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Abstract— Many practical multi-body systems involve loops.
Studying the kinematics of such systems has been challenging,
partly because of the requirement of maintaining loop closure
constraints, which have conventionally been formulated as highly
nonlinear equations in joint parameters. Recently, novel para-
meters defined by trees of triangles have been introduced for a
broad class of linkage systems involving loops (e.g., spatial loops
with spherical joints and planar loops with revolute joints); these
parameters greatly simplify kinematics related computations
and endow system configuration spaces with highly tractable
piecewise convex geometries. In this paper, we describe a more
general approach for multi-body systems, with loops, that allow
construction trees of simplices. We illustrate the applicability and
efficiency of our simplex-tree based approach to kinematics by a
study of foldable objects. We present two sets of new parameters
for single-vertex rigid fold kinematics; like the parameters in
the triangle-tree prototype, each has a geometrically meaningful
and computationally tractable constraint formulation, and each
endows the configuration space with a nice geometry.

I. I NTRODUCTION

Many practical multi-body systems involve one or more
loops—physical (in parallel platforms, ring-type molecules,
. . . ) or virtual (in inverse kinematics of serial manipulators
or molecular chains,. . . ). The kinematics of loop systems is
complicated by the so-called loop closure constraint,i.e., the
need to maintain the closed chain structure (seee.g.books [1,
2, 3, 4] and references therein). There are many other practical
issues, like joint limits (and other system limits) and collision
avoidance, but here we focus on loop closure to the exclusion
of all other constraints. In general, progress in any subset of
system related issues contributes to progress in overall system
knowledge; and the loop closure constraint is a recognized
stumbling block in the study of multi-body loop systems.

The main difficulty with loop systems is the generally com-
plex constraint formulation with respect to system parameters.
To date, the most widely used linkage parameters are joint
parameters, such as joint angles for rotational joints and linear
displacements for prismatic joints. Conventionally, loop clo-
sure constraints have been formulated as equality constraints
(of highly non-linear functions) over joint parameters. This
formulation shows that for generic linkages the set of closure
configurations is a smooth submanifold of the ambient joint
parameter space, and in many cases its topology is partly
or completely known (see,e.g., [5, 6] and [7, 8], which
treat planar and spatial linkages with spherical-type joints).
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Smooth manifolds are characterized by the existence of local
coordinates, but although some manifolds are equipped with
global coordinates (like the joint angle parameters, in the
cases of a serial chain without closure constraints or [7, 8] a
planar loop satisfying the technical “3 long links” condition),
typically a manifold has neither global coordinates nor any
standard atlas of local coordinate charts. Thus, calculations
that depend on coordinates are often difficult to perform.

Some recent kinematic work uses new parameters that are
not conventional joint parameters. One series of papers [9,
10, 11, 12, 13] presented novel formulations and techniques,
including distance geometry, linear programming and flag
manifolds, to solve inverse kinematics, identify trilaterable 6-
DOF parallel and serial manipulators, and parametrize con-
figurations of flag manipulators. Loosely speaking, a system
is “trilaterable” as addressed there if it can be decomposed
into tetrahedra in such a way that all unknown edge-lengths
of the tetrahedra can be systematically computed from known
edge-lengths using distance constraints (triangle inequalities
and Cayley–Menger constraints; see below). In those papers,
the trilaterable systems to be solved are already given in
trilaterable form: the kinematic structure explicitly includes all
distance parameters needed to determine system configurations
(e.g., lengths of the legs between base and platform of a
parallel manipulator). We believe those papers were the first to
recognize and utilize trilaterability of the systems they discuss.

In papers [14, 15, 16], we presented a different set of
parameters for a class of linkages including planar loops
with revolute joints and spatial loops with spherical joints.
Our parameters are diagonal lengths (inter-joint distances) and
triangle orientation parameters (discrete signs in the plane,
dihedral angles in space). In essence, to define the parameters
one joint of each loop is used as an anchor; diagonals are
drawn from it to all non-adjacent joints, partitioning the loop
into an open chain of triangles. The diagonal lengths and
triangle orientation parameters are precisely enough to deter-
mine the shapes and relative configurations of these anchored
triangles, which in turn determine the loop configurations.
We proved that the defined parameters are indeed coordinates
on the set of closure configurations. Further, we observed
that the resulting atlas of local coordinate charts endows that
space with a nice geometric structure we called “practical
convexity”, and remarked that our approach generalizes to any
linkage system that can be decomposed into a tree of triangles.



II. N OVEL IDEA: CONSTRUCTIONTREES OFSIMPLICES

Here we will present a general simplex-tree based parame-
trization approach for multi-body systems allowing construc-
tion trees of simplices; it includes the triangle-based approach
of [14, 15] as a special case. Due to space limits, we write
this paper somewhat intuitively and informally.

Before describing our new parametrization, we make a
few comments. First, following the approach in [14, 15],
we will focus on multi-body systems’ deformations, that is,
configurations with rigid motions factored out. The set of all
deformations, called the deformation space, is mathematically
the quotient space of the configuration space modulo the group
of rigid motions that respect system constraints:DSpace =
CSpace=RM .

Second, we note that many multi-body systems can be
studied as multi-point systems,e.g., by reducing each rigid
member in the system to at most4 general points in the
member. Further, there may exist distance constraints among
the points, which can be modeled as links between points: each
pair of points subject to distance constraints can be modeled
by a link that joins them, of fixed or variable length depending
on the nature of the constraints. By such means, we can use
linkage concepts, terms, and notations to study multi-object
and multi-point systems under distance constraints.

Last, we recall some basic definitions concerning simplices,
and facts about their geometry. In this paper we need only
simplices of dimension at most3: a 0-simplex is a point; a
1-simplex is a line segment; a2-simplex is a triangle; a3-
simplex is a tetrahedron. A0-dimensional face of a simplex
is called a vertex, and a1-dimensional face is called an edge.
For k ‚ 2, the edge lengths (i.e., inter-vertex distances) of ak-
simplex are subject to non-trivial constraints; the most familiar
and simplest are the “triangle inequality” constraints fork =
2, and, in the Euclidean case, non-negativity of its Cayley–
Menger determinant [17] (see Eq. (2) below) for allk. If all
edge lengths of a simplex¾ are fixed, then the shape of¾ is
essentially fixed. In the language of deformations, all points of
DSpace(¾) are isolated;e.g., in Euclidean space,DSpace(¾)
contains just1 or 2 points, the latter case happening only for
deformations of ann-simplex inRn (its 2 deformations are
distinguished by their orientation).

Definition. Our new approach to kinematics of linkage
systems involving loops (and other multi-point systems under
distance constraints) is based on representing the system under
study by a construction tree of simplices. We say a tree of
simplices is a construction tree of a given linkage system if
the simplices satisfy the following three conditions. (1) Each
link in the linkage system is an edge of at least one simplex
in the tree. (2) The set of points of the multi-point linkage
system equals the set of all vertices of all simplices in the tree.
(3) The deformations of the linkage system can be constructed
from the shapes of the simplices and relative configurations of
simplices adjacent in the tree.

Simplex Placement Procedure and Deformation Con-
struction. We can use a tree traversal process to construct

any deformation of a multi-point system with a construction
tree T = (V (T ); E(T )) of simplices, given the following
necessary and sufficient data about the deformation: (i) for
each node¾ 2 V (T), the shape of the simplex¾, and (ii) for
each edgef¾; ¿g 2 E(T), the relative configuration of the
simplices¾ and ¿ in the ambient spaceRn. Indeed, placing
a simplex in an ambient space is equivalent to determining
the coordinates of its vertices. Now, given the data (i) and (ii),
we construct the corresponding deformation of the multi-point
system recursively as follows. (I) Place any simplex¾ 2 V (T)
anywhere in its ambient space (in casedim(¾) equals the
ambient dimension, an orientation parameter specifies one of
its two orientations). (II) If for some edgef‰; ¿g 2 E(T), the
simplex‰ has already been placed in space but the simplex¿
has not yet been placed, then use the data (ii) to place¿ . When
this simplex placement procedure terminates, the deformation
has been constructed.

New Parameters. Two types of parameters hold the defor-
mation data (i) and (ii): shape parameters (associated to nodes
of T) and orientation parameters (associated to edges ofT).

The shape of a simplex is determined by its edge lengths. In
any given simplex inV (T), some edges may be links (some
with fixed lengths and others with variable lengths); we call
a construction tree simplex edge a diagonal of the linkage if
it is not a link. Our shape parameters for a linkage comprise
the lengths of all variable edges and diagonals from the tree.

Two adjacent simplices in a construction tree share a sub-
simplex (e.g., two triangles with a common edge). Thus there
is no relative translation between two adjacent simplices,
only at most a relative reorientation (about the common sub-
simplex)—in essence, an element of that subgroup of the
orthogonal group of the ambient Euclidean space which acts as
the identity on a linear subspace having the dimension of the
common sub-simplex. Our orientation parameters for a linkage
comprise relative reorientation data for adjacent simplices.

In summary, our simplex-based parameters for deformations
comprise (a) lengths of diagonals and links of variable length
(to give shapes of simplices), and (b) orientation parameters
(to give relative configurations of adjacent simplices).

Results. The aforementioned simplex placement procedure
for deformation determination indicates how to use simplex-
based parameters to completely determine system deforma-
tions.

If we define the forward kinematics (FK ) of a multi-point
system as the determination of system point positions from
given parameter values, the procedure is an algorithm that
solves theFK problem. Conversely, the inverse kinematics
(IK ) problem of determining valid simplex-based parameters
that satisfy loop closure constraints is equivalent to solving
the system deformation space in those parameters.

This approach is very general and applies in many ambient
geometries. In this paper, limited to simplices in Euclidean
space or the2-sphere, our main results are as follows.

Theorem1: Consider a multi-point (or multi-body) system
that allows a construction treeT of simplices. Then:



(A) The deformations of the system are described by
simplex-based parameters.

(B) TheFK problem for the system is solved by a simplex
placement procedure, with shapes and relative orientations of
simplices directly determined by simplex-based parameters.

(C) The IK problem for the system is solved by giving
an explicit description of its deformation space (DSpace) in
terms of simplex-based parameters. More precisely,DSpace
is essentially the product ofDStretch and DFlip, where
(1) DStretch comprises shape parameters satisfying explicit,
simply evaluated constraints (triangle or Cayley–Menger de-
terminant inequalities, and range inequalities) required for
successful simplex formation, and is a convex body, while
(2) DFlip comprises relative orientation parameters, and is
independent of loop closure constraints.

Proof: If (a) the system under investigation is a planar or
spatial linkage with (respectively) revolute or spherical joints,
and no links of variable length, (b)T has no node of valence
‚ 3 (i.e., is a subdivided interval), and (c) each simplex in
V (T) is a triangle inR2 orR3, then we gave detailed proofs of
(A), (B), and (C2) (using the relevant versions of our simplex
placement procedure) in papers [14] and [15]; the proofs in
the general case are entirely analogous.

Essentially the same is true of (C1), with an important
technical difference. In our earlier papers,DStretch is a
convex polytope, because only triangle inequalities (involving
link lengths and shape parameters) are involved, and triangle
inequalities are linear. Here, in caseV (T) includes one or
more tetrahedra, Cayley–Menger inequalities (in link lengths
and shape parameters) are involved, and these are non-linear—
in fact, for tetrahedra they are of total degree at most3 in
the squares of the diagonal lengths (and at most quadratic in
the square of any one diagonal length). They are, however,
still convex; the proof is an exercise in low-dimensional real
algebraic geometry (relying heavily on elementary properties
of cubics and quadratics). ThusDStretch need not be a poly-
tope (though it will be as long as all nodes are triangles, even
if some are spherical triangles) but it is always a piecewise-
smooth semi-algebraic convex body.

As stated, in papers [14, 15] we made extensive use of the
relevant special cases of Theorem 1. Here, just as in those
papers, the general theorem shows that the solution of loop
closure constraints can be much more efficient in simplex-
based parameters than in conventional joint parameters. This
gain in efficiency is due to both the convexity ofDStretch and
the independence of loop closure from orientation parameters.

In the remainder of this paper, we illustrate the applicability
and efficiency of simplex-based parameters by studying fold-
able objects, especially single-vertex rigid folds, for which we
present two sets of new parameters, each with geometrically-
meaningful constraint formulations.

III. F OLDABLE OBJECTS ANDPRIOR WORK

In our daily life, we encounter such foldable objects as paper
bags, umbrellas, and space-station antennas. Normal use of
foldable objects involves folding and unfolding, but not cutting
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(b) Single-vertex origami.

Fig. 1. Foldable objects.

up; thus many complex constraints are involved in maintaining
system structures and allowing system deformations.

Many foldable objects have crease patterns associated with
them; see Fig. 1(a) for the creases of a standard paper bag.
Each crease line allows relative rotations between two panels
sharing the line; it can be viewed as a revolute joint (hinge).
Assuming that the panels are rigid, the relative configuration of
adjacent panels can be parametrized by an angle that measures
their relative rotation about the shared crease line.

Vertices of the crease pattern occur at intersections of crease
lines with other crease lines or with the boundary of the object
(or both);e.g., the standard bag crease pattern (Fig. 1(a)) has
8 interior vertices and6 boundary vertices. An interior vertex
O on which are incidentn crease lines is adjacent ton panels,
which surround it in a circuit, or closed chain; if no tearing
is allowed this chain has to maintain the closure constraint.
In terms of the angle parameters, closure can be understood
intuitively as follows: pick any point on any one crease line,
and subject that point to a sequence of rotations about each of
the crease lines; then the point’s final position should coincide
with its original position. Mathematically, this becomes (as in
[18]) the equationR(v0; `0) ¢ ¢ ¢ R(vn¡1; `n¡1)P = P , where
P denotes a point on a crease line,vi denotes the directional
vector for crease linei, and `(i) denotes the rotation angle
about crease linei (see Fig. 1(b)). As this equation must be
satisfied for allP , it is equivalent to require that the ordered
product of the rotation matrices be the identity matrix,

R(v0; `0) ¢ ¢ ¢ R(vn¡1; `n¡1) = I: (1)

Each such equation imposes3 non-linear constraints onn
angular parameters. This means that, for a foldable object with
only one non-boundary vertex (i.e., a cycle ofn panels sur-
rounding a single common vertex), the space of deformations
will generally be of dimensionn¡3. The angular formulation
above amounts to studying this deformation space as the subset
of the ambient angle space (ann-dimensional torus) defined by
the constraint (1). Just as for a loop of linear links, the highly
non-linear nature of this constraint on the angular parameters
makes it technically difficult to understand and compute the
structure ofDSpace in these traditional coordinates. Foldable
objects with more than one non-boundary vertex have yet more
complicated descriptions in these parameters. Notwithstanding
these difficulties, progress has been made. One interesting re-
sult [19] is thatDSpace of a paper bag, creased as in Fig. 1(a)
and with rigid panels, has isolated points corresponding to



the folded and completely unfolded states: in this model, a
flattened shopping bag cannot be opened.

Kinematic related issues of foldable objects have been
studied in various communities. In robotics, in addition to
origami folding [18], sheet-metal and carton box folding
(e.g. [20, 21, 22, 23]) have also been studied, mainly from
the manipulation planning point of view, sometimes with
no loop closure constraints for the folded objects. Folding,
especially origami folding, has been studied in and outside
of scientific communities, and commands a rich literature.
The combinatorics and geometry communities have interesting
kinematic results on origami folding (seee.g. [24, 25, 26, 27]
and references therein), especially on rigid flat origamis, which
we use below to give a clear and representative example of our
approach. Rigid origamis are modeled to have rigid and planar
panels, and flat origami folds are those that can be pressed in
a book without (in theory) introducing new creases. Among
many interesting results on single-vertex rigid flat origamis,
we will use the following properties later (see,e.g., [24, 25]
for proofs). Assume the cone angles about the vertex add up
to 2… (as in [27], by cone angle we mean an angle between
adjacent crease lines.) Then (a) the number of crease lines,
and thus the number of cone angles, for a rigid flat origami
vertex is even, and (b) the sum of even-indexed cone angles
(thus also the sum of odd-indexed cone angles) is….

We also refer readers to a very important and closely related
paper [27], where the authors model a single-vertex origami
as a spherical polygonal linkage and further prove that all
single-vertex origami shapes are reachable from one to another
via simple, non-crossing motions. They also consider general
conical paper, where the total sum of the cone angles centered
at the vertex is not2…, and obtain similarly remarkable results
for conical paper with certain properties. Their approach relies
on natural extensions to the sphere of planar Euclidean rigidity
results regarding the existence and combinatorial characteriza-
tion of expansive motions, which have been used in the recent
breakthrough on collision-free convexifying (straightening)
Euclidean polygonal loops (open chains) [28, 29]. One of
our methods for single vertex origamis also models such a
system as a spherical loop. But we use spherical triangles and
corresponding parameters to study these loops, and explicitly
parametrize theirDSpaces, a very different approach from that
in [27]. Further comparing results, paper [27] proves that the
valid subset ofDSpace (i.e., DFree, to use a naming scheme
parallel to the well-knownCFree for the valid subset of
CSpace) is connected, and provides an efficient collision-free
path planner; our approach can solve the completeDSpace
structure, but does not apply immediately toDFree.

IV. SIMPLEX-TREE BASED K INEMATICS FOR FOLDS

Most of this section is devoted to the kinematics of a single-
vertex fold, that is, a foldable object with multiple rigid and
planar panels incident on one vertexO, each panel having two
crease lines incident on it at that vertex (see Fig. 1(b)). The
rigid panels and crease lines incident onO define a generalized
cone with apex atO, soO is called the cone apex. Crease lines

correspond to edges of the cone, and panels can rotate about
crease lines without tearing, so cone deformations are subject
to the loop closure constraint if panels and crease lines are to
stay intact. Rather than describeDSpace of this cone in terms
of angles subject to a constraint of the form (1), we modify our
ideas from [14] and use a construction tree of simplices; we
present two approaches, one based on Euclidean tetrahedra,
the other on spherical triangles. Both approaches reveal close
structural similarities between the kinematics of single-vertex
folds and the kinematics of Euclidean planar loops.

A. Approach One: Trees of Euclidean Tetrahedra

System Modeling. Pick a non-apex pointP (i) on the ith

crease line (in cyclic order, withi taken modulon as needed).
The line segmentP (i)P (i + 1) is contained in theith panel.
The panels are rigid and rotation around a crease line is a rigid
motion, so the lengthli of this segment is constant over all
deformations; thus taken together all these segments form a
(spatial) loop ofn rigid links. Moreover, the length ofOP (i)
(on theith crease line) is also constant, for the same reason.
Thus each triangleTri(O; P (i); P (i + 1)) maintains its con-
gruence class throughout all deformations of the generalized
cone, so from the point of view of deformation space the
original generalized cone may be replaced with a polyhedral
cone comprising then triangular panelsTri(O; P (i); P (i +
1)), i = 0; : : : ; n ¡ 1. We now find a construction tree of
simplices for this cone, and use simplex-based parameters to
study itsDSpace.

Tetrahedra Trees and Parameters. One method is
to use any construction tree of triangles for the loop
(P (0); P (1); : : : ; P (n ¡ 1)). For example, a6-bar loop with
verticesP (0); : : : ; P (5) is decomposed by the three diagonals
(P (1); P (3)), (P (3); P (5)), and(P (5); P (1)) into a construc-
tion tree of4 triangles:Tri(1; 3; 5), Tri(1; 2; 3), Tri(3; 4; 5),
and Tri(5; 0; 1), with Tri(1; 3; 5) adjacent to all other three.
(We abbreviateTri(P (1); P (2); P (3)) by Tri(1; 2; 3) and so
on.) Now, each of these trianglesTri(P (i); P (j); P (k)) de-
termines a tetrahedronTet(O; P (i); P (j); P (k)), whose three
edges (additional to those of the triangle) have already been
noted to be of fixed length. These tetrahedra fit together, in a
tree combinatorially identical to that chosen to construct the
loop, so as to construct the polyhedral cone (see Fig. 2.) The
corresponding tetrahedra-based parameters forDSpace of the
cone are closely related, but not identical, to the triangle-based

P(5)

P(0) P(1) P(1)

P(3)

O
O

O

O

P(0) P(1)
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Fig. 2. Decomposition of a polyhedral cone into a tree of tetrahedra.



parameters forDSpace of the loop. Namely, we use (a) the
squared diagonal lengthsD[T] = [D[T](1); : : : ; D[T](n ¡ 3)],
and (b) the tetrahedron orientation signss[T] = [s[T](1); : : : ;
s[T](n ¡ 2)]. HereT denotes a construction tree of tetrahedra
for the polyhedral cone,D[T](i) = d2[T](i) is the squared
length of theith diagonal, ands[T](j) is the orientation sign
of the jth tetrahedron comprised inT. (The numbern ¡ 3 of
squared diagonal lengths for the tree of tetrahedra equals the
numbern¡3 of diagonal lengths for the tree of triangles, and
similarly for the numbern ¡ 2 of orientation signs.)

Constraints and DSpace Structures in Tetrahedral Para-
meters. In this formulation, the loop closure constraint on the
panels of our polyhedral cone becomes that set of constraints
on the diagonal lengths which is necessary and sufficient for
the tetrahedra comprised inT to exist. These constraints can
be phrased in terms of the Cayley–Menger determinant. As
is well known, given real numbersD(i; j) (0 • i; j • 3)
with D(i; j) = D(j; i) ‚ 0, D(i; i) = 0, points P (i) 2 R3

(0 • i • 3) with D(i; j)=kP (j)¡P (i)k2 exist if and only if

flflflflflflflflflfl

0 1 1 1 1
1 0 D(0; 1) D(0; 2) D(0; 3)
1 D(1; 0) 0 D(1; 2) D(2; 3)
1 D(2; 0) D(2; 1) 0 D(2; 3)
1 D(3; 0) D(3; 1) D(3; 2) 0

flflflflflflflflflfl

‚ 0: (2)

Equality holds if and only if the pointsP (i) are coplanar. Each
of then¡2 tetrahedra¾ 2 V (T) gives us one such inequality
constraint. The set of alln ¡ 2 inequalities defines the set of
feasible squared diagonal lengths for then-sided polyhedral
cone, which we callDStretch.

The tetrahedron orientation signs are likewise defined along
the lines set out in [14] for triangle orientation signs for a loop
with a construction tree of triangles. If we use+ and¡ for the
two orientations of non-degenerate tetrahedra, and label singu-
lar tetrahedra with both+ and¡, we obtain (roughly) an iden-
tification of DSpace[T] of the polyhedral cone parametrized
by the treeT of tetrahedra withDStretch[T] £ DFlip, where
DFlip = f+; ¡gn¡2. (As in [14], eliminating the “roughness”
requires analysis of “super-singular” deformations.) Such a
DSpace parametrization is very similar to that for a planar
loop with n links given in [14]. An important difference is
that, whereas [14] proves thatDStretch of a planar loop with
n revolute joints and fixed link lengths is a convex polyhedron
of dimensionn¡3, in the present caseDStretch is still convex
but (for n ‚ 5) it is no longer a polyhedron.

The geometry of its various curvilinear faces is revealed
by separate analyses of the constraint (2) in the cases where
the corresponding tetrahedron includes exactly1, 2, or 3
diagonals: a single diagonal’s squared length is constrained
to lie in an interval; a pair of diagonals’ squared lengths are
constrained to lie inside or on a certain ellipse; and a triple of
diagonals’ squared lengths lie inside or on the boundary of a
certain semi-algebraic (cubic) convex body.

B. Approach Two: Trees of Spherical Triangles

For the tetrahedra above, the non-apex pointsP (i) on the
crease lines, and thus their distances to the cone apexO and
the link lengths, can be chosen quite arbitrarily, though astute
choices might afford extra convenience in computation.

System Modeling. For the second approach, we demand that
all P (i)’s be at the same distance from the cone apexO.
Thus the set ofP (i)’s is the intersection of the crease lines
with a sphere centered atO. As noted earlier, the distance
betweenO and any point on a crease line is constant across
all deformations, so this sphere is also constant; further, since
the cone panels are assumed to be rigid and planar, each of
them intersects the sphere in a spherical line segment (i.e., an
arc of a great circle through the corresponding pointsP (i)
andP (i+1)), and the spherical length of that segment is also
constant. For simplicity, instead of spherical length we use
central angle to measure spherical line segments (the spherical
length is the radius of the sphere multiplied by the radian
measure of the central angle). Following standard usage from
spherical geometry, we also call a spherical line segment minor
if its central angle is in[0; …], and major if not.

In this language, what we have observed is that the intersec-
tion of each cone panel intersects the sphere in a spherical line
segment of constant central angle. Therefore the intersection
of the sphere with the entire system of rigid and planar panels
incident on the cone apexO is a sphericaln-gon loop (n being
the number of panels) with links of fixed central angles; and
the kinematics of the single-vertex fold is equivalent, in the
sense of having identicalDSpaces, to that of this spherical
loop. The converse, that every spherical loop corresponds in
this way to a single-vertex fold, is obvious.

There is a subtlety which we have no room to discuss
properly here, but which must be mentioned. It is entirely
standard to define the spherical distance between two points of
a sphere to be the length of a minor spherical line segment with
those endpoints, and with that definition the sphere becomes
a metric space in the usual way—in particular, the triangle
inequality holds; but there is no compelling reason to require
the edges of a spherical polygonaln-gon to be minor segments.
Nonetheless, in the remainder of this paper we restrict our
attention to spherical polygonaln-gon loops in which each
edge is minor; equivalently, in the language of foldable objects,
to single-vertex folds in which the angle of each panel at the
cone apex is at most….

Spherical geometry shares many theorems with Euclidean
plane geometry, but not all; so our triangle approach to spher-
ical n-gon loop kinematics is very similar, but not identical,
to our triangle approach in [14] for Euclidean planarn-gon
loops. Below, we emphasize the points of difference.

Spherical Triangle Trees and Parameters.
The construction trees of triangles in [14] have no branching

because the triangles are anchored (share a common vertex);
however, as noted in the proof of Theorem 1, the results and
arguments in [14] extend to arbitrary construction trees of
triangles, Euclidean or spherical. In particular, for ann-gon



loop each construction tree hasn ¡ 2 nodes andn ¡ 3 edges
(loop diagonals); Fig. 3 shows this for a spherical6-gon with
central angles(50; 97; 151; 82; 35; 59) (in degrees).

Following our general simplex-based approach, we define
spherical-triangle-based parameters for the deformations of a
spherical loop, and thus that of a polyhedral cone allowing
rotation about the edges. Namely, we use (a) the spherical
diagonal lengthsfl[T](1); : : : ; fl[T](n¡3), and (b) the spherical
triangle orientation signss[T](1); : : : ; s[T](n ¡ 2), where T

is a construction tree of spherical triangles for the spherical
loop, fl[T](i) is the central angle of diagonali, ands[T](i) is
the orientation sign (+, ¡, or 0) of the ith spherical triangle
in T. One way to define this sign is as the orientation sign
of the tetrahedron formed by the triangle vertices (in their
given order) preceded by the center of the sphere; as usual
0 means that the tetrahedron is degenerate (equivalently, that
the triangle is contained in a great circle). Reasoning like that
in [14] shows that the orientation sign valuess[T](i) are es-
sentially uncoupled from the central angle parametersfl[T](j);
reversing the sign of a non-degenerate triangle corresponds to
reversing its orientation (compare Figs. 3(a) and 4(c)).

Constraints and DSpace Structures in Spherical Triangle
Parameters. To generalize the method given in [14], we need
to find the necessary and sufficient conditions on three angles
less than or equal to… such that there exist a spherical triangle
with those central angles. This is easy to do in light of the
observation (true in both spherical and Euclidean geometry)
that the length of one edge of a triangle is at most the sum
of the lengths of the other two edges. One issue here is that
the spherical distance between any two points is restricted to
[0; …]. Given two distancesfl1; fl2, each between0 and…, their
usual sumfl1+fl2 will have a direct range of[0; 2…]. However,
if we define theirspherical sumby

fl1 ' fl2 = min(fl1 + fl2; 2… ¡ fl1 + fl2) (3)

then we find that their spherical sum is again between0 and…;
and we see that given a spherical triangle with verticesP (i),
P (j), P (k) at spherical distancesfl(i; j), fl(j; k) and fl(k; i)
in [0; …], the triangle inequalities become

fl(i; j) • fl(j; k) ' fl(k; i) (4)

fl(j; k) • fl(k; i) ' fl(i; j) (5)

fl(k; i) • fl(i; j) ' fl(j; k) (6)

Moreover, in the cube[0; …]3, these inequalities (which are all
linear in the coordinates) cut out a convex polyhedron.
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Fig. 3. One deformation of a spherical6-gon loop with 3 sets of shape
parameters derived from3 different trees of2-simplices.
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orientation of exactly one triangle from that shown in Fig. 3(a).
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Fig. 5. (a)DStretch for a flat origami vertex with six creases and cone angles
(45; 30; 65; 50; 70; 100) degrees, and a linear path of shape parameter values
joining a gray interior point(60; 60; 80) to a black corner(95; 120; 145).
(b) DSpace for a flat origami vertex with four creases; it is not a manifold.

Now, returning to spherical loops, we note that the loop
closure constraint is the set of triangle inequality constraints
on the diagonal lengths required for successful formation of
all spherical triangles in the construction treeT. As in [14]
this implies thatDStretch, the set of feasible diagonal central
angles, is a convex polytope with a natural stratification.
(Fig. 5(a) illustrates the situation for a spherical6-gon loop
with central angles of(45; 30; 65; 50; 70; 100) degrees.)

Again as in [14], this construction endowsDSpace with
a stratification: roughly,DSpace is constructed by gluing
together2n¡2 copies ofDStretch (one for each assignment
of orientation signs to triangles inT) along boundary strata
corresponding to singular deformations (with one or more sin-
gular triangles). One essential fact used here is that reversing
the orientation of a non-singular triangle, if possible, requires
passing through a singular deformation of the triangle.

As a simple example ofDSpace structures, consider a flat
origami vertex with4 panels. Let its cone angles befl(0; 1),
fl(1; 2), fl(2; 3) = … ¡ fl(0; 1), and fl(3; 0) = … ¡ fl(1; 2)
(here we use properties (a) and (b) of flat origami vertices as
quoted in section III). As the only shape parameter, we use the
central angle betweenP (0) andP (2). It is easy to verify that
DStretch is the interval with endpointsjfl(0; 1)¡fl(1; 2)j and
fl(0; 1) ' fl(1; 2). Further, at these endpoints the two triangles
of the tree, one with verticesP (0), P (1), P (2) and the other
with verticesP (2), P (3), P (0), are simultaneously singular.
(Trying some concrete values forfl(0; 1) andfl(1; 2) may help
understand this fact.) Thus whenDSpace is constructed from
4 copies of the intervalDStretch, at each end of the interval
all four copies are glued together; the resultingDSpace is
singular (i.e., not a manifold), and looks like the union of2
circles intersecting at2 points, as shown in Fig. 5(b). We see
that all flat origami vertices of4 panels (with generic cone
angles) have topologically identicalDSpaces.
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Fig. 6. Deformations and motion of the flat origami vertex withDStretch illustrated in Fig. 5(a); diagonal angles (in degrees) and orientation signs
are as indicated. (a) Query deformation1 ((60; 60; 80); (¡; ¡; ¡; +)); (b) query deformation 2 ((60; 60; 80); (+; +; +; +)); (c) a flat deformation
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that has orientation sign(¡; ¡; ¡; +)); (e) singular deformation 1 ((95; 60; 80); (0; ¡; ¡; +)); (f) singular deformation 2 ((95; 120; 80); (0; 0; ¡; +)).

C. Results and Discussions

The tetrahedron and spherical-triangle approaches exhibit
similarity in DSpace structures for single-vertex fold kine-
matics, as summarized in the following theorem.

Theorem2: For a single-vertex fold withn rigid panels,
DStretch is an(n¡3)-dimensional convex body,DFlip is the
discrete setf+; ¡gn¡2, andDSpace consists of2n¡2 copies
of DStretch properly identified along their boundaries. ¥

Both approaches have significant advantages over ap-
proaches that use joint angle parameters, thanks both to the
explicit constraints in our new parameters and the practical
convexity ofDSpace in these parameters. As an illuminating
example for the efficiency of our simplex-based approach,
consider the generation of loop deformations. In our new
parameters, this can be done in two steps.

First, we solve the shape parameters. Both Cayley–Menger
determinant and spherical triangle inequality constraints can
be efficiently solved,e.g., with convex programming (or,
for triangle inequalities, linear programming). We have also
developed our own solving methods that take advantage of the
highly structured constraints; in our computation study using
Matlab, they beat the general methods by orders of magnitude.

Second, we pair the shape parameter values with the relative
orientation sign parameters. For a generic single-vertex fold
with n rigid panels, each set of diagonal length parameter
values of a non-singular deformation pairs with2n¡2 distinct
sets relative orientation signs, generating2n¡2 distinct (though
related) system deformations, all with the same simplex shapes
but differing simplex orientations. On a laptop computer, using
linear programming in Matlab, a set of valid shape parameters
for a generic single-vertex1000-panel fold can be generated
in about1 millisecond. Paired with the points ofDFlip, this
yields 2998 different deformations.

Knowledge and nice geometry of systemDSpaces have
significant impact on many kinematics related issues such as
system design and path planning. For example, it is foreseeable
for certain design tasks to favor systems in which having all (or
important) system configurations fall into a single connected
component ofDSpace (or of DFree, when collision avoidance
is taken into consideration). Explicit and efficient parame-
trization of DSpaces provides invaluable tools to designers
for the evaluation and improvements of design schemes. As
another example of the broad implications of our approach and
results, the piecewise convexity ofDSpace in simplex-based

parameters greatly simplifies path planning for single-vertex
folds. That is, two query deformations in the closure of one
DSpace stratum (roughly, the points ofDSpace corresponding
to one copy ofDStretch) can be joined by a straight-line path
becauseDStretch is convex. Two deformations merely in the
same component ofDSpace can be joined by a piecewise-
linear path, once we determine critical singular deformations
through which to move successively between strata; again, the
simple nature of the constraints on our shape parameters leads
to efficient computation of singular deformations.

Figs. 6(a) and 6(b) show two query deformations of a flat
origami vertex with6 panels, again having central angles of
(45; 30; 65; 50; 70; 100) degrees: both deformations have diag-
onal length values of(60; 60; 80) degrees, and have opposite
orientations for all triangles except the one with verticesP (1),
P (3), P (5). Each query deformation can be linearly connected
to a flat deformation, like that in Fig. 6(c) with diagonal
lengths of(95; 120; 145) degrees. Fig. 6(d) illustrates a linear
path from the deformation in Fig. 6(a) to the flat deformation.
While a linear path between two points in a convex set is
shortest in the convex metric and mathematically optimal, it
generally involves simultaneous motion (folding) of all crease
lines. Since in practice many folding motions are most easily
done by folding only one or a few creases at once, for folding
problems Manhattan paths are likely to be more practical than
linear paths. The query deformation in Fig. 6(a) can reach the
flat deformation by using a3-segment Manhattan path through
two singular deformations as in Figs. 6(e) and 6(f).

For single-vertex fold systems, the spherical triangle ap-
proach will generally be more efficient than the tetrahedron
approach, since triangle constraints (inequalities (4)–(6)) are
generally simpler than determinant constraints (inequality (2)).
We introduced both approaches since each has its own ad-
vantages in various situations;e.g., the tetrahedron approach
generalizes directly to multi-vertex folds (like that in Fig. 7)
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Fig. 7. A multi-vertex fold with a construction tree of simplices.



that allow construction trees of tetrahedra. Note that a multi-
vertex fold contains multiple loops of panels; Fig. 7 is just one
of the simplest examples of a multi-loop, multi-point system
allowing a construction tree of simplices. Our approach and
results, described in section II and illustrated in this section
for single-vertex folds, apply directly to all such systems.

V. SUMMARY

In this paper, we have described our novel simplex-tree
based approach for the kinematics of multi-body systems
involving loops, and illustrated it with an example system of
single-vertex folds. For systems allowing construction trees
of simplices, we efficiently use simplex-based shape and
orientation parameters for system deformations, formulate
loop constraints as constraints on shape parameters needed
for successful formation of the simplices (e.g., the triangle
inequality and Cayley–Menger determinant constraints for tri-
angles and tetrahedra), solve the set of valid length parameters,
and explicitly construct theDSpace structures essentially as
the product of the shape parameter set and the orientation
parameter set (which carries no loop constraints). For systems
involving loops, knowledge ofDSpace andCSpace structures
with explicit parametrizations is invaluable for many kine-
matics related issues,e.g., motion planning, system design,
analysis, simulation, and control; until recently (cf. [7, 8, 14,
15]) these structures and parametrizations, and techniques for
working with them, have largely remained elusive. In this
paper we have greatly extended our work in [14, 15].

Part of our ongoing research is to identify and study
systems allowing simplicial construction trees. For a multi-
point linkage system (again, with links modeling distance
constraints), the conditions on the existence of a construction
tree can be intuitively understood as follows: its constraints as
reflected in the existing links shall allow the addition of virtual
links that decompose the system into a collection of simplices
(or more broadly, a collection of simplices with other rigid
system components, as dictated by existing system constraints,
attached to the simplices) with edges consisting of all existing
and virtual links, and with free relative configurations allowed
among adjacent simplices. Lengths of virtual links and existing
links with non-trivial ranges are captured by shape parameters,
relative configurations by orientation parameters. We are cur-
rently working on further properties and algorithms useful to
identify these systems and their parameters. We emphasize
that, while the representative systems solved in simplex-tree
based approaches so far (including Euclidean polygonal loops
in our earlier papers [14, 15] and the systems in this paper) use
construction trees with equidimensional simplices as nodes,
our simplex-based approach allows non-equidimensional sim-
plices as nodes of a single tree. In future papers we will
describe practical robotic systems that can be usefully studied
using construction trees of non-equidimensional simplices.
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