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Abstract—We consider the task of omnidirectional path fol- This results in a high-dimensional class of control poktie
lowing for a quadruped robot: moving a four-legged robot along  which therefore tends to require a prohibitively large amou
any arbitrary path while turning in any arbitrary manner. of data from the real robot in order to learn

Learning a controller capable of such motion requires learning It can be much ier to | this high-di . I poli
the parameters of a very high-dimensional policy class, which can be much easier o leamn this high-dimensional policy

requires a prohibitively large amount of data to be collected on N @ model (or “simulator”) of the system than on the real
the real robot. Although learning such a policy can be much robot; there are many advantagesnmwdel-based reinforce-
easier in a model (or “simulator”) of the system, it can be ment learning(RL): the simulator can be made deterministic,
ex}remely difficult to build a sufficiently accurate §|mqlator. N we can save and replay states, we can take gradients of the
this paper we propose a method that uses a (possibly inaccurate) . .

simulator to identify a low-dimensional subspace of policies that parameter;, there is no risk of ‘?'?mage to t'he real r??’m’ etc.
is robust to variations in model dynamics. Because this policy However, it can be extremely difficult to build a sufficiently
class is low-dimensional, we can learn an instance from this accurate simulator. Often times a policy learned in the simu
class on the real system using much less data than would be|ator will perform very poorly on the real system.

required to learn a policy in the original class. In our approach, In this paper, we propose a method that makes use of a

we sample several models from a distribution over the kinematic . . . . . . .
and dynamics parameters of the simulator, then use the Reduced (possibly inaccurate) simulator to identify a low-dimesrsl

Rank Regression (RRR) algorithm to identify a low-dimensional Subspace of policies that is robust to variations in model dy
class of policies that spans the space of controllers across allnamics. Our method is as follows: First, we sample randomly

sampled models. We present a successful application of thisfrom adistributionover the kinematic and dynamic parameters
technique to_the task of omnidirectional path foII.0W|ng, and  of the simulator. We learn parameters for the high-dimemaio
demonstrate improvement over a number of alternative methods L . . : .
including a hand-tuned controller. We present, to the best of ppllcy m each of these S'_m_UIatlon models. To identify a low-
our knowledge, the first controller capable of omnidirectional dimensional class of policies that can represent the learne
path following with parameters optimized simultaneously forall ~ policies across all the sampled models we formulate a dimen-
directions of motion and turning rates. sionality reduction optimization problem that can be sdivia
the Reduced Rank Regression (RRR) algorithm [26]. Finally,
we learn a policy in this low-dimensional class on the real
In this paper we consider the task of omnidirectional patiobot; this requires much less data than would be required
following: moving a four-legged robot along any arbitraryto learn a policy in the original, high-dimensional class of
path while turning in any arbitrary manner. Examples of sugbolicies. We present a successful application of this teglen
motion include walking in a circle while facing the circle’sto the task of omnidirectional path following, and demoatgr
center, following a straight line while spinning around,amy improvement over a number of alternative control methods,
other such maneuver. In this paper we focus on “trot” gait#cluding a hand-tuned controller. We also present, to #wt b
gaits where the robot moves two feet at a time. of our knowledge, the first controller capable of omnidirec-
A key technical challenge in building such a robust gait #onal motion with parameters optimized simultaneously fo
maintaining balance of the robot. Since the trot gait mowes t all directions of motion and turning rates — in the next section
feet at once, the polygon formed by the supporting feet reduave clarify exactly how this work differs from previous work
to a line, and it is very difficult to maintain any standardtista in quadruped locomotion.
or dynamic stability criterion. Fortunately, when exeagtia The rest of this paper is organized as follows. In Section Il
“constant” maneuver — that is, moving in a constant directiove present background material and related work. In Section
while possibly turning at a constant rate — it is possible tl we give an overview of our controller (the full paramezai-
approximately balance the robot by offsetting the center tibn of the controller is given in the Appendix) and presemt a
mass by some fixed distance. However, in omnidirectiondl paanline learning algorithm that is capable of learning balag

following we are frequently changing the direction of matio
9 q y ging 1In this paper we focus on linearly-parametrized policies -at ik, policies

and turning rate, so a Comp|8te _pO|I(_:y must det_ermme et are specified by a set of linear coefficients. In this cts dimension
proper center offset foany given direction and turning rate. of the policy is simply the number of free parameters.

I. INTRODUCTION



offsets for anyfixed direction of motion and turning rate. In supporting polygon reduces to a line, making it difficult to
Section IV we formally present our method for identifying anaintain the ZMP exactly on this line. In addition, we found
low-dimensional policy class by sampling from a distributi it difficult to calculate the ZMP precisely on the real roboied
over simulator models. In Section V we present and analy®the inaccuracy of the on-board sensors. For these reasons
our results on the real robotic system. Finally, in Sectidn \this paper we focus on an approximate method for balancing

we give concluding remarks. the robot.
II. BACKGROUND AND RELATED WORK B. Learning and Control
A. Quadruped Locomotion The method we propose in this paper is related to the area of

There has been a great deal of work in recent years, bdtibust control theory. For a general overview of robust omnt
in the robotics and the machine learning communities, @ee [31] and [9]. However, our work differs from standard
guadruped locomotion. Much of the research has focused f@bust control theory in that the typical goal of robust coht
static walking (moving one leg at a time, thereby keeping thg to find asinglepolicy that performs well in avide varietyof
robot statically stable) including statically stable gaiapable possible models. In contrast, we make no assumption that any
of omnidirectional path following [19]. In addition, theteas such policy exists — indeed, in our application the optimal
been much work on designing static gaits that can navigdtelicy depends very much on the particular model dynamics

irregular terrain [6, 5, 11, 18]. However, in this paper weds — but rather we want to identify aubspacedf policies that
on the dynamic trot gait over flat terrain, which requiresyveris robust to variation in the model dynamics. In the final step
different approaches. of our method, we then search this subspace to find a policy

There has also been a great deal of work on developititat is specific to the dynamics of the real system.
omnidirectional trot gaits, in particular for the Sony AIBO To identify the low-dimensional subspace of policies, we
robot. Much of this work is based on a trot gait, originallypose an optimization problem that can be solved via the
developed by Hengst et. al. [13], that is potentially capalfl Reduced Rank Regression (RRR) algorithm. The RRR setting
moving in any direction while turning at any rate. While thevas first discussed by Anderson [1]. Izenman [15] developed
parameters of the gait presented in [13] are hand-tunedg ththe solution that we apply in this paper, coined the term
has been much subsequent work on gait optimization of tffReduced Rank Regression,” and discussed the relationship
and similar gaits. Several gait optimization methods ha&nb between this algorithm, Canonical Correlation Analysi€&}
investigated, including evolutionary search methods [84, and Principle Component Analysis (PCA). RRR is discussed
27], direction set minimization [16] and policy gradientle in great detail in [26], and there is a great deal of active
niques [17]. However, while the controllers in these pajpees research on this algorithm, both from theoretical [2] and
capableof omnidirectional motion in that they can walk in anynumerical perspectives [10].
direction while turning at any rate, all the papers listedwab  In the machine learning literature, the problem we fornmilat
focus on optimizing parameters only for osmgle direction can be viewed as an instance of multi-task learning [7, 3].
of motion at a time (usually forward walking). Additionallgs However, our setting does differ slightly from the protatad
noted in [27], gaits optimized for one type of motion typlgal multi-task learning paradigm, since we do not ultimatelyeca
perform poorly on other maneuvers — for example, a ga@bout performance on most of the tasks, except insofar as it
optimized for forward walking typically performs poorly wh helps us learn the one task we care about — i.e., we don't
attempting to walk backwards. In contrast, in this paper weare how well the policies perform in the simulation models,
focus on learning a policy that performs well falt directions just how well the final controller performs on the real system
of motion and turning rates. Finally, we note that there has been recent work on the ap-

Another vein of research in dynamic quadruped gaits foplication of dimensionality reduction techniques to cohtnd
lows work by Raibert [24, 25]. This and more recent work [22Zeinforcement learning. Mahadevan [20] uses Graph Lagpteci
21] achieve dynamic gaits — both trot gaits and gallop gaits)ethods to learn a low-dimensional representation of value
which include a flight phase — by “hopping” on complianfunctions on a Markov Decision Process (MDP). Roy et. al.
legs, which typically employ some form of hydraulics. Whilg28] use dimensionality reduction to compactly represes b
this is a powerful technique that can allow for very fadief states in a Partially Observable MDP. Our work is simila
locomotion, we discovered very quickly that our robot was nan spirit, except that we apply dimensionality reductiorthe
capable of generating sufficient force to jump off the graqundpace of controllers, to learn a low-dimensional represtént
effectively disallowing such methods. of the control policies themselves.

There is also a great deal of work on dynamic stability
criteria for legged robots [12, 23]. One of the most well-umo
criteria is to ensure that the Zero Moment Point (or ZMP) [29]
— which is similar to the center of mass projected on to the In this section we present a parametrized gait for the
ground plane, except that it accounts for inertial forcetingc quadruped robot that is capable of omnidirectional path fol
on the robot — never leaves the supporting polygon. Howevéowing. The design builds upon recent work on trot gaits for
when the robot has only two rounded feet on the ground tlg@adruped locomotion [13, 17]. The robot used in this work

IIl. A CONTROLLER FOROMNIDIRECTIONAL
PATH FOLLOWING



directon angle of) — the Fourier bases are a natural means
of representing these functions. We therefore repreggras

fo(¥,w) = 0L p(1, w)

whered,, € R¥ is a vector of coefficients and

Py, w) = [eos(iy) cos(jw), cos(ith) sin(jw),
sin (i) cos(jw), sin(iy) sin(jw)],
ij=1,2,...

denotes firstk principle Fourier basis functions of and
w — here the range of and j are chosen so that the
dimension of¢ is also k. The function f, is represented
in the same manner, and learning a parametrization of the
controller requires learning the coefficierts and 6, of this

Fig. 1. The LittleDog robot, designed and built by Boston Bgrics. approximation.

With this motivation, we first consider the problem of
is shown in Figure 1. The robot, known as “LittleDog,” wasinding the center offset for dixed direction angley and
designed and built by Boston Dynamics, Inc and is equipp@gning ratew. We designed a online learning algorithm that,
with an internal IMU and foot force sensors. State estinmtigGqy fixed ) andw, dynamically adjusts the center offsets during
is performed via a motion capture system that tracks refiectiyalking so as to balance the robot. The intuition behind this
markers on the robot. algorithm is that if the robot is balanced, then the two mgvin

Our controller uses inverse kinematics to specify locatiofeet should hit the ground simultaneously. If the two feet do
for the four feet in Euclidean coordinates relative to theats not hit the ground simultaneously, then the algorithm looks
body. While two feet move along the ground, the other twgt which of the two feet hit the ground first, and adjusts the
feet moving through the air in a box pattern; this moves thenter offsets accordingly. If, for example, the back letg hi
robot forward [13]> We achieve lateral movement by rotatinghe ground before the front leg, then the algorithm will shif
the angle of all the four feet, and turn by skewing the angfes fhe center of mass forward, thereby tilting the robot foryar
the front and back or left and right feet. We specify paths find encouraging the front leg to hit the ground sooner. The
the robot as linear splines, with each point specifying ardés precise updates are given by
position and angle for the robot. The controller is closedg:
every time step (10 milliseconds) we use the current state Zoff := Tof + a(g(trL — tBRr) + g(tFr — tBL)) 1)
estimate to find a direction and turning angle that forces the  y.q := yog + ag((trL — tBr) — (tFr — tBL))
robot to follow the specified path. A more detailed descoipti
of the gait is given in the appendix.

where o is a learning rate{gr,, trr,tsL,tgr are the foot
contact times for the four feet respectively, agtk) =
A. Learning To Balance z? - sgn(z). So, for example, if the back left leg hits before
) . the front right,tgg — tgr, > 0, SO z.g IS increased, shifting
~ We found that by far the most challenging aspect of desigfhe center of mass forward. The algorithm is similar in spiri
ing a robust controller was balancing the robot as it moveg) 1o previously mentioned gait optimization algorithnas f
To balance the robot, our controller offsets the center o$snay,o Sony AIBO gaits [14, 16, 8, 17, 27] in that it performs
of the robot by some specified amout.x vyoff)-_a Without  onjine optimization of the gait parameters for a fixed dik@t
a proper center offset, the robot will “limp” visibly while 5nqie and turning rate. We implemented this algorithm both
walking. The challenge is to find a function that determingg gimylation and on the actual robot; for the actual robot
the proper center offset for any given direction of motiomlan,e \;sed foot force sensors to determine when a foot hit the
turning rate. That is, given a direction angleand tuming 4,5nd* Convergence to a stable center position is generally
ratew, we want to find functionsf,; and f, such that quite fast, about a minute or two on the real robot (assuming
Zoft = fo (1, 0), Yo = fy(th,w). no adverse situations arise, which we will discuss shortly)
Given a collection of direction angles, turning rates, and

Since the direction angle and turning rates are inherentjeir corresponding center offsets, we can learn the coefis
periodic — i.e., a direction angle ofr is identical to a 0. and@, by least squares regression. Specifically, if we are
given a set ofn direction angles, turning rates, and resulting

2We also experimented with other locus shapes for moving the tFes
are common in the literature, such as a half ellipse or a trag€gg@], but “4Although the foot sensors on the LittleDog robot are not ipakarly
found little difference on our robot in terms of performance. accurate in many situations, the trot gait hits the feet if® ground hard
3In the coordinate system we use, the positivexis points in the direction enough that the foot sensors can act as a simple Boolean switittating
that the robot is facing, and the positiyeaxis points to the robot’s left. whether or not the feet have hit the ground.



x center offsets{v;,w;, zog i}, 4 = 1...n, then we can learn  2) In each simulation model, colleet data points. For
the parameter§, € R* by solving the optimization problem example, in our setting each of these data points cor-
responds to a particular direction angle turning rate
w, and the resulting center offset; or y.¢) found by
the online balancing algorithm described previously.
Use the Reduced Rank Regression algorithm to learn

min [y — X6, @

where X € R"** andy € R" are design matrices defined as 3)

X = [0, w1) - d(hn,wn)]T Y= [Toft1 - Toin] - a small set of basis vectors that span the major axes of
’ ’ ©) variation in the space of controllers over all the sampled
The solution to this problem is given by, = (X7 X)~1 X7y, models. o
(k) data points to find such a solution. this low-dimensional class.

Unfortunately, computing a sufficient number center offset More formally, suppose we are given a matrix of feature
on the real robot is a time-consuming task. Although theectors X € R"** and we collect a set of of output
algorithm described above can converge in about a minutectors{y() € R"},i = 1,...,m, where each of the/(")’s
under ideal circumstances, several situations arise that corresponds to the data points collected fromsthesimulator.
slow convergence considerably. Communication with the@tobln our setting these matrices are given by (3), i.e., the rows
is done over a wireless channel, and packet loss can make@heX are thek-dimensional Fourier bases, and the entries
robot slip unexpectedly, which causes incorrect adjustsven of y(*) are the center offsets found by the online balancing
the robot. Additionally, an improper center offset (as wbulalgorithm (notice that we now require thhguperscript on thg
occur before the algorithm converged) can make the robegctors, since the resulting center offsets will vary betwéhe
move in a way that degrades the joint angle calibration Wifferent simulator models). Rather than learn the coeffits
bashing its feet into the ground. Although it is significgntl for each simulator individually, as in (2), we consider &kt
easier to find proper joint offsets in simulation, it is difflt m simulator models jointly, by forming the design matrices
to create a simulator that accurately reflects the centsedffY € R”*™ and© € RF*™,
positions in the real robot. Indeed, we invested a great aeal ) (m) @) (m)
time trying to learn parameters for the simulator that refidc Y= [3/ -y } , ©= [9 -0 }
the real system as accurately as possible, but still coutd no o
build a simulator that behaved sufficiently similarly to treal and considering the problém
robot. The method we present_ir_w the next section allows us to min[|Y — XO|2. (4)
deal with this problem, and efficiently learn center offskets ©

the real robot by combining learning in both simulation angjowever, solving this problem is identical to solving eadh o
the real robot. the least squares problems (2) individually for eacfif we
want to learn the coefficients for a policy on the real robot,
this approach offers us no advantage.

. _ o Instead, we consider matrices € R**¢, B € R**™, with
In this section we present a method for identifying @ « 1 and the problem

low-dimensional policy class by making use of a potentially
innaccurate simulator. Although we focus in this paper an th glijrgl |y — XABH%. (5)
application of this method to the specific task of learning a '
policy for omnidirectional path following, the formulatis we In this setting, thed matrix selectd linear combinations of the
present in this section are general. columns of X, and theB matrix contains the coefficients for
The intuition behind our algorithm is that even if it is verythese linear combinations. In other words, this approxasat
difficult to find the precise dynamic parameters that woulthe coefficients a®(® ~ 4b®, were b € R’ is the ith
make a simulator accurately reflect the real world, it magolumn of B. The matrixA forms a basis for representing the
be much easier to specify distribution over the potential coefficients inall the m simulation models.
variations in model dynamicsTherefore, even if the simulator The key advantage of this approach comes when we con-
does not mimic the real system exactly, by considering sider learning the parametets € R* of a policy on the
distribution over the model parameters, it can allow us iifign real robot. We approximaté as a linear combination of the
a smaller subspace of policies in which to search. The methedumns of A4, i.e., # = Ab. However, sinceA, as defined
we propose is as follows: above, has only columns, we only need to learn the

1) Drawm random samples from a distribution over the dydimensional coefficient vectdy in order to approximate.
namic and kinematic parameters of the simulator. Ea&ly & standard sample complexity result [4], this requirely on

set of parameters now defines a differently perturbdd(¢) examples, and sincé < k, this greatly reduces the
simulation model. amount of data required to learn the policy on the real system

IV. IDENTIFYING A LOw DIMENSIONAL PoLICY
CLASS USING DIMENSIONALITY REDUCTION

5This claim is discussed further in Subsection IV-B. SHere, || o ||2. denotes the squared Frobenius nofi|2, = 3", jAfj.



In order to motivate the exact optimization problem preA. Non-uniform Features

sented in (5), we discuss other possible approaches t0 th@ate that one restriction of the model as presented above is
problem. First, we could solve (4) to find the least squargs,; the feature vectors must be the same for all simulations.
;olutlon@, then'run Principal Component Analysis (PCA) tqp, o particular application of Reduced Rank Regressiais, t
find a set of basis vectors that could accurately represetiieal y,eq not seem to be overly restrictive, since the data panets
columns of©. However, this approach ultimately minimize€Syenerated by a simulator. Therefore, we can typically cBoos
the wrong quantity: we do not truly care about the eror ifhe gata points to be whatever we desire, and so can simply
approximating the coefficient themselves, but rather theegyrict them to be the same across all the simulation models
error in approximating the aqtual d{:\ta points. Secolnd, we Alternatively, the framework can be extended to handle the
could run PCA on th&” matrix, which would result in a Sét o456 \where the different simulation models have different
of basis vectors that could represent the data points aetbsstg41re vectors, though we no longer know of any method

the different simulation models. However, we would requirghich js guarenteed to find the globally optimal solution.
some way of extending these bases to new data points Nof ot () ¢ R *k denote the feature vector for thh

in.t.he. trajning set, and this can be diffictltinstead, the. simulation model. We now want to minimize
minimization problem (5) truly represents the error quignti
that we are interested in — how well our coefficients can
approximate the data poinis.

Despite the fact that the optimization problem (5) is non-
convex, it can be solved efficiently (and exactly) by thwhereb( is theith column of B. This is referred to as the
Reduced Rank Regression algorithm. We begin by noting tHagemingly Unrelated Regressions (SUR) model of Reduced
(5) is identical to the problem Rank Regression [26, Chapter 7]. We know of no closed

. 9 form for the solution in this case, but must instead resort
ming ||Y — XO|%

- () _ x4y
g{g;\\y X003 )

(6) to approximate iterative methods. Note that (9), while not
s.t. rank(©) =L convex in A and B jointly, is quadratic in either argument
The solution to this Reduced Rank Regression problem, (@Jone. Therefore, we can apply alternating minimizatioe: w
is given by first hold A fixed and optimize oveB, then holdB fixed and
o=xTx)"'xTyvv? (7) optimize overA; because each step involves unconstrained

minimization of a quadratic form, it can be solved very
efficiently by standard numerical codes. We repeat thisgssc
YIX(XTX)*xTy. (8) until convergence to a fixed point. More elaborate algorghm
pically impose some form of normalization constraints on
e two matrices [26].

We conducted extensive experiments with alternating min-
A=(X"xX)"'xTyy B=VT. imization algorithms, when the feature vectors were chosen

) ) ) _ to be different across the different simulations, and wentbu
Notice that the Reduced Rank Regression solution can be injgerformance to be nearly identical to the standard casetfor o

preted as the least squares solutigi” X)~'X™Y" projected particular data set. Since the general method we propose doe
into the subspace spanned By WhenV' is full rank — i.e., gjiow for the feature vectors to be the same across all the

there is no rank constraint — thénl’* = I, and the solution simylation models, we focus on the previous setting, where
naturally coincides with the least squares solution. the problem can be solved exactly.

After learning A and B, the final step in our algorithm is
to learn a policy on the real robot. To do this we collect, frorB. Further Discussion
the real system, a small set of data poiptse RP for some
(new) set of feature vector € RP**, and solve the least ki
squares problem

where the columns of are thel principle eigenvectors of

t
This result is proved in [26, Theorem 2.2]. Optimal values qﬁ
A and B can be read directly from this solution,

Since our approach requires specifying a distribution over
nematic and dynamic parameters of the simulator, the-ques
tion naturally arises as to how we may come up with such a
distribution, and whether specifying this distributiontisily
easier than simply finding the “correct” set of parameters fo
the simulator. However, in reality it is likely that there eto
At existany set of parameters for the simulator that reflects
the real world. As mentioned in the previous section, we
expended a great deal of energy trying to match the simulator
"There are certainly methods for doing this. For example, thetiisn to the real S_yStem as Close|¥ as po;s@le, and still did not
approximation [30] could be used compute a non-parametricoappation achieve a faithful representation. This is a common theme
to the outputy’ for previously unseen feature vectef. However, this would i robust control: stochasticity of the simulator is imgort
require computing the outputs correspondingztofor all (or at least many) t v b beli th | ld to be stochasti
of the simulators, making this technique less applicable far teal-time not only because we believe the rea Wor 0 be stochastc
situations we are concerned with. to a degree, but because the stochasticity acts as a s@rogat

min [y — X Ab]3

For b € R’. For the reasons mentioned abovecan be
estimated using much less data that it would take to le
the full coefficient vectord € RF. After learning b, we

approximate the robot’s policy parameterséas Ab.



¥ Center Ofset

(a) Desired and actual trajectories (b) Learned center offset curves for
for the learned controller on path 1. several different turning angles.

Fig. 3. Trajectory and center offsets for the learned cdietro

V. EXPERIMENTAL RESULTS

In this section we present experimental results on applying
our method to learn a controller for omnidirectional path
following. The simulator we built is based on the physical
specifications of the robot and uses the Open Dynamics Engine
(ODE) physics environmert.

Our experimental design was as follows: We first sampled
100 simulation models from a distribution over the simulato
parameter$.In each of these simulation models, we used the
online balancing algorithm described in Section Ill to firehe
ter offsets for a variety of fixed directions and turning ate
In our experiments, we constrained the centering function (
both thex andy directions), to be a linear combination of the
first k = 49 Fourier bases of the direction angle and turning
rate. We then applied the Reduced Rank Regression algorithm
to learn a low-dimensional representation of this functidth
only ¢ = 2 parameters, effectively reducing the number of
parameters by more than 95%.Finally, to learn a policy
on the actual robot, we used the online centering algorithhm t
compute proper center locations for 12 fixed maneuvers on the
robot and used these data points to estimate the paraméters o
for the unmodelled effects of the real world. Therefore, wghe low-dimensional policy.
use a straightforward approach to modeling the distrilbutio To evaluate the performance of the omnidirectional gait and
over simulators: we use independent Gaussian distrilsiticthe learned centering function, we used three benchmatk pat
over several of the kinematic and dynamic parameters. TRjglines: 1) moving in a circle while spinning in a direction
approach worked very well in practice, as we will show in thepposite to the circle’s curvature; 2) moving in a circlégakd
next section, and it was generally insensitive to the vaeganwith the circle's tangent curve; and 3) moving in a circle
of the distributions. keeping a fixed heading. To quantify performance of the robot

Fig. 2. Pictures of the quadruped robot following severahpa

_Secolnd, in thg method presented here, Iegrnlng the highegpe is available at hitp:/iwww.ode.org.
dimensional policy in each perturbed model is framed as @gexperimental details: we varied the simulators primarily bydiad a
least-squares regression task. This is advantageous deeitauconstant bias to each of the joint angles, where these bias teere sampled

. s : : from a Gaussian distribution. We also experimented with waryseveral
allows us to optimally solve the joint policy learning prebi other parameters, such as the centers of mass, weights, $om@jue friction

over all perturbed models with a rank constraint — square@efficients, but found that none of these had as great act effethe resulting
error loss is the only loss we are aware of can be optimalbplicies as the joint biases. This is somewhat unsurprissigce the real

: : rgbot has constant joint biases. However, we reiterate #veat mentioned
solved with such a rank constraint. Were we to eIT\[‘)I()yi the previous section: it is not simply that we need to le&mndorrect joint

different method for learning the high-dimensional p@gin biases in order to achieve a perfect simulator; rather, thelte suggest that
each perturbed model, such as policy gradient, then we woulkiturbing the joint biases results in a class of policiest fh robust to the

et : . typical variations in model dynamics.
have to resort to heuristics for enforcing the rank constran 10For each model, we generated 100 data points, with turniniparspaced

the pOIi.Cy Coef_ﬁCient m?-trix- This may be necessary in SOMGenly between -1.0 and 1.0, and direction angles from rto
cases, if learning a policy cannot be framed as an ordinary'Two bases was the smallest number that achieved a good centndth

least squares problem but here we focus on the case Wh@f#iata we collected: one basis vector was not enough, basie vectors
’ erformed comparably to two, but had no visible advantage,fand basis

the problem Can_ b_e 59|Ved optimally, a_s this was sufficient ‘ectors began to over-fit to the data we collected from thé melaot, and
our task of omnidirectional path following. started to perform worse.



Metric Path | Learned Centering No Centering  Hand-tuned Centering
1 31.65+ 2.43 46.70+ 5.94 34.33+ 1.19
Loop Time (sec) 2 20.50+ 0.18 32.10+ 1.79 31.69+ 0.45
3 25.58 + 1.46 40.07+ 0.62 28.57+ 2.21
1 0.092+ 0.009 0.120+ 0.013 0.098+ 0.009
Foot Hit RMSE (sec)| 2 0.063+ 0.007 0.151+ 0.016 0.106+ 0.010
3 0.084 + 0.006 0.129+ 0.007 0.097+ 0.006
1 1.79+ 0.09 2424+ 0.10 1.84+ 0.07
Distance RMSE (cm)| 2 1.03+ 0.36 2.80+ 0.41 1.98+ 0.21
3 158+ 0.11 2.03+ 0.07 1.85+ 0.16
1 0.079+ 0.006 0.075+ 0.009 0.067+ 0.013
Angle RMSE (rad) 2 0.070+ 0.011 0.070+ 0.002 0.077+ 0.006
3 0.046 + 0.007 0.058+ 0.012 0.071+ 0.009
TABLE |

PERFORMANCE OF THE DIFFERENT CENTERING METHODS ON EACH OF THEHREE BENCHMARK PATHS
AVERAGED OVERD5 RUNS, WITH 95% CONFIDENCE INTERVALS

on these different tasks, we used four metrics: 1) the amofuntcontroller on the first path. Figure 3(b) shows the learned
time it took for the robot to complete an entire loop arounel thcenter offset predictor trained on data from the real robot.
circle; 2) the root mean squared difference of of the foos hifThis figure partially explains why hand-tuning controlleanc
(i.e., the time difference between when the two moving feee so difficult: at higher turning angles the proper centermf
hit the ground); 3) the root mean squared error of the robotsintuitive looping patterns.
Euclidean distance from the desired path; and 4) the roohmea
squared difference between the robot’s desired angle and it
actual angle. In this paper, we presented a method for using a (possibly

Note that these metrics obviously depend on more thafaccurate) simulator to identify a low-dimensional sudrsp
just the balancing controller — speed, for example, will 0f policies that is robust to variations in model dynamics.
course depend on the actual speed parameters of the trot 9&% formulate this task as a optimization problem that can be
However, we found that good parameters for everything bgglved efficiently via the Reduced Rank Regression algurith
the balancing controller were fairly easy to choose, and thge demonstrate a successful application of this technique t
same values were optimal, regardless of the balancingypoligie problem of omnidirectional path following for a quadeap
used. Therefore, the differences in speed/accuracy batthee robot, and show improvement over both a method with no
different controllers we present is entirely a function @wh palancing control, and a hand-tuned controller. This témphs
well the controller is capable of balancing — for example, ignables us to achieve, to the best of our knowledge, the first
the robot is unable to balance it will slip frequently and itgmnidirectional controller with parameters optimized slta-
speed will be much slower than if it can balance well. neously for all directions of motion and turning rates.

We also note that prior to beginning our work on learn-
ing basis functions, we spent a significant amount of time VIl. ACKNOWLEDGMENTS

attempting to hand-code_ a centering controller fo_r the tobo Thanks to Morgan Quigley for help filming the videos and
We present results for this hand-tuned controller, sincdege , the anonymous reviewers for helpful suggestions. Z. d¢olt

it represents an accurate estimate of the performancealtlai 55 partially supported by an NSF Graduate Research Fellow-
by hand tuning parameters. We also evaluated the perforenagﬁip_ This work was also supported by the DARPA Learning

of the omnidirectional gait with no centering. Locomotion program under contract number FA8650-05-C-
Figure 2 shows pictures of the robots following some of t
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Videos of these experiments are available at:

VI. CONCLUSIONS
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APPENDIX

The omnidirectional controller is parameterized by 15 pa-
rameters:



