
and their standard deviations across 50 independent runs are
shown in Figure 5. We compare learning and dimensionality
reduction without supervision, with automatic supervision, and
with human supervision. We have about ~1000 examples
which are split randomly into 70% training and 30% test sets
in each run. As the correct slip models are not known, the
ultimate test of performance is by comparing the predicted slip
to the actual measured slip on a test set (not used in training).
Slip prediction error is computed as: Err=2f\i1 |F(x4,y:) —
z;|/N, where F(x;,y;) is the predicted and z; is the target slip
for a test example (x;,y;). The terrain classification results are
evaluated by comparing to human labeled terrains. When using
human supervision, the class-membership of each example is
known, but the parameters of each class need to be estimated.
The latter is equivalent to doing Factor Analysis in each class
independently. Due to some overlap between the classes in the
original visual space, the classification with human supervision
can still incur some nonzero test error in terrain classification.
To reflect the monotonic nature of slip, an additional constraint
(0; > 0) is imposed (see [1] for details).

As seen in Figure 5, learning with automatically supervised
dimensionality reduction outperforms the unsupervised learn-
ing method and decreases the gap to learning with human

20 Terrain classif. error 20 Slip prediction error
1. Unsupervised O 1. Unsupervised
60 2. Automatic supervision O 2. Automatic supervision
3. Human supervision 3. Human supervision
50 A 4. Nearest Neighbor
__15
X 40 X
£ 30 8 + 4
"'" W g
20,
10
0 1 2 3 4 ° 2. 3 .4 5
Learning scenario Learning scenario
Fig. 5. Average test results for terrain recognition (left) and slip prediction

(right). Comparison to a baseline nonlinear regression method is also shown.
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Fig. 6. The learned slip models and the classification of the test examples

when learning with automatic supervision (left) and learning with human
superivsion (right). The examples are marked according to their predicted
terrain class labels (the colors and markers are consistent with Figure 1).

supervision. More precisely, learning with automatic super-
vision achieves about 42% and 45% of the possible margin
for improvement between the unsupervised and the human
supervised learning for terrain classification and slip predic-
tion, respectively. Naturally, for the type of supervision used in
these experiments (Figure 1), we cannot expect to fully close
the gap to human supervision, because the supervision signals
are not sufficiently well separable. The improved performance
of the supervised dimensionality reduction compared to the
unsupervised one is due to selecting more appropriate low
dimensional visual representations which provide for better
discrimination among the terrain classes and respectively
for learning of more accurate slip models for each terrain.
Comparing the results to [3] we can see that working with
more descriptive high dimensional representations is instru-
mental to achieving better performance. At the same time,
as the representation is more powerful, there is a smaller
margin for improvement between the unsupervised and the
human supervised learning. We also compared the results to
a baseline nonlinear regression method, k-Nearest Neighbor,
which learns directly the mapping from the inputs (visual
features x and slope y) to the output (slip z) and does not
apply dimensionality reduction as an intermediate step. Note
that directly learning the desired outputs, as is with k-Nearest
Neighbor, important information about the structure of the
problem, namely that there are several underlying terrain types
on which potentially different slip behaviors occur, is ignored.
As seen in Figure 5, the k-Nearest Neighbor is outperformed

by the other three methods.
The learned nonlinear models for one of the runs are shown



in Figure 6. The resultant slip models when learning with
automatic supervision are very similar to the ones generated by
human supervision, which is due to having learned the correct
terrain classification in the visual space. Note that, although the
correct slip models have been learned, there are still examples
which are misclassified for both learning scenarios because
only the visual information is used during testing. The slip
model used here has less inputs than in [2] and its main
purpose is to act as supervision rather than achieve a good
approximation of the slip signal. Now, given that the robot has
automatically learned how to visually discriminate terrains by
using the slip signals as supervision, the final slip prediction
results can be further improved by applying a more advanced
slip learning algorithm, e.g. by taking into consideration more
inputs [2].

Our results show that using additional, automatically ob-
tained, signals as supervision is worthwhile: it outperforms
purely unsupervised vision-based learning and has the po-
tential to substitute the expensive, tedious, and inefficient
human labeling in applications related to autonomous naviga-
tion. Secondly, as more descriptive high dimensional feature
representations are crucial to achieving better recognition per-
formance, performing dimensionality reduction and utilizing
the automatic supervision in the process is more advantageous
than working with simpler lower dimensional representations.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel probabilistic framework for
dimensionality reduction which takes advantage of ambiguous
and noisy supervision obtained automatically from the robot’s
onboard sensors. As a result, simultaneous learning of the
lower dimensional representation, the terrain classification, and
the nonlinear slip behavior on each terrain is done by us-
ing only automatically obtained measurements. The proposed
method stands in between reasoning under uncertainty using
probabilistic models and retrieving the underlying structure
of the data (i.e. dimensionality reduction). The impact of the
proposed method of automatically supervised dimensionality
reduction is that: 1) a better visual representation can be
created by utilizing the supervision from the robot, or the task
at hand; 2) the robot can learn about terrains and their visual
representation by using its own sensors as supervision; 3) after
the learning has completed, the expected mobility behavior on
different terrains can be predicted remotely.

We have shown experiments on a dataset collected while
driving in the field, in which different terrain types are
learned better from both vision and slip supervision than
from vision alone and unsupervised dimensionality reduction.
Significant improvements, currently under investigation, can
be done by introducing temporal/spatial continuity to the
consecutive/neighboring terrain measurements. Extending the
method to online learning is an important future direction, in
which the main challenges are determining which examples to
keep in memory and estimating the number of terrains.
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