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Abstract—In this paper, we will study abstractions and algo-
rithms for planar manipulation systems using two cooperating
robots under uncertainties. We propose a formal framework
for developing abstractions, which are simpler models of the
original systems that preserve properties of interest to facilitate
the development of planning and control algorithms. Our abstrac-
tions are derived from robust motion primitives that correspond
to control inputs leading to system trajectories which preserve
the properties of interest under uncertainties. We then use the
proposed framework to construct an abstraction and design
planning and control algorithms for a multiple robot cooperative
manipulation system. Finally, we present experimental results to
validate our approach.

I. INTRODUCTION

It is well known that conventional approaches to robotic
manipulation, where deliberative planning is augmented by
feedback controllers, are difficult to implement except in the
simplest of cases. This is primarily because of non smooth dy-
namics engendered by frictional contacts and uncertainties in
the parameters governing the contact dynamics. Experiments
in robotic juggling [8], locomotion [11, 25], non prehensile
manipulation [35], manipulation via caging (Fig. 2) [13],
and part-feeding [29] have shown that feedback controllers,
behaviors or designs, which are specially designed to preserve
a specific set of properties (e.g., convergence to sub manifolds
or limit sets), are more robust to uncertainties than those that
follow optimally-planned trajectories in the full state space.
Indeed, this philosophy of designing components that each
drive the system to a state that satisfies a specific property is
used extensively in manufacturing operations, where designers
carefully structure the environment to ensure that devices like
bowl-feeders [14], conveyors [1], traps [5], and pick-and-
place arms work in concert to accomplish the given task.
Many paradigms in robotics such as caging [7], the one-
joint-over-conveyor part positioning [1], and remote-center-
of-compliance assembly [12] are also illustrative of this phi-
losophy. While these examples are arguably special-purpose
solutions, they illustrate a very important point. By designing
planners/controllers that drive the system to submanifolds
in the state space, one can derive abstractions of complex
processes, i.e., conceptual models that are much simpler than
the complex real-world system, that lend themselves to the
design of algorithms that can reason about these abstractions
and the composition of these complex processes.

We use the simple example of multi-fingered or multi-
robot manipulation in the plane via caging to illustrate the
role of abstractions and algorithms (Fig. 2). The modeling
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Fig. 1. A representative assembly problem.

of multi-fingered hands or multi-robot manipulation is com-
plicated by the fact it involves multi-body dynamics with
frictional contacts. Static indeterminacy and frictional impacts
introduce additional difficulty making the design of provably-
correct planners and controllers impractical. However, in many
manipulation tasks the main goal is to position and orient
an object to some destination with a specified tolerance.
Since the main property of interest is the geometric property
of containing or enclosing the manipulated object, one is
motivated to derive geometric abstractions for the complex,
multi-dimensional dynamics problem. This is the central idea
in configuration-space abstractions used to derive algorithms
for multi-robot manipulation: motion planning algorithms for
caging [33, 32], control algorithms for object closure [21], and
composition of controllers for multi-robot manipulation [13].
Each robot or finger is abstracted into a geometric model.
And the planning/control problem is to determine how to
move/control these geometric entities to enforce geometric
closure.

In this paper, we will construct abstractions and design
planning and control algorithms for multi-contact, planar
manipulation tasks in which multiple nonholonomic mobile
robots cooperate to manipulate a 2.5-dimensional object on an
even, rough surface (see Fig. 1). The manipulation problem in
such scenario is very challenging due to non-smooth dynamics
and frictional contacts as well as uncertainties in sensing,
actuation, and system parameters (e.g. friction coefficient and
unknown support distribution). It has been studied in [19, 2,
4, 18, 33, 22]. Our work is very similar to [33, 13] in appli-
cation (using circular robots to manipulate polygonal parts).
However, geometric abstractions of caging are used in [33,
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Fig. 2. Approaches to cooperative manipulation and multi-fingered grasping
that rely on form or force closure [6, 23, 24, 26] are not as robust to
uncertainties as object closure, in which the robots or fingers enclose or
cage the object. Robots can approach (Fig. 2(a)), surround (Fig. 2(b)), cage
(Fig. 2(c)) and manipulate or transport the object reliably using geometric
abstractions associated with caging [13].

13], which require at least three robots and large operational
space. Also, caging in [13] provides few guarantees on part
orientation. In assembly tasks like the one in Fig. 1, it is hard
to use caging to drive the part to a goal configuration within a
specified tolerance in a constrained environment. The property
preserved by our abstraction is neither enclosing nor caging,
but to maintain contacts between two manipulation robots and
the part. This idea is similar to stable pushing [18]. However,
instead of preserving sticking contact between the part and a
single pushing bar, we are using two robots to cooperatively
manipulate the part by preserving contacts (either rolling or
sliding) between both robots and part.

The remainder of the paper is organized as follows. Sec-
tion II provides a formal framework of abstractions for the
manipulation system. The multiple robot cooperative manip-
ulation problem is described in Section III. Abstraction and
algorithms for such system are provided in Section IV-B with
a focus on abstraction. In Section V, we provide experimental
results to validate the proposed approaches.

II. ABSTRACTIONS OF MANIPULATION SYSTEMS

We define a manipulation system by the tuple, M =
{f,X,U, P, T}, where X denotes the state space, U the
input space, P the space of (possibly time-varying) model
parameters, 7' a finite time interval, and f the differential
equation characterizing the flow of the system. To distinguish
between the value of controls (u € U), parameters (p € P)
or state (x € X) from the corresponding trajectories, we use
the notation (%) to indicate histories or trajectories. Thus @ is
the input history, while p is the history of parameter variation
and will be used to represent uncertainties. Given a control
u : T — U, a parameter history p : T' — P, and an
initial state xg € X, the trajectory is given by Z(xo, @, p,t) =
o+ o £ (@m),aln), p(n)) dn,t € T.

We use X to denote the set of trajectories with all possible
initial states, controls, and parameter histories. We now define
the property of interest for the system that characterizes the
successful execution of a task or subtask as a polymorphic
characteristic function, ® : X — {0,1}, which determines
whether or not a trajectory of model M satisfies the given
property. It is polymorphic (in analogy to polymorphism in
object-oriented programming [3]) because, as we will see,
the property function can be used to characterize either the
original model or its abstraction. We can also define a subset,
a collection of trajectories, S C X, satisfying a given property:
S ={z € X | ®(x) = 1}. In particular, we will be interested
in the trivial property, ®q, that is satisfied by all trajectories

Fig. 3. The surjective map @; maps X; to X]-. Sa, Sg, and S~ are sets of
trajectories preserving the properties @, ®g, and .

satisfying the system equations for the model M. In this case,
S = X. We now establish conditions under which a model
M is an abstraction of M with respect to a property, ®. We
use subscript ¢ and j to distinguish components from model
M; and M. Thus, z; € X; is a state in model M; and
x; € X; is associated with M. To keep matters simple, we
assume the system is time-invariant and the system dynamics
are characterized by a vector of constant parameters for both
models and we will omit the dependence on p in the discussion
in this subsection. We construct M, so that the underlying
state space X is an image of X; under the surjective map
©?. This in turn induces a map in trajectory space as shown
in Fig. 3. We say that M, is a sufficient abs}raction1 of M;
if, for any trajectory Z;(z;,u;,t) in S; C X satisfying the
property @, there exist @; and z; € X; so that @§- (x;) = x;
and

D (2;(05(zy), 0y, t)) = @ (Zs(wi, wi,t)) = 1. (1)

A simple example of this sufficient condition is seen in fully-
actuated, six degree-of-freedom robot arms. We frequently
use kinematic abstractions (M) and inverse-kinematics-based
algorithms to plan tasks and trajectories for the tasks because
we know that computed-torque-based nonlinear feedback con-
trollers for the real dynamic system (M;) can be used to
realize paths synthesized by simpler kinematic controllers. In
other words, these two models satisfy the sufficient condition
with respect to the trivial property ®g.

III. COOPERATIVE PLANAR MANIPULATION

A. The task

We consider the representative problem, depicted in Fig. 1,
in which multiple robots are able to manipulate the object into
the desired goal. The robots are position-controlled without
force or contact sensors. They are able to sense the relative
position and orientation of the object and coordinate via
communication before manipulation. Because of latency in
the network and imperfect sensing, the control during the
pushing motion must be open-loop. This paradigm is typical
of assembly tasks in industry where robot tasks often involve
sequences of subtasks each involving sensing before the sub-
task, computation, followed by execution. Our goal is to design

'One can also define necessary abstractions using a necessary condition in
a similar way but since we will not use this concept, we will not discuss this
further in this paper.
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Fig. 4. Geometry and system with the inertial frame (left) and position vectors
in the body-fixed frame (right). The object has three, unknown support points
(i =1, 2, 3) denoted by unfilled circles. The center of mass is denoted by o,
denoted by a filled circle. The contact point between the object and the robot
is denoted by P; with the inward-pointing normal n;.

controls for multiple robots to manipulate the part to a given
configuration within specified tolerances.

Alternative approaches based on force closure require force
sensors which lead to expensive and unreliable hardware.
Instead we use Roomba-like nonholonomic robots that are
position-controlled to follow desired trajectories.

Accordingly, we restrict ourselves to the quasi-static regime
where the inertial forces are small compared to the contact
forces applied by the robots. Further, we use circular robots
to simplify the geometry and the algorithms required for
planning and control. Because the application of more than
two frictional contacts always results in static indeterminacy
we only use two robots at any given time.

B. Modeling and notation

Consider the representative part shown in Fig. 4. We adopt
the frictional, three-point support model from [22] but recog-
nize that these support points can change as the part moves and
their locations are unknown. The robot(s) exhibit frictional,
point contact with the object. All coefficients of friction are
unknown but lie within a known set. The part geometry, its
inertial properties, and the location of the center of mass are
known.

The weight of the part, w = mg, is supported by three,

unknown support points S; (i = 1,2,3) with coordinates
(z4,y;). The position and orientation of the part is denoted
by ¢ = (z,y,0) and its velocity in the inertial frame is

¢ = (&,9,0). The body-fixed frame, x; — y;, has its origin
at the center of mass o;. The jth contact with the jth robot
occurs at P; whose position vector in the body-fixed frame is
C;.

The robot velocity is vg ; while the velocity of the point
P; on the part is vp ;. The relative velocity at P; is given by
components (v, ;,v: ;) denoting the separation velocity and
sliding velocity respectively:

Unj = (VB — VR, )i, vij = (Vbj — Vi)t

The forces on the object include the normal forces ws;,
the tangential frictional forces at support S; (fs iz, fs,i,y), a8
well as the robot-object contact force at P;, with components
(An,j> Ar,j) along the inward-pointing normal 7i; and tangent
t;. ps is the coefficient of surface friction while y. is the
coefficient of friction at the robot-object contact.

C. Uncertainties

Although we use the three-point support model to predict
the force distribution, we allow the support points S; to vary.
They are chosen to lie within a specified set F; with the
constraint that the center of mass falls within the support
triangle.

The friction coefficients between the part and the support
and between the part and robots are unknown, but they are
assumed to belong to a known, compact set Ey.

The errors in sensing the position and orientation of the
object/part and the errors in controlling individual robots
must be modeled. The errors in positioning and orienting are
denoted by E; and Ey. E,; denotes the errors on the relative
positions of the robots. In our case, since this is related to the
sensing error, F; = 2F;. We use F, to denote the error in
relative velocity.

D. Quasi-static model for planar manipulation

The non negative normal force at .S; denoted by w; are
uniquely determined from the force equilibrium in the vertical
(out-of-plane) direction and the coordinates of the support

points:
Zwi = w, Zw.? =0. (2)

The force-balance equations (forces and moments about 0;) in
the plane are:

where A\, = [An1, An2]? and Ay = [A1, Ae2)? and
Wy = Zle ws,; 1s the resultant support wrench. The wrench
matrices W,, and W, are given by:

1 Tio [ & ta
G xia| T |G xt G Xt

We write the tangential sliding velocity as the difference of
two non negative quantities:

_ .t -
=0 = U 4)

Wo=1|, _ 5
Cc1 XNy

Ut,j

We can now write the following complementarity condi-
tions [30]:
0 S Un,j - T 1L )\n,j 2 0. (5)

0 <y L Anjie + Ay >0 (6)

0< v L Anjtte — Ay > 0. (7

Note that Equations (2-7) provide a comprehensive descrip-
tion of the system independent of whether each contact is
separating, rolling or sliding [34]. Although the uniqueness
and existence properties for this set of equations has not been
established for the general case, it is possible to show that
under conditions of positive-linear independence [28], there is
a unique solution. This is discussed again in the next section.

E. Practical considerations

In order to ensure the quasi-static assumption is satisfied,
we must ensure that the kinetic energy of the object never
exceeds the energy that can be dissipated due to friction in
some small time interval. Specifically, we are concerned with
errors in sensing F; and Ey and we want to make sure that



the kinetic energy of the object does not cause it to translate
more than E; or rotate more than Fjy. Accordingly we require

i +§° < Eygps  RO> < Epgps. )

which in turn restricts the velocity of our robots. Second, we
cannot require forces that exceed the maximum frictional force
or traction between the robot and the support surface.

SN2 L < b ©)

The robot sensors and controllers, their dynamic properties
and the properties of the object will impose further constraints.
To ensure robustness to communication latencies and delays
we assume that all robots coordinate their execution but do
not exchange state information during the manipulation task.
The robots used for experiments are approximately 8 Kg.
We choose an L-shaped object for manipulation whose mass
is around 2.5 Kg. The coefficients of friction are ps; =
0.08 = 0.02 and p. = 0.6 = 0.02. In order to satisty Eq. (8),
robot speeds are restricted to approximately 10 = 1 cm/sec
with positioning errors of F; = 2 cm and orienting errors of
Ey = 5°. As we will see, only those motion primitives that
result in a contact force less than t,.x = 5 N are allowed.

IV. ABSTRACTION AND ALGORITHMS FOR COOPERATIVE
PLANAR MANIPULATION

In this section, we will focus on using the proposed
abstraction framework in Section II to construct a simple
kinematic sufficient abstraction for the original complex quasi-
static model in Section III-B. Then, we will briefly describe
the planning and tracking control algorithms using such ab-
straction.

A. Overview and purpose of abstraction

With the notation of Section II, the original complex
quasi-static model in Section III-B is represented by M, =
{fi, X, U;, P;, T;}, where f; is given in Equations (2-7), X;
includes all configurations of the robots and part, U, includes
all the inputs {v;, ¢;, n;, ¢; } for robots, P; includes all system
parameters (part geometry, friction coefficients ps and p,
and three support points {z;,y;}), and T; includes the time
intervals of arbitrary length.

The objective of abstraction is to be able to predict the
motion of the part via an efficient approximation of the reach-
able set. Since the original system has complicated motion
behaviors under uncertainties in sensing, actuation, and system
parameters, (e.g. unknown and changing three support points),
it is impossible to compute a reachable set approximation for
general inputs. Instead, we construct an abstraction model,
which consists the motions of a finite set of robust motion
primitives for which the following properties of interest are
satisfied and preserved under uncertainties such that their
reachable sets can be computed.

1) Two contacts between the robots and part, i.e.,.

Anj >0, =1,2. (10)

2) Straight line motion at speeds that imply quasi-static
dynamics, (Egs. 8 and 9).
In other words, for a trajectory Z; : [0,¢;] — X, the property
function ® returns 1 if Egs. 10, 8 and 9 are satisfied for any
t € [0, tf].

A robust motion primitive for the model M, is a nominal
control @; : [0,t¢] — U; with @;(0) = wy and nominal zy €
X such that with respect to nominal parameter history p; € P;
and p;(0) = po

q)(i‘i(.%'o-f—(;xi,fbi-i-éui,ﬁi+5}5¢,t)) =1 (11

for t € [0,t;] and uncertainties dz; in sensing, du; in
actuation, and Jp; in system parameters.

After constructing a finite set of robust motion prim-
itives, the resulting sufficient abstraction model M; =
{f;,X;,U;,P;,T;} will be: f; only include kinematic part
of f;. X is still the same as X; under the identify map @;
U; is a discrete subset of U;, each of which corresponds to a
resulting motion of a robust motion primitive. 7); only includes
a set of time intervals of specific length corresponding to each
input in U;.

Because the dynamics of M; are invariant (or robust)
to the three support points and friction coefficient, we are
able to ignore the three point support parameters and friction
coefficients in the system parameter set P;. This greatly
reduces the uncertainty in the abstraction model.

While we will use the specific example and parameters
described in Section III-E in our development, the same ideas
are extensible to any planar object and to any set of position
controlled robots.

B. Construction of robust motion primitives

The fundamental question in searching for robust motion
primitives is to whether the properties of interest are preserved
over continuous uncertainty sets. This is a very challenging
verification problem for which the state-of-the-art does not
include a solution for general systems [15]. Instead, motivated
by recent work on sampling-based verification and falsifi-
cation [10], we use the numerical Monte Carlo simulation
method to construct robust motion primitives by checking
whether the properties of interest are preserved with respect
to a finite number of samples. This at least provides us with
a computational tool for complex manipulation systems.

The construction process is carried out in the following
steps:

1) Sample @ from U; and x( from X;.

2) Check whether ®(Z(zo,@,p,0)) = 1.
This step check whethers @ is satisfied at the starting
moment by solving the Mixed Complementarity Prob-
lem defined by Eqgs. 2-7. Theoretically, there are no
results on the uniqueness and existence of the solution
for the quasi-static problem with multiple rigid bodies
under two pushing contact. So, when there is no solution
for a given manipulation, we simply say that ® is not
satisfled. When multiple solutions are observed, we say
that ® is preserved if it is satisfied in all solutions.

3) Check whether ®(Z(zg+ dx, @+ du, p+0p,0)) = 1 for
uncertainties dx, du, and dp.
This step checks whether the properties of interest are
satisfied at the starting moment with respect to uncer-
tainties in sensing, actuation, and system parameters. We
consider the uncertainties in the three support points,
robot velocity magnitude, and friction coefficients that
are chosen from three bounded continuous sets. We first
generate a finite set of three support point samples,
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Fig. 5. Robust translational ([1]-[4]) and rotational ([5], [6]) motion primitives

velocity samples, and friction coefficient samples, and
then use the procedure in (2) to check whether @ is
satisfied for all these samples. If true, the manipulation
is identified as robust; otherwise, it is non robust.

4) Check whether ®(&(xo+ dz, @+ du,p+0p,t)) =1 for
uncertainties dx, du, and dp in at a finite set of discrete
times ¢ € [0, t].

This step checks whether ® is preserved over the entire
duration of a robust motion primitive. The time interval
is a bounded continuous set.

Note that for a high dimensional input space, this search
process is very computationally expensive. However, we only
need such a computation once in the preprocessing. Alterna-
tively, in this paper, we use a set of candidates for robust
motion primitives from human intuition instead of random
samples.

C. Constructed robust motion primitives

Robust motion primitives for an L-shape part are shown
in Fig. 5 (see detailed parameters in Section V). We will
now analyze the reachable sets of these primitives under
uncertainties, which will help design of the tracking control
along a given path.

Abstraction reduces the uncertainties due to the friction
coefficient, intermittent contact, and unknown three support
points. Uncertainties in sensing still exist and cause the part
to vary from its nominal trajectory. However, the preserved
properties in the abstraction enable us to predict the motions of
the part under these uncertainties by estimating the bounds on
their reachable set. In the following, we will compute bounds
on these variations as a function of pushing distance d based
on kinematic analysis of the abstraction model. These bounds
will help to design planning and tracking control algorithms
on top of the abstraction model.

1) Bounding the reachable set for the motion in Fig. 5[1-4]:
The concept is illustrated with the example shown in Fig. 6.
When the intermittent frictional contact modes switch from the
left to the right, the maximal offset in y is generated by the
following situation. We will assume that two robots push with
the same nominal velocity v along the positive x direction with
nominal separation distance d. Initially, the top and bottom
robots respectively have rolling (R) and sliding (S) contacts
(Fig. 6.1). When the coordination errors between two robots
results in an error of F,; (Fig. 6.2), the contact modes switch to
S (top) and R (bottom) (Fig. 6.3). Then, when the errors drive

R . A s i
d.+E
S | R RO R] <
E,
[ [2] 3] (4

Fig. 6. The position offset in y caused by intermittent contact modes from the
left to the right, in which R and S respectively stand for rolling and sliding.

R
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Fig. 7. Constant contact modes cause maximal changes of the configuration.

the robots back to their nominal separation, it can be observed
that an offset in y has been generated (Fig. 6.4). Furthermore,
when such switching pattern is executed multiple times, the
offset in y will be accumulated.

More generally, if both contacts are not on the same edge,
the top and bottom contact points are on edges respectively
with orientation ; and <. The vector from the top contact
point to the bottom has length [ and angle x. We have the
following upper bounds over the whole pushing distance d,

[— max(Ady sin vy, Ads sinyz) M%ﬁ] —

max(Ad; siny;, Ads sin y2) u%’d‘fﬂ + Ey.

Yy € ts

(12)

Similarly, the reachable sets of x and # are respectively
bounded by

x €|-Eq+d,Eq+d, (13)

—1 Ed Ed ]
ds — Eq ds — Eq"

2) Bounding the reachable set for the motion in Fig. 5 [5-
6]: The reachable set under this pushing is also bounded by
analyzing the potential contact model switching patterns.

In Fig. 7, when the top and bottom contacts are respectively
always rolling and sliding, « reaches its maximal value, which
is less than d + E,;. Similarly, x is larger than —d — E; when
the top and bottom contact modes are respectively sliding and
rolling. Therefore, we have

6 €[—Ep ,Eg 4 tan™! (14)

— tan

2 € [~d— Eg,d+ Ey, (15)
1 2d+dp+ Ey 1 dp — Ey

—FE e B - gt V2 St By =A0
0 € [~ FEp, tan i —E ds+Ed+ ) I,
(16)

y € [—ca(sin(a2 + Ey) —sin(a2 — A0 — Ey)) — Ey,

c1(sin(al + Ey) — sin(al — A0 — Ey)) + Ey],

17)

in which dj, is the horizontal distance between two contact
points at the starting moment of the manipulation in Fig. 7.1.

D. Planning and tracking control algorithms

For the L shape part in this paper, the four robust translation
motion primitives and two robust rotational motion primitives



in Section IV-C are sufficient to achieve small time local
controllability of the part.

For a general polygonal shape part, we need three trans-
lational robust motion primitives and two rotational motion
primitives to achieve the small time locally controllable prop-
erty. Any two of them should not be collinear and the dot
product of three direction vectors should be negative. Two
rotational motion primitives should be in opposite directions.

Given a path with a given tracking precision F,,, we are able
to iteratively track the path using these motion primitives. In
each iteration, we compute the pushing distance d for a given
robust motion primitive with respect to the required tracking
precision. The reachable set of the part after pushing distance d
should be bounded inside the F,-neighborhood of the nominal
trajectory. After the pushing, if the part is off the nominal path,
robust motion primitives are used to push the part back to the
nominal trajectory. In this way, we are able to track any given
path with precision up to the sensing and actuation limit.

With this tracking control algorithm, we solve the challeng-
ing cooperative manipulation problem by first using a sampling
based path planning algorithm, e.g. PRM [16] or RRT [17],
to compute a collision-free path and then execute by path
tracking that relies on robust motion primitives.

V. EXPERIMENTAL RESULTS

We have collected experimental results to demonstrate both
the validity of robust motion primitives for mobile robot
manipulation as well as the effectiveness of these primitives
applied to manipulation/assembly tasks. First, we demonstrate
that robust motions (due to the definition in Section IV-B)
are feasible for our system then we go on to validate the
reachable sets for the primitives derived in Section IV-C.
Because we have a conservative estimate of the set of states
that can be reached by applying a motion primitive, we can
construct a tracking control system that can use robust motion
primitives to follow an arbitrary path. Finally, we demonstrate
that a simple planning algorithm in conjunction with these
techniques can be used to complete a cooperative manipulation
task.

A. System parameters for the experimental platform

All experiments are conducted on a multi-robot testbed [20]
utilizing a team of small differential drive robots (radius
0.15m) and an overhead tracking system for localization of
both the manipulated object and the robots. The position and
orientation sensing error due to the tracking system are respec-
tively £, = 2cm and Ey = 5°. Each robot is controlled using a
feedback linearization scheme to tow along a desired trajectory
but there is no feedback of relative state information. In other
words, while each robot is controlling its own state to execute
a straight line maintaining the abstraction in Section IV-A,
the cooperative manipulation primitive is executed in an open
loop fashion. This introduces additional error in their relative
position control bounded by F; = 4cm. Each robot is able to
control its velocity within an error of F, = 1 cm/s.

As mentioned earlier, the robots are manipulating an L-
shape with a characteristic length of 1m, mass of 2.5Kg, and an
approximate coefficient of friction with the floor of ps = 0.08.
Each robot has a mass of 8.6Kg and coefficient of friction with
the L-shape of p. = 0.6.

verti S1 V1 o1 verts So V2 b2
+ X 5 0.9 0.1 0.0 5 0.1 0.1 0.0
+Y 4 0.7 0.1 0.0 4 0.1 0.1 0.0
-X 1 0.1 0.1 0.0 3 0.3 0.1 0.0
-Y 0 0.1 0.1 0.0 2 0.3 0.1 0.0
+ 6 0 0.1 0.1 -0.7 4 0.1 0.1 -0.7
-0 5 09 0.1 0.7 3 0.3 0.1 0.7
TABLE 1

DETAILS FOR OUR ROBUST MOTION PRIMITIVES, IN WHICH s1 AND S2
ARE MEASURED IN m, ¢1 AND ¢2 ARE IN rad, AND v1 AND v2 ARE IN m/s.

B. Non-robust motions

To highlight the advantage of using robust motion prim-
itives, Fig. 8 depicts non-robust manipulations. Two-point
contact is not maintained in these non-robust examples and
the motion is unpredictable under the uncertainty inherent to
the system. On the other hand, as we will now show, the result
of robust motion primitives can be analytically bounded based
on the assumptions of system uncertainty.

Nonrobust Push

Nonrobust Push

X Position (m) X position (m)

Fig. 8. Non-robust motion primitives.

C. Validation of reachable sets

To compute the bounds on the reachable sets due to motion
primitives on the L-shape, we must evaluate the equations
presented in Section IV-C. For translation, there is a nonlinear
system of equations that must be solved numerically. Other
than this step, the rest of the calculations are straight forward
given the parameters of the primitive and the uncertainty of the
system. Each motion primitive is parameterized as specified in
Fig. 5 with the values in Table I. Additionally, the reachable
set is a function of the pushing distance d.

We conducted several trials with different configurations of
the two canonical manipulation primitives for translation and
rotation to show that the resulting trajectories of the manip-
ulated object always lie within the computed bounds. Fig. 9
depicts the part trajectories under different robust manipulation
primitives to demonstrate that the final part positions lie
within the analytically calculated bounds. Tables II and III
provide details on the reachability sets for two sample motion
primitives.

We have observed that in experiments, the motion primitives
nearly always overshoot the upper bound along the direction
of the desired motion. This is the result of assuming a kine-
matically controlled robot when there are, in fact, acceleration
limits. However, it is a simple task to account for this with
adequately enlarged reachability bounds or better low-level
position control.

D. Validation of the tracking control

Since, for a given motion primitive and pushing distance
d, we can calculate bounds the reachable set of the part, it
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Fig. 9. Part trajectories respectively due to four configurations of the transla-
tion primitive (£, +y) and two configurations of the rotation primitive (+6)
overlaid on a sampling of the reachable set.

Positive X Positive Y
[a(m) | ym) [ 00 [z [ ym) [ 00
Predicted Predicted
Max | 1.02 | 0.13 8.40 Max | 0.19 1.02 | 8.67
Min | 098 | -0.13 | -840 || Min | -0.19 | 0.98 | -8.67
Measured Measured
Avg 1.05 | 0.01 | -0.11 Avg | 0.01 1.05 | -0.11
Max | 1.06 | 0.02 1.72 Max | 0.02 1.06 1.72
Min 1.04 | -0.01 | -1.32 || Min | -0.01 | 1.04 | -1.32
TABLE II

BOUNDS ON ROBUST TRANSLATION PRIMITIVE OVER FOUR TRIALS

is possible to design a tracking control algorithm that can
efficiently follow a path within an FE,-neighborhood. Such
a tracking controller can be thought of as a hybrid system
that switches between modes for (1) correcting orientation
to align the part tangent to path, (2) providing correction
perpendicular to the path, and (3) pushing the part along a
segment of the path. Each mode must ensure that d is chosen
such that the reachable set after pushing will lie within E,
of the path while attempting to minimize tracking error or
maximize distance traveled along the path. Thus the tracking
controller will employ larger magnitude pushes along paths
with larger E,-neighborhoods.

Transitions between robust primitives are currently handled
by a simple circular trajectory that each robot can follow to
reach the initial conditions necessary to begin the next desired
robust motion primitive. A less conservative but more general
approach for transitioning between primitives in a complex
environment is a challenging problem that we will address in

Positive 0 Negative 0
[z | ym) [ 00) [z@m) | ym) [ 0)
Predicted Predicted
Max | 0.56 | 0.21 | 42.47 Max | 027 | 0.49 4.58
Min | -0.58 | -0.19 | -4.58 Min | -0.31 | -0.44 | -47.50
Measured Measured
Avg | -0.02 | -0.07 | 40.11 Avg | 0.01 | -0.01 | -37.07
Max | -0.00 | -0.06 | 43.14 || Max | 0.02 | 0.00 | -34.38
Min | -0.03 | -0.08 | 37.87 Min | -0.01 | -0.03 | -41.37
TABLE III

BOUNDS ON ROBUST ROTATION PRIMITIVE OVER SEVEN TRIALS

Robust Plan Validation

Y Position (m)

Final error: -0.08, 0.04, -0.92 (m,m,deg)

X Position (m)

Fig. 10. Example of tracking control with robust motion primitives along a
plan with small collision free zone. The bounding box for the reachability set
of each translational push is shown.

() worsoa x

Final error: 0,13, 0.01, -3.32 (m,m,deg)

Fig. 11. Trajectory of L-Shape while being pushed along planned obstacle
free path with robust motion primitives.

future work.

Fig. 10 depicts an example path with a relatively small F,-
neighborhood to show how the tracking controller must use a
sequence of pushes and corrections to accurately follow the
path.

E. Validation with a manipulation task

Finally, we solve the multiple robot manipulation problem in
which two robots must cooperatively push a part from an initial
to goal configuration though an environment with obstacles
such as that shown in Fig. 1.

We use a sample-based algorithm, such as PRM or RRT,
to generate a collision-free path from the initial configuration
to the goal configuration which is then tracked with robust
motion primitives. Snapshots of the experimental results are
shown in Fig. 12, in which the solid piecewise-linear line
connecting the initial and goal configurations is the collision
free path from the path planning, the curves followed by
the robots are the nominal controls to achieve robust motion
primitives, and the wire-frame rectangular box represents a
virtual obstacle. Fig. 11 shows the resultant trajectory of the
L-shape during manipulation.

Fig. 12. Snapshots of cooperative manipulation of the L-shape part with two
robots

VI. CONCLUSION

In this paper, we proposed a framework to develop ab-
stractions for quasi-static manipulation tasks with uncertainty
arising primarily from friction and unknown support points



and from errors in control and sensing. The abstractions
were used to design algorithms for planar manipulation with
cooperating mobile robots and the proposed approach was
successfully validated with extensive experimental results.
The manipulation system enables two autonomous robots to
cooperatively push a part to a given goal configuration with a
precision given by the errors in sensing and control.

There are several directions for ongoing work. First, our
planning algorithm is very simple and generates very con-
servative paths. Clearly a better planner will achieve paths
in more constrained environments. Because our focus was
mainly on abstractions and control, we used a relatively simple
planner. However, we are working on refining our planner for
more cluttered environments. We are studying robust motion
primitives with contact between the part and environment
which will lead to a better abstraction for planning in the
constrained space. We are also considering extension of the
manipulation planning algorithm in [27, 31] to incorporate
constraints from the movable part during the manipulation.
Second, we used communication-less motion primitives with
straight line robot trajectories in this work. Clearly, if robots
can communicate, more complex trajectories can be generated
and better performance can be obtained. However, this leads to
more complexity in the formulation. We are currently studying
if it is possible to derive more powerful abstractions that will
exploit these additional capabilities.

The main conclusion of this work is simple. If the right
abstractions can be derived for manipulation systems, powerful
algorithms can also be derived to solve manipulation problems
with uncertainties. Indeed, if we look at the examples in this
paper and those in [9], it should be clear that the same planning
algorithms can be used to solve manipulation problems across
multiple length scales.
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