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Abstract— We address the problem of surveillance in an envi-
ronment with obstacles. We show that the problem of tracking
an evader with one pursuer around one corner is completely
decidable. The pursuer and the evader have complete information
about each other’s instantaneous position. The pursuer has
complete information about the instantaneous velocity of the
evader. We present a partition of the visibility region of the
pursuer where based on the region in which the evader lies, we
provide strategies for the evader to escape the visibility region of
the pursuer or for the pursuer to track the target for all futur e
time. We also present the solution to the inverse problem: given
the position of the evader, the positions of the pursuer for which
the evader can escape the visibility region of the target. These
results have been provided for varying speeds of the pursuer
and the evader. Based on the results of the inverse problem we
provide an O(n3 log n) algorithm that can decide if the evader
can escape from the visibility region of a pursuer for some initial
pursuer and evader positions. Finally, we extend the result of the
target tracking problem around a corner in two dimensions to
an edge in three dimensions.

I. I NTRODUCTION

Surveillance is related to target tracking and the game of
pursuit-evasion. The goal of the pursuer is to maintain a line
of sight to the evader that is not occluded by any obstacle. The
goal of the evader is to escape the visibility polygon of the
pursuer (and break this line of sight) at any instant of time.

This problem has several interesting applications. It may be
useful for a security robot to track a malicious evader that is
trying to escape. The robot must maintain visibility to ensure
the evader will not slip away while another party or the pursuer
itself attempts to eventually trap or intercept the evader.Also,
an “evader” may not be intentionally trying to slip out of view.
A pursuer robot may simply be asked to continuously follow
and monitor at a distance an evader performing a task not
necessarily related to the target tracking game. The pursuer
may somehow be supporting the evader or relaying signals
to and from the evader. The pursuer may also be monitoring
the evader for quality control, verifying the evader does not
perform some undesired behavior, or ensuring that the evader
is not in distress. Finally, the results are useful as an analysis
of when escape is possible. If it is impossible to slip away, it
may be desirable for the evader to immediately surrender or
undertake a strategy not involving escape.

A great deal of research exists on pursuit-evasion. Pursuit-
evasion games are analyzed inR

n [19], in non-convex domains
of arbitrary dimension [1], and in graphs [34], [33]. A large
volume of game theoretic formulations and analysis can be

found in [2], [15], [35] and [21]. Also, [9] presents an approach
that takes into account the pursuer’s positioning uncertainty.
While this analysis is pertinent, it often focuses on “capturing”,
moving within a certain distance, of the evader. We only seek
to maintain a line of sight to the evader.

A related but different problem in the robotics community
is to find an evader with one or more pursuers in various
environments. Exact [12], [23], [24], [25], [38], [40], [11] and
probabilistic [13], [41] strategies have been found to locate
an evader while preventing it from slipping into a region that
has already been searched. Randomized strategies have been
employed to locate and capture an unpredictable evader in any
simply connected polygon [17] and [16]. [39] deals with one
pursuer searching one evader withk flashlights in a general
environment. The paper presents necessary and sufficient con-
ditions for various searchers. Our problem assumes the evader
starts in a position visible to the pursuer. The pursuer’s goal
is to track the evader rather than search the environment fora
hidden evader.

The problem of maintaining visibility of a moving evader
has been traditionally addressed with a combination of vision
and control techniques [8], [26], [27], and [14]. Pure control
approaches are local by nature and do not take into account the
global structure of the environment. Our interest is in deriving
pursuer strategies that guarantee successful surveillance taking
into account both constraints on motion due to obstacles and
constraints on visibility due to occlusion.

The problem of target tracking has also been analyzed at
a fixed distance between the pursuer and evader. In [28] and
[29], optimal motion strategies are proposed for a pursuer and
evader based on critical events and in [30] a target tracking
problem is analyzed with delay in sensing. These papers are
summarized in [32]. [3] deals with the problem ofstealth
target trackingwhere a robot equipped with visual sensors
tries to track a moving target among obstacles and, at the same
time, remain hidden from the target. Obstacles impede both the
tracker’s motion and visibility, and also provide hiding places
for the tracker. A tracking algorithm is proposed that applies
a local greedy strategy and uses only local information from
the tracker’s visual sensors and assumes no prior knowledge
of target tracking motion or a global map of the environment.

[20] presents a method of tracking several evaders with
multiple pursuers in an uncluttered environment. In [18] the
problem of tracking multiple targets is addressed using a
network of communicating robots and stationary sensors. A



region-based approach is introduced which controls robot de-
ployment at two levels, namely, a coarse deployment controller
and a target-following controller.

In [22] the problem of computing robot motion strategies
that maintain visibility of a moving target is studied under
deterministic and stochastic settings. For the deterministic tar-
get, an algorithm that computes optimal, numerical solutions
is presented. For the stochastic case, two online algorithms are
presented that each attempt to maintain future visibility with
limited perception. In [31] one or more observers try to track
one or more targets by maximizing the shortest distance the
target needs to move in order to escape the observer’s visibility
region. In [10][4] a target tracking problem is analyzed for
an unpredictable target and an observer lacking prior model
of the environment. It computes a risk factor based on the
current target position and generates a feedback control law
to minimize it. [7] presents an algorithm that maximizes the
evader’s minimum time to escape for an evader moving along
a known path.

There have been successful efforts in the past to deploy
tracking and surveillance systems in real world. We only
present a few of them. [37] and [36] developed a distributed
heterogeneous robotic team that is based mainly on a miniature
robotic system. Most of the robots are extremely small because
some operations require covert action. They team the scouts
with larger ranger robots that can transport the scouts over
distances of several kilometers, deploy them rapidly over a
large area, coordinate their behavior, and collect and present
the resulting data. [5] presents a mobile robot called the
Intelligent Observerwhich moves through an environment
while autonomously observing moving targets selected by a
human operator. The robot carries one or more cameras which
allow it track objects while at the same time sensing its own
location.

We address the problem of target tracking in an environment
with one corner, one pursuer, and one evader. This is the
first result, to our knowledge, that the surveillance problem
is decidable around one corner and gives partitions of the
workspace that demonstrate the outcome of the game. While
the general problem of deciding whether the evader can
escape or the pursuer can track the evader forever in any
arbitrary polygonal environment is still, so far as we know,
an open problem, we offer partial solutions to two important
problems. First, we provide sufficient conditions for escape.
These conditions could be used to solve the evader’s problem
(i.e., he would construct an escape strategy that exploited
these conditions) when they are satisfied, thus providing a
partial solution to this pursuit-evasion problem. Second,our
analysis is in the direction of providing open loop policiesfor
the pursuer to track the evader. Closed loop policies for the
pursuer depend on the current state of the evader resulting in
a delay in the reaction of the pursuer due to the time required
to process sensor data. The model changes from a continuous
time system to a discrete time system that in general lead
to computationally intractable algorithms. Moreover due to
the delay introduced in processing, the sufficient conditions

Fig. 1. The problem environment

weaken.
In Section 2, based on the geometry of the corner, the ratio

of maximum pursuer and evader velocities, and the initial
position of the pursuer, we segment the free space into regions.
The pursuer policy and the possibility of evader escape are
determined by the region in which the initial evader position
is contained. Pursuer policies are given that guarantee, for
some regions of initial conditions, that no evader policy will
lead to escape of the evader at any future time. It is then
proved that outside these regions, there is an evader policyby
which escape is inevitable irregardless of the pursuer policy. In
Section 3, the same analysis is performed with respect to the
initial position of the evader. In Section 4, we use the results
of the previous section to construct a algorithm that can decide
whether the evader can escape the pursuer for certain initial
positions of the pursuer and the evader. In Section 5, we extend
the above results to target tracking inR

3 around an edge.

II. PURSUER-BASED PARTITION

A mobile pursuer and evader exist on a plane at pointsp(t)
and e(t), respectively. They are point robots and move with
bounded speeds,vp(t) andve(t). Therefore,vp(t) : [0,∞)→
[0, vp] andve(t) : [0,∞)→ [0, ve]. We assume thatvp(t) and
ve(t) can be discontinuous functions of time.

The workspace contains a semi-infinite obstacle with one
corner that restricts pursuer and evader motions and may
occlude the pursuer’s line of sight to the evader. Without loss
of generality, this corner is placed at the origin and one of the
sides lies along the -x axis as shown in Figure 1. The unshaded
region is the visibility region of the pursuer.vpt(t) andvet(t)
describe the pursuer and evader tangential velocities.vpr(t)
and ver(t) describe the radial velocities.φe(t) andφp(t) are
the angles the evader and pursuer, respectively, make with the
+x axis. Note thatφe(t) is positive in the counterclockwise
direction while φp(t) is positive in the clockwise direction.
The minimum distance of the pursuer from linel2 is denoted



Fig. 2. Pursuer-based partition

by d(t). The distance of the pursuer from the corner is denoted
by r(t). The distance of the evader from the corner is denoted
by re(t).

The two edges meeting at this corner are considered to
extend for an infinite length so there is no other geometry that
the evader can hide behind in the workspace. The two sides
of the obstacle form an angleα. If α ≥ π then every point
in the free workspace is visible to every other point and the
pursuer will trivially be able to track the evader indefinitely.
Thus, we only consider obstacles whereπ > α ≥ 0.

To prevent the evader from escaping, the pursuer must keep
the evader in its visibility polygon,V (p(t)). The visibility
polygon of the pursuer is the set of points from which a
line segment from the pursuer to that point does not intersect
the obstacle region. The evader escapes if atany instant of
time it can break the line of sight to the pursuer. Visibility
extends uniformly in all directions and is only terminated by
workspace obstacles (omnidirectional, unbounded visibility).

We define thestar region associated with a corner as the
region bounded by the supporting lines of the two edges of a
corner. We define thestar regionas the collection of all star
points. As can be seen in Figure 1, the star-region extends
outward from the corner of the obstacle. It is semi-infinite
and bounded by raysl1 and l2. From any point in the star-
region, the entire free space is visible. If the pursuer can enter
the star region before losing sight of the evader, it will trivially
be able to track the evader at all future times.

We want to address the following question. Given the
initial position of the pursuer and the evader, the map of the
environment,ve andvp:

1) Does there exist a policy or an algorithm that takes finite
steps to provide a policy for the pursuer to track the
evader for all future times?

2) Does there exist a policy or an algorithm that takes finite

Fig. 3. The geometry of the partition

steps to provide a policy for the evader to escape the
visibility region in finite time?

We refer to the above questions by the termdecidability. If the
answer to one of the questions is affirmative at every configu-
ration for an environment, we say the problem isdecidablein
that environment. Around one corner the surveillance problem
is decidable.

Let a = ve/vp, the ratio of maximum evader and pursuer
speeds, and defined = d(t = 0). The outcome of the game
can be decided based on the velocity ratio and initial positions
of the evader and pursuer. This leads to a decomposition of
the visibility region of the pursuer into regions in which the
evader may lay. Region 1 is the set of all points closer than
a · d(t) to segment AO, the far side of the obstacle. Region 2
is the set of points farther away thana · d(t) to segment OB,
the edge ofV (p(t)) laying in free space. Region 3 consists
of points laying within distancea · d(t) to segment OB and
farther thana · r(t) from point O, the corner. Region 4 is
the set of points within distancea · d(t) from segment OB,
closer thana · r(t) from point O and farther thana ·d(t) from
segment AO. Region 5 is the set of points within distance
a ·d(t) from segment OB and at a distance greater thana∗r(t)

cos(θ)
from the origin. Region 6 is the portion of the free workspace

TABLE I

Evader Policies Evader Region Control Law

A 1 andφe ∈ [α − π, π

2
] ṙe(t) = ve

1 andφe ∈ [π

2
, π − φp] ẏe(t) = −ve

Pursuer Policies Evader Region Control Law
B 2, 4 ẏp(t) = vp

C 3 vpt(t) = − r

re

|vet(t)|

vpr(t) = − r

re

|ver(t)|

D 5 vpt(t) = vp



not belonging toV (p(t)). The pursuer and evader policies
necessary to decide the problem can be determined by this
partition of V (p(t)) shown in Figure 2. These policies are
summarized in Table I.

For the remainder of this section, refer to Figures 2 and 3
and Table I. Consider the case whereα < π

2 andφp ∈
(

0, π
2

]

.

Proposition 1 If the evader lies in Region 1 and follows Policy
A, no pursuer policy exists that can prevent the escape of the
evader.
Proof: If the evader lies in Region 1, the maximum time
required by the evader to reach line AO by following Policy
A is te < a·d

ve

= d
vp

. The minimum time required by the

pursuer to reach linel2 with any policy is at leasttp > d
vp

.
Thus,tp > te. Therefore the evader reaches the line AO before
the pursuer can reach linel2. If the evader lies on AO and the
pursuer has not yet reachedl2 the evader will be outside the
visibility region of the pursuer. Hence the evader escapes.

Proposition 2 If the evader lies in Region 2 and the pursuer
follows Policy B, no evader policy exists that can escape the
visibility region of the pursuer.
Proof: The time required by the pursuer to reach linel2 by
following Policy B is tp = d

vp

. If the evader lies in Region
2, the minimum time required by the evader to reach ray OB
is te > a·d

ve

= d
vp

. Thus, te ≥ tp. If the pursuer follows
Policy B, V (p(t = 0)) ⊆ V (p(t > 0)). Since the evader
cannot reach ray OB, the only free boundary ofV (p(t = 0)),
before the pursuer reaches the boundary of the star region,
e(t) ∈ V (p(t))∀t ∈ [0, tp]. Once the pursuer reaches the line
l2, the entire free workspace belongs to theV (p(tp)). The
pursuer stops hence the evader remains in sight of the pursuer
for all future times.

Proposition 3 If the evader lies in Region 3 and the pursuer
follows Policy C, for every evader policy the evader can either
stay in Region 3 or move to region 2 of V(p(t)).
Proof: If the pursuer follows Policy C, then it follows both
the radial and angular movements of the evader. The geometry
of Region 3 is such thatre(t) ≥ a · r(t) so r(t)/re(t) ≤ 1/a.
Multiply that with the velocity bound of the evader,ve(t) ≤
ve. This quantity is equal to the pursuer velocity of the control
law of Policy C.

vp(t) = ve(t)
r(t)

re(t)
≤

ve

a
= vp

Thus, the pursuer velocities of Policy C are always attainable
in Region 3. In order for the pursuer to maintain sight of the
evader, the following equation must hold.

φe(t) + φp(t) ≤ π

The tangential component of the control law implies

φ̇e(t) ≤ −φ̇p(t)

⇒ φ̇e(t) + φ̇p(t) ≤ 0

⇒ φe(t > 0) + φp(t > 0) ≤ φe(t = 0) + φp(t = 0) ≤ π .

Thus, the evader cannot enter Region 5. The radial component
of the control law implies

ṙe(t)

re(t)
=

ṙ(t)

r(t)

⇒
re(t)

r(t)
=

re(0)

r(0)
≥ a

Thus, the evader cannot enter Region 4. Hence for any policy
the evader can either stay in Region 3 or only enter Region 2.

Proposition 4 If the evader lies in Region 4 and the pursuer
follows Policy B, for every evader policy the evader can either
stay in Region 4 or move to regions 2 or 3 of V(p(t)).
Proof: If the pursuer follows Policy B, all points on segment
EF move with velocitya · vp = ve toward the ray OA.
Similarly, all points on the arc FG move with radial velocityve

toward O. In order to enter Region 1 from Region 4, the evader
must move toward the boundary of Region 1 with a velocity
greater than the velocity at which the boundary is moving
away from the evader. That is not possible since the boundary
of Region 1 moves with velocityve, the maximum possible
evader velocity, away from the evader. Hence the evader cannot
enter Region 1 from Region 4. Hence for all evader policies,
the evader can only reach Region 3 or Region 2 from Region
4.

Proposition 5 For all initial positions of the evader in Regions
3 and 4, the pursuer can track of the evader by following
a reactive motion and switching between policies B and C
appropriately.
Proof: If the evader starts in Region 3 and remains in Region
3 then we have proved in Proposition 3 that Policy C for the
pursuer can keep the evader in sight for all future time. While
the pursuer is following policy C, if the evader enters Region 2,
by Proposition 2, the pursuer can track the evader indefinitely
by following Policy B. Hence the pursuer can keep sight of
the evader for all future time.

If the evader starts in Region 4 and the evader remains
in Region 4 then Proposition 4 proves that Policy B for the
pursuer can keep the evader in sight for all future time. While
the pursuer is following policy B, if the evader moves to
Region 3, the strategy provided in the previous paragraph can
keep the evader in sight for all future times. While the pursuer
is following policy B, if the evader moves to Region 2, by
Proposition 2, the pursuer can indefinitely track the evaderby
following Policy B. Thus, the pursuer will keep the evader in
sight for all future time.

Proposition 6 For all initial positions of the evader in region
5, the pursuer can track the evader by following policy D.
Proof: Refer to Figure 4. After timet, the evader lies in the
closure of a circle of radiusvet centered ate(0). A sufficient
condition for the pursuer to keep the evader in sight for all
future times is to keep the angular velocity of the line of the
sight, OP, to be greater than the angular velocity of the line
tangent to the growing circle, OL, for all future time until the



Fig. 4. Evader in region 6

Fig. 5. Pursuer-based partition for the pursuer in region COH

pursuer reaches thestar region. The angular velocity of the
line OP is given byωp =

vp

rp

. The maximum angular velocity
of the evader is given byωemax = −ve

re(0) cos(φe(0)) . Solving for
ωp ≥ ωemax leads to the following condition

re(0) ≥ −
a ∗ rp

cos(φe(0))

which is satisfied for all points in Region 5.
If φp > π

2 the analysis still holds. The only changes are
that Region 1 expands, the area of Region 4 is reduced to zero
and Region 5 ceases to exist. Figure 5 shows the partition of
the visibility region of the pursuer in this case. Note that if
α ∈

[

π
2 , π

]

, thenφp must be less thanπ2 and this case is not
a consideration.

Corollary 1 There exists an evader policy that no pursuer
policy can track if and only if the evader lies in Region 1.
Proof: The proof can be concluded from the proofs of

Propositions 1, 2 and 5.

All the above analysis was done for initial positions of the
pursuer outside of the star region. If the initial position of the
pursuer is in the star region the entire free space is visible
to the pursuer. The policy of the pursuer will be to remain
stationary and it will trivially be able to track the evader
indefinitely.

III. EVADER-BASED PARTITION

In the previous section, a partition of theV (p(t)) has been
given. From only one region a evader policy exists that allows
the evader to escape for any pursuer policy. This section
presents a partition of the visibility region of the evader,
V (e(t)). The regions of the partition determine whether there
will be an evader policy that guarantees escape. In short, we
address the following question - Given the initial positionof
the evader, from what pursuer positions will the evader be able
to escape as a function of the ratio of their speeds?

To find the set of initial pursuer placements from which the
evader may escape we must consider two cases depending on
whether the closest point to the evader on the obstacle lies on
the corner or belongs uniquely to one of the sides.

Refer to Figure 6(a) where the partition for the case where
the closest point is on one of the sides of the obstacle is
considered. For this situation to occur the evader must lie
outside the shaded region of Figure 6(a). Consider, without
loss of generality, the case where the evader lies in quadrant
II. It can be concluded from Corollary 1 that if the pursuer
lies belowl2, the pursuer must be a distance of at leastde/a
from l2 for the evader to escape. If the pursuer lies in the
region betweenl1 and OA, it is possible for the evader to
escape to the side of the obstacle opposite the evader, OC.
Thus, the distance between the pursuer and the closest point
on l1 must be greater thanre/a for the evader to escape. If
the pursuer lies in the region enclosed byl1 andl2, the evader
cannot escape as the pursuer already lies in the star region.In
summary, an evader policy that guarantees escape exists only
if the pursuer lies outside of the shaded region of Figure 6(b).

For all points inside the shaded region in figure 6(a), the
closest point is the corner. If the closest point to the evader
on the obstacle is the corner, to escape to a hidden region on
either side of the obstacle as quickly as possible the evader
must reach the corner. The evader can escape by following
this policy if the pursuer lies in the unshaded region in Figure
6(c), points laying farther thanre/a from the star region. If
the pursuer lies in the star region, no escape is possible.

Using the above idea we present an algorithm in the next
section that can decide if the evader can escape for certain
initial positions of the pursuer and the evader.

IV. D ECIDABLE REGIONS IN CASE OF A POLYGONAL

ENVIRONMENT

In the previous section, we provided a partition ofV (e(t))
to decide the outcome of the target tracking game. We can
conclude that if the pursuer lies outside the shaded region
in Figures 6(b) and (c), a strategy exists where evader will



Fig. 6. Evader-based partitions

(a) (b) (c)

win irrespective of the pursuer policies. The presence of other
obstacles does not affect this result.

If the pursuer lies in the shaded region, a strategy, guaran-
teed to track the evader for all future times and a strategy to
do that has been proposed. At this moment, we do not have an
extension of this strategy in the presence of multiple obstacles.
Hence, we cannot decide the result of the target tracking game
if the pursuer starts in the shaded region.

Using the ideas outlined so far in this paper, we propose an
algorithm that can decide sufficient conditions for escape of
an evader in a general polygonal environment.

Refer to Figures 6(b) and (c). From the previous section, we
can conclude that, given a corner, if the pursuer lies outside
the region enclosed by raysl1 and l2 and the minimum time
required by the pursuer to reach raysl1 or l2 is greater than the
minimum time required by the evader to reach the corner then
the evader wins the game. This statement is true even in the
presence of other obstacles. To check this condition, compute
the shortest distance of the pursuer to the raysl1 andl2 and the
shortest distance of the evader to the corner. Repeat the process
for every corner in the environment. If the condition is satisfied
for any corner, the Decidability Algorithm concludes that the
evader can escape and the strategy for the evader to escape isto
reach that corner along the shortest path. If the condition is not
satisfied by any corner, the Decidability Algorithm does not
know the result of the target tracking game. The psuedocode
of this algorithm is provided in the appendix.

The shortest distance of the evader from the corner can be
found by applying Dijkstra’s Algorithm to the Visibility Graph
of the environment between the initial position of the evader
and the corner. To find the shortest distance of the pursuer
to rays l1 and l2 we construct aModified Visibility Graph
(MVG) for a given vertex, v and apply Dijkstra’s Algorithm.
We present the main steps for the construction of the MVG
for a given vertex v.

1) Construct the visibility graph of the environment with

edge weights as the Euclidean distance between the two
vertices.

2) For every vertex w, check if perpendicular line segments
can be drawn from w to raysl1 and l2(corresponding
to v), without intersecting other obstacles. If only one
perpendicular line segment can be drawn to eitherl1
or l2, then compute the length of the perpendicular line
segment. If a perpendicular line segment can be drawn
to bothl1 andl2, then compute the length of the smaller
perpendicular line segment. Denote the length byd. If
the edge wv already exists in the visibility graph, update
the weight of the edge tod. Otherwise add an edge with
weight d.

3) If for an vertex w, there is no perpendicular line segment
to raysl1 and l2, do nothing.

The psuedocode for constructing the MVG for a vertex is
given in the appendix. The algorithm DECIDABILITYTEST
has time complexity ofO(n3 log n), where n is the number of
vertices in the polygonal environment.

V. EXTENSION TO ONE EDGE IN R
3

Consider an edge inR3 formed by the intersection of two
half planes at an angle ofα. Consider a planeπp perpendicular
to both the half planes and passing through the pursuer and a
planeπe perpendicular to both the half planes passing through
the evader. Letep be the projection of the evader onπp and
pe the projection of the pursuer onπe.

Proposition 6 The linepe intersects the obstacle iff projected
lines epe andpep intersect the obstacle.
Proof: Consider any point(x∗, y∗, z∗) on the linepe. Its
projection onπp, (x∗, y∗, zp), lies onpep and its projection on
πe, (x∗, y∗, ze), lies onepe. Since all three points are collinear
on a line parallel to the z-axis and the obstacle’s shape is
invariant along the z-axis if any of the three points intersects
the obstacle then the other two will as well. If the visibility line
pe is broken, then the straight line connecting p to e intersects



Fig. 7. An edge in three dimensions.

the obstacle at least at one point and the linesepe and pep

will be broken as well. Otherwise, no point onpe is broken
and so no point onepe andpep will be broken.

Proposition 5 shows that, in this particular geometry, the
problem in R

3 can be reduced to to a problem inR2.
Given the maximum velocities of the pursuer and evader, the
decomposition of the visible space is simply the extrusion of
the planar decomposition of the visibility region along thez
axis.

VI. CONCLUSIONS

This paper addresses the problem of surveillance in an
environment with obstacles. We show that the problem of
tracking an evader with one pursuer around one corner is
completely decidable. We present a partition of the visibility
region of the pursuer where based on the region in which
the evader lies, we provide strategies for the evader to escape
the visibility region of the pursuer or for the pursuer to track
the target for all future time. We also present the solution
to the inverse problem: given the position of the evader, the
positions of the pursuer for which the evader can escape the
visibility region of the target. These results have been provided
for varying speeds of the pursuer and the evader. Based on
the results of the inverse problem we provide anO(n3 log n)
algorithm that can decide if the evader can escape from the
visibility region of a pursuer for some initial pursuer and
evader positions. Finally, we extend the result of the target
tracking problem around a corner in two dimensions to an edge
in three dimensions. We have shown that the target tracking
game inR

3 can be reduced to a target tracking game inR
2

In our future work, we plan to address the decidability of
the target tracking problem in general polygonal environment.
We are using game theory as a tool to increase the decidable
regions for the problem. We also plan to use tools in topology
and computational geometry to understand the problem to a
greater depth. Finally, we would like to extend the problem to

multiple pursuers and multiple evaders and use control theory
to provide strategies for successful tracking.
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APPENDIX

The subroutine VG(S), computes the visibility graph of a
polygonal environment S.

Algorithm DECIDABILITYTEST(S,P,E,vp,ve)
Input: A set S of disjoint polygonal obstacles, The Pursuer
positionP , The evader positionE, Pursuer maximum velocity

vp, Evader maximum velocityve

Output: result: If Evader wins YES, else DONOTKNOW

1) GvisE =VG(S ∪ E)
2) GmvisP =MVG(S ∪ P)
3) i←1
4) Until i = n + 1 or flag = false
5) l1 =DIJKSTRA(VG(S),E,Vi)
6) l2 =DIJKSTRA(MVGCONSTRUCT(S,Vk),P,Vi)
7) if l2

vp

> l1
ve

8) result=WINS
9) elsei = i + 1

10) if i = n + 1, result=DONOT KNOW

In the psuedocode below, the subroutine VISIBLEVER-
TICES(v,S) is an algorithm which provides the vertices of
a polygonal environment S, visible to a vertex v. It can be
implemented using a rotational plane sweep algorithm [6].
Algorithm MVGCONSTRUCT(S,Vk)
Input: A set S of disjoint polygonal obstacles, A vertexVk

Output: The Modified Visibility GraphGMV IS(S)

1) Initialize a graphG = (V,E) where V is the set of all
vertices of the polygons inS and E= ∅

2) for all verticesv ∈ V
3) do W ← VISIBLEVERTICES(v,S)
4) for every vertexw ∈W andw 6= Vk

5) add edge(v, w) to E with weight as the
6) euclidean length of segmentvw.
7) for all verticesv ∈ G
8) d←MINLSDIST(v,Vk)
9) If d6=∞

10) if edge vVk exists, update weight of vVk

11) to d
12) else add edge vVk to E with weight d

In the following psuedocode the subroutine

1) ORTHOGONALITYCHECK(v,k) is to check if v lies
outside raysl1 andl2 and if we can draw a perpendicular
from v to rays l1 and l2 without intersecting other
obstacles. It returns TRUE if either of the conditions
is satisfied

2) CLOSER(v, l1, l2) is used to find which ray amongl1
and l2 has a lesser distance from v.

3) MINDISTANCE(v,k) is to compute the minimum dis-
tance from v to a ray k.

Algorithm MINLSDISTANCE(v, Vk)
Input: A vertex v in G, a vertexVk in G
Output: d:the length of the line perpendicular from v tol1 and
l2 corresponding toVk. If the perpendicular line intersects any
obstacles then it gives an output of∞.

1) If ORTHOGONALITYCHECK(v,l1, l2)=TRUE
2) k=CLOSER(v, l1, l2)
3) If COLLISIONCHECK(v,k)=TRUE
4) d←∞
5) else d←MINDISTANCE(v,k)
6) else d←∞


