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Abstract—Many practical multi-body systems involve loops. Smooth manifolds are characterized by the existence of local
Studying the kinematics of such systems has been challenging.coordinates, but although some manifolds are equipped with
partly because of the requirement of maintaining loop closure global coordinates (like the joint angle parameters, in the

constraints, which have conventionally been formulated as highly f ial chai ithout cl traint 7 8
nonlinear equations in joint parameters. Recently, novel para- cases of a serial chain without closure constraints or [7, 8] a

meters defined by trees of triangles have been introduced for a Planar loop satisfying the technical “3 long links” condition),
broad class of linkage systems involving loopse(g, spatial loops typically a manifold has neither global coordinates nor any

with spherical joints and planar loops with revolute joints); these  standard atlas of local coordinate charts. Thus, calculations
parameters greatly simplify kinematics related computations that depend on coordinates are often difficult to perform.

and endow system configuration spaces with highly tractable S t Ki fi K i that
piecewise convex geometries. In this paper, we describe a more ome recent kKinematic work uses new parameters that are

general approach for multi-body systems, with loops, that allow NOt conventional joint parameters. One series of papers [9,
construction trees of simplicesNe illustrate the applicability and 10, 11, 12, 13] presented novel formulations and techniques,
efficiency of our sim_plex-tree based approach to kinematics by a including distance geometry, linear programming and flag
study of foldable objects. We present two sets of new parameters \,aifo|ds, to solve inverse kinematics, identify trilaterable 6-

for single-vertex rigid fold kinematics; like the parameters in DOF llel d ial inulat d tri
the triangle-tree prototype, each has a geometrically meaningful parallel and serial manipulators, and parametrize con-

and computationally tractable constraint formulation, and each figurations of flag manipulators. Loosely speaking, a system
endows the configuration space with a nice geometry. is “trilaterable” as addressed there if it can be decomposed

into tetrahedra in such a way that all unknown edge-lengths
) ] ) of the tetrahedra can be systematically computed from known
Many practical multi-body systems involve one or morgqge.lengths using distance constraints (triangle inequalities
loops—physical (in parallel platforms, ring-type moleculegyng cayley—Menger constraints; see below). In those papers,
...) or virtual (|n_ inverse klnematlcs c_)f serial manlpulatorghe trilaterable systems to be solved are already given in
or molecular chains,...). The kinematics of loop Systems {gjaterable form: the kinematic structure explicitly includes all
complicated by the so-called loop closure constréiet, the  gistance parameters needed to determine system configurations
need to maintain the closed _chaln structure @eebooks [1, (e.g, lengths of the legs between base and platform of a
2, 3, 4] and references therein). There are many other pr.af:t'ﬁéﬁallel manipulator). We believe those papers were the first to
issues, like joint limits (and other system limits) and collisiopecognize and utilize trilaterability of the systems they discuss.
avoidance, but here we focus on loop closure to the exclusion, papers [14, 15, 16], we presented a different set of
of all other con_straints. In general, progress i_n any SUbsetrﬁirameters for a class of linkages including planar loops
system related issues contributes to progress in overall sy_s%n‘h revolute joints and spatial loops with spherical joints.
knowledge; and the loop closure constraint is a recognizedr narameters are diagonal lengths (inter-joint distances) and
stumbling block in the study of multi-body loop systems.  iangle orientation parameters (discrete signs in the plane,
The main difficulty with loop systems is the generally coMgieqral angles in space). In essence, to define the parameters
plex constraint formuliatlon with re_spect to system paramet.e_[ﬁ1e joint of each loop is used as an anchor; diagonals are
To date, the most widely used linkage parameters are jojffawn from it to all non-adjacent joints, partitioning the loop
pgrameters, such as Jomt gngle_s for rotanongl joints and linggfy an open chain of triangles. The diagonal lengths and
displacements for prismatic joints. Conventionally, loop Cltiangle orientation parameters are precisely enough to deter-
sure constraints have been formulated as equality constraigise the shapes and relative configurations of these anchored
(of highly non-linear functions) over joint parameters. Thigjangles, which in turn determine the loop configurations.
formulation shows that for generic linkages the set of closu{ge proved that the defined parameters are indeed coordinates
configurations is a smooth submanifold of the ambient joiRly the set of closure configurations. Further, we observed
parameter space, and in many cases its topology is pagil the resulting atlas of local coordinate charts endows that
or completely known (seee.g, [5, 6] and [7, 8], which ¢hace with a nice geometric structure we called “practical
treat planar and spatial linkages with spherical-type joint)onyexity”, and remarked that our approach generalizes to any
Patent pending. linkage system that can be decomposed into a tree of triangles.

I. INTRODUCTION




Il. NOVEL IDEA: CONSTRUCTIONTREES OFSIMPLICES any deformation of a multi-point system with a construction

Here we will present a general simplex-tree based pararﬁ@e T = (V(T),E(T)) of simplices, given the following

trization approach for multi-body systems allowing construdiécessary and sufficient data about the deformation: (i) for

tion trees of simplices; it includes the triangle-based approa%ﬁCh node 2V (T), the shape of the S|mpI¢x, an'd (i) for

of [14, 15] as a special case. Due to space limits, we Wri?é‘Ch_edgef 69 2 E(T), the_ relative cr?nflguratlon of_the

this paper somewhat intuitively and informally. SImp|IC€S _andg, in the ambient _spacR_ - Indeed, placmg_
Before describing our new parametrization, we make aﬁsmplex. In an ar_nb|ent_ space IS equwalent to dgtermmpg

few comments. First, following the approach in [14, 15t, e coordinates of its vertlce§. Now, given the data (i) apd ('.')’

we will focus on multi-body systems’ deformations, that is" e construct the corresponding deformation of the multi-point

configurations with rigid motions factored out. The set of aftystem rec_urs_ively as_follows. () P_Iace any simpleg V (T)
ywhere in its ambient space (in cadem( ) equals the

deformations, called the deformation space, is mathematical bient di . entati A ii f
the quotient space of the configuration space modulo the gr ient dimension, an onentation parameter Specilies one o
Its two orientations). (Il) If for some edgEh; ;g 2 E(T), the

of rigid motions that respect system constrairidSpace = . .
CSpSce:RM P y P simplex’ has already been placed in space but the simplex
: qgs not yet been placed, then use the data (ii) to pJa¥éhen
i

Second, we note that many multi-body systems can ol | " dure terminates. the def i
studied as multi-point systems,g, by reducing each rigid IS Simplex placement procedure terminates, the detormation
has been constructed.

member in the system to at modt general points in the
member. Further, there may exist distance constraints amd¥gyv Parameters. Two types of parameters hold the defor-
the points, which can be modeled as links between points: edggtion data (i) and (ii): shape parameters (associated to nodes
pair of points subject to distance constraints can be modeRdT) and orientation parameters (associated to edgédy.of
by a link that joins them, of fixed or variable length depending The shape of a simplex is determined by its edge lengths. In
on the nature of the constraints. By such means, we can @ given simplex inv (T), some edges may be links (some
linkage concepts, terms, and notations to study multi-objewith fixed lengths and others with variable lengths); we call
and multi-point systems under distance constraints. a construction tree simplex edge a diagonal of the linkage if
Last, we recall some basic definitions concerning simpliceé s not a link. Our shape parameters for a linkage comprise
and facts about their geometry. In this paper we need orifje lengths of all variable edges and diagonals from the tree.
simplices of dimension at mo& a 0-simplex is a point; a  Two adjacent simplices in a construction tree share a sub-
1-simplex is a line segment; 2simplex is a triangle; 8&- simplex €.g, two triangles with a common edge). Thus there
simplex is a tetrahedron. A-dimensional face of a simplexis no relative translation between two adjacent simplices,
is called a vertex, and &dimensional face is called an edgeonly at most a relative reorientation (about the common sub-
Fork , 2, the edge lengths.¢, inter-vertex distances) ofle  simplex)—in essence, an element of that subgroup of the
simplex are subject to non-trivial constraints; the most famili@rthogonal group of the ambient Euclidean space which acts as
and simplest are the “triangle inequality” constraints ko= the identity on a linear subspace having the dimension of the
2, and, in the Euclidean case, non-negativity of its Cayleyeommon sub-simplex. Our orientation parameters for a linkage
Menger determinant [17] (see Eqg. (2) below) for klllf all comprise relative reorientation data for adjacent simplices.
edge lengths of a simplex are fixed, then the shape ofis In summary, our simplex-based parameters for deformations
essentially fixed. In the language of deformations, all points obmprise (a) lengths of diagonals and links of variable length
DSpace( ) are isolatedg.g, in Euclidean spaceDSpace( ) (to give shapes of simplices), and (b) orientation parameters
contains justl or 2 points, the latter case happening only fofto give relative configurations of adjacent simplices).

deformations of am-simplex inR" (its 2 deformations are Results. The aforementioned simplex placement procedure
distinguished by their orientation). for deformation determination indicates how to use simplex-
Definition. Our new approach to kinematics of linkagdased parameters to completely determine system deforma-
systems involving loops (and other multi-point systems undtens.

distance constraints) is based on representing the system undérwe define the forward kinematic$K) of a multi-point
study by a construction tree of simplices. We say a tree gfstem as the determination of system point positions from
simplices is a construction tree of a given linkage systemdfven parameter values, the procedure is an algorithm that
the simplices satisfy the following three conditions. (1) Eactolves theFK problem. Conversely, the inverse kinematics
link in the linkage system is an edge of at least one simpl¢k<) problem of determining valid simplex-based parameters
in the tree. (2) The set of points of the multi-point linkagehat satisfy loop closure constraints is equivalent to solving
system equals the set of all vertices of all simplices in the trabe system deformation space in those parameters.

(3) The deformations of the linkage system can be constructedrhis approach is very general and applies in many ambient
from the shapes of the simplices and relative configurationsgdometries. In this paper, limited to simplices in Euclidean
simplices adjacent in the tree. space or th@-sphere, our main results are as follows.

Simplex Placement Procedure and Deformation Con- Theoreml: Consider a multi-point (or multi-body) system
struction. We can use a tree traversal process to constrdgt allows a construction tree of simplices. Then:



(A) The deformations of the system are described by
simplex-based parameters.

(B) The FK problem for the system is solved by a simplex h
placement procedure, with shapes and relative orientations of L
simplices directly determined by simplex-based parameters. \

(C) The IK problem for the system is solved by giving = r’
an explicit description of its deformation spad@Space) in
terms of simplex-based parameters. More precide§pace

is essentially the product oDStretch and DFlip, where Fig. 1. Foldable objects.

(1) DStretch comprises shape parameters satisfying explicit,

S|mp_ly eva_luated _c_onstralnts (tnang_le or C_a_yley—Men_ger dﬁb; thus many complex constraints are involved in maintaining

terminant inequalities, and range inequalities) required fQ{qiem structures and allowing system deformations.

success.ful S|mplgx format_lon, qnd IS a convex body, Wh'l,e Many foldable objects have crease patterns associated with

(2) DFlip comprises relative orlentgtlon parameters, and ffem: see Fig. 1(a) for the creases of a standard paper bag.

mderI;endEnltf of Ior?p closure codnstralnts-. o | Each crease line allows relative rotations between two panels
oot (a)'t € system.un er investigation s a planar O§haring the line; it can be viewed as a revolute joint (hinge).

spatial linkage with (respectively) revolute or spherical JOIntassuming that the panels are rigid, the relative configuration of

and no Iin_ks of variz_;\k_JIe 'efﬁgth* (i) has no node of _valence_ adjacent panels can be parametrized by an angle that measures
- 3 (i.e, is a subdivided interval), and (c) each simplex ify,q;\ rejative rotation about the shared crease line.
V (T) is a triangle inR? or R3, then we gave detailed proofs of

(A), (B), and (C2) (using the relevant versions of our simplefﬁ,I
placement procedure) in papers [14] and [15]; the proofs
the general case are entirely analogous.

Essentially the same is true of (C1), with an importa

(a) Standard paper bag. (b) Single-vertex origami.

Vertices of the crease pattern occur at intersections of crease
es with other crease lines or with the boundary of the object

{Br both);e.g, the standard bag crease pattern (Fig. 1(a)) has
8 interior vertices and boundary vertices. An interior vertex

technical diff | i ®Stretch i " on which are incident crease lines is adjacent topanels,
echnical dilterence. In our earlier pape Feten 1S @ which surround it in a circuit, or closed chain; if no tearing

convex polytopebecause only triangle inequalities (involvinq allowed this chain has to maintain the closure constraint.

!'nk Ien.gfchs and ;hape paramgters) are mvolved, and trian Eterms of the angle parameters, closure can be understood
inequalities are linear. Here, in ca$e(T) includes one or

tetrahedra. Cavlev—M . It i link | tintuitively as follows: pick any point on any one crease line,
more tetrahedra, Cayley-Menger inequalities (in link leng I?ﬁwd subject that point to a sequence of rotations about each of

and shape parameters) are involved, and these are r‘On'l'nei’ﬁe—crease lines; then the point’s final position should coincide

in fact, for tetrahedrg they are of total degree at nish . with its original position. Mathematically, this becomes (as in
the squares of the diagonal lengths (and at most quadrati i@]) the equatiorR (Vo; o) t6¢R(Vn;1; “n;1)P = P, where

the square of any one diagonal length). They are, howe ‘denotes a point on a crease livg,denotes the directional

still convex; the proof is an exercise in low-dimensional re%)ector for crease ling, and ~(i) denotes the rotation angle

algebrgic geometry (rglying heavily on elementary properti%%out crease liné (see Fig. 1(b)). As this equation must be
of cubics and quadratics). ThiStretch need not be a poly- satisfied for allP, it is equivalent to require that the ordered

tope (though it will be as long as all nodes are triangles, ev Poduct of the rotation matrices be the identity matrix
if some are spherical triangles) but it is always a piecewise- '

smooth semi-algebraic convex body. [ | R(Vo; 0) ¢¢¢R(Vn;1; “n1) = It (1)
As stated, in papers [14, 15] we made extensive use of the
relevant special cases of Theorem 1. Here, just as in thdsgch such equation imposé&snon-linear constraints om
papers, the general theorem shows that the solution of loapgular parameters. This means that, for a foldable object with
closure constraints can be much more efficient in simplegnly one non-boundary vertex.€., a cycle ofn panels sur-
based parameters than in conventional joint parameters. Titending a single common vertex), the space of deformations
gain in efficiency is due to both the convexity@ftretch and will generally be of dimensiom j 3. The angular formulation
the independence of loop closure from orientation parameteabove amounts to studying this deformation space as the subset
In the remainder of this paper, we illustrate the applicabilitgf the ambient angle space (ardimensional torus) defined by
and efficiency of simplex-based parameters by studying folthe constraint (1). Just as for a loop of linear links, the highly
able objects, especially single-vertex rigid folds, for which weon-linear nature of this constraint on the angular parameters
present two sets of new parameters, each with geometricaliyakes it technically difficult to understand and compute the
meaningful constraint formulations. structure ofDSpace in these traditional coordinates. Foldable
objects with more than one non-boundary vertex have yet more
complicated descriptions in these parameters. Notwithstanding
In our daily life, we encounter such foldable objects as paptrese difficulties, progress has been made. One interesting re-
bags, umbrellas, and space-station antennas. Normal usesudf [19] is thatDSpace of a paper bag, creased as in Fig. 1(a)
foldable objects involves folding and unfolding, but not cuttingnd with rigid panels, has isolated points corresponding to

IIl. FOLDABLE OBJECTS ANDPRIOR WORK



the folded and completely unfolded states: in this model, carrespond to edges of the cone, and panels can rotate about
flattened shopping bag cannot be opened. crease lines without tearing, so cone deformations are subject
Kinematic related issues of foldable objects have beémthe loop closure constraint if panels and crease lines are to
studied in various communities. In robotics, in addition tetay intact. Rather than describSpace of this cone in terms
origami folding [18], sheet-metal and carton box foldingf angles subject to a constraint of the form (1), we modify our
(e.g.[20, 21, 22, 23]) have also been studied, mainly frondeas from [14] and use a construction tree of simplices; we
the manipulation planning point of view, sometimes witlpresent two approaches, one based on Euclidean tetrahedra,
no loop closure constraints for the folded objects. Foldinghe other on spherical triangles. Both approaches reveal close
especially origami folding, has been studied in and outsidéructural similarities between the kinematics of single-vertex
of scientific communities, and commands a rich literaturéolds and the kinematics of Euclidean planar loops.
The combinatorics and geometry communities have interesting
kinematic results on origami folding (seeg.[24, 25, 26, 27] A. Approach One: Trees of Euclidean Tetrahedra
and references therein), especially on rigid flat origamis, whi
we use below to give a clear and representative example of Q
approach. Rigid or?gam_is are modeled to have rigid and pla e line segmenP ()P (i + 1) is contained in thé" panel.
panels, ar_1d flat origami foId; are th_ose that can be presse panels are rigid and rotation around a crease line is a rigid
a book without (in theory) introducing new creases. Amonlglotion, so the length; of this segment is constant over all

many interesting resu_lts on sing_le-vertex rigid flat origami%"eformations; thus taken together all these segments form a
we will use the following properties later (seeg, [24, 25] gatial) loop ofn rigid links. Moreover, the length dDP (i)

stem Modeling. Pick a non-apex poinP (i) on theit"
Lase line (in cyclic order, withtaken modulan as needed).

forzproofs)_. A;un;)e the cone Iangles about the velrteg add theit" crease line) is also constant, for the same reason.
to 2.. (as in [27], by cone angle we mean an angle betwe us each triangldri(O; P (i); P (i + 1)) maintains its con-

adjacent crease lines.) Then (a) the number. qf crease I ftence class throughout all deformations of the generalized
and thgs the number of cone angles, for' a rigid flat origa bne, so from the point of view of deformation space the
vertex is even, and (b) the sum of even-indexed cone ang ?ginal generalized cone may be replaced with a polyhedral

(thus also the sum of odd-mdexeq cone angles). is cone comprising then triangular panelstri(O; P (i); P (i +
We also refer readers to a very important and closely relat =0

7 h h h del inal - ), ;oioon i 1. We now find a construction tree of
paper [27], where the aut ors model a sing e-veriex origa hplices for this cone, and use simplex-based parameters to
as a spherical polygonal linkage and further prove that

) . > udy itsDSpace.
single-vertex origami shapes are reachable from one to another

via simple, non-crossing motions. They also consider genef@irahedra Trees and Parameters. One method is
conical paper, where the total sum of the cone angles centel@dUSe any construction tree of triangles for the loop
at the vertex is nok..., and obtain similarly remarkable result<P (0); P (1);:::;P(n i 1)). For example, &-bar loop with

for conical paper with certain properties. Their approach reli¥§"icesP (0);:::; P (5) is decomposed by the three diagonals
on natural extensions to the sphere of planar Euclidean rigidy (1) P (3)). (P (3); P (8)), and(P (5); P (1)) into a construc-
results regarding the existence and combinatorial characterig@D tree of4 triangles:Tri(1;3;5), Tri(1;2;3), Tri(3;4;5),

tion of expansive motions, which have been used in the rec&fd Tr1(5:0;1), with Tri(1;3;5) adjacent to all other three.
breakthrough on collision-free convexifying (straightening()we abbreviaterri (P (1); P(_Z); P(3)_) by _T”(l_; 2;3) and so
Euclidean polygonal loops (open chains) [28, 29]. One ) ,NOW' each of these tnangle‘l@rl(_P(l);P(J);P(k)) de-

our methods for single vertex origamis also models sucht@/mines a tetrahedronet(O; P (i); P (4); P (k)), whose three
system as a spherical loop. But we use spherical triangles &\9€S (additional to those of the triangle) have already been
corresponding parameters to study these loops, and explicigted to be of fixed length. These tetrahedra fit together, in a
parametrize theiDSpaces, a very different approach from thattrée combinatorially identical to that chosen to construct the

in [27]. Further comparing results, paper [27] proves that tH@OP. SO as to construct the polyhedral cone (see Fig. 2.) The
valid subset oDSpace (i.e., DFree, to use a naming schemetorresponding tetrahedra-based parameter®8pace of the
parallel to the well-knownCFree for the valid subset of CON€are closely related, but not identical, to the triangle-based

CSpace) is connected, and provides an efficient collision-free
path planner; our approach can solve the comple$pace Te(0,345) Te(0,123) o)
structure, but does not apply immediatelyDé-ree.

'I'\et(O,1,3,5)

- |
IV. SIMPLEX-TREE BASED KINEMATICS FORFOLDS Te(0,0,15)

Most of this section is devoted to the kinematics of a single- p(a) P(3)
vertex fold, that is, a foldable object with multiple rigid and

e . P(Q)
planar panels incident on one vert®x each panel having two PGB\
crease lines incident on it at that vertex (see Fig. 1(b)). The P(O) P(1) P(1)
rigid panels and crease lines incident@mefine a generalized

cone with apex aD, soO is called the cone apex. Crease lines Fig. 2. Decomposition of a polyhedral cone into a tree of tetrahedra.



parameters foDSpace of the loop. Namely, we use (a) theB. Approach Two: Trees of Spherical Triangles

For the tetrahedra above, the non-apex poih(s) on the

crease lines, and thus their distances to the cone @pard

s[T](n i 2)]. HereT denotes a constrzuctiqn tree of tetrahedrg, |ink jengths, can be chosen quite arbitrarily, though astute
for the polyhedral coneD[T](i) = d°[T](i) is the squared qy,qices might afford extra convenience in computation.

length of theit" diagonal, ands[T](j) is the orientation sign i
of the jt" tetrahedron comprised ifi. (The numbemn j 3 of System Modeling. For the second approach, we demand that
P (i)'s be at the same distance from the cone afex

squared diagonal lengths for the tree of tetrahedra equals ‘?We

numbern 3 of diagonal lengths for the tree of triangles, and NUS the set oP (i)’s is the intersection of the crease lines
similarly for the numbemn 2 of orientation signs.) with a sphere centered &. As noted earlier, the distance

betweenO and any point on a crease line is constant across
Constraints and DSpace Structures in Tetrahedral Para-  all deformations, so this sphere is also constant; further, since
meters. In this formulation, the loop closure constraint on théne cone panels are assumed to be rigid and planar, each of
panels of our polyhedral cone becomes that set of constraifiém intersects the sphere in a spherical line segnientan
on the diagonal lengths which is necessary and sufficient fgic of a great circle through the corresponding poir(g)
the tetrahedra comprised to exist. These constraints camandP (i + 1)), and the spherical length of that segment is also
be phrased in terms of the Cayley—Menger determinant. Agnstant. For simplicity, instead of spherical length we use
is well known, given real number®(i;j) (0 = i;j = 3) central angle to measure spherical line segments (the spherical
with D(i;j) = D(;i) » 0, D(i;i) = 0, pointsP (i) 2 R® |ength is the radius of the sphere multiplied by the radian
(0 =i = 3) with D(i; j)=kP (§) i P (i)k? exist if and only if measure of the central angle). Following standard usage from
spherical geometry, we also call a spherical line segment minor
if its central angle is irf0; ..], and major if not.

In this language, what we have observed is that the intersec-
tion of each cone panel intersects the sphere in a spherical line
segment of constant central angle. Therefore the intersection
of the sphere with the entire system of rigid and planar panels
incident on the cone apéX is a sphericah-gon loop 6 being
the number of panels) with links of fixed central angles; and
Equality holds if and only if the pointB (i) are coplanar. Each the kinematics of the single-vertex fold is equivalent, in the
of then j 2 tetrahedra 2 V (T) gives us one such inequalitysense of having identicdDSpaces, to that of this spherical
constraint. The set of ath j 2 inequalities defines the set ofloop. The converse, that every spherical loop corresponds in
feasible squared diagonal lengths for thesided polyhedral this way to a single-vertex fold, is obvious.
cone, which we calDStretch. There is a subtlety which we have no room to discuss

The tetrahedron orientation signs are likewise defined alopgpperly here, but which must be mentioned. It is entirely
the lines set out in [14] for triangle orientation signs for a looptandard to define the spherical distance between two points of
with a construction tree of triangles. If we useand j for the asphere to be the length of a minor spherical line segment with
two orientations of non-degenerate tetrahedra, and label sinfiese endpoints, and with that definition the sphere becomes
lar tetrahedra with both- and j , we obtain (roughly) an iden- a metric space in the usual way—in particular, the triangle
tification of DSpace[T] of the polyhedral cone parametrizednequality holds; but there is no compelling reason to require
by the treeT of tetrahedra wittDStretch[T] £ DFlip, where the edges of a spherical polygomagon to be minor segments.
DFlip = f+; jg"i2. (As in [14], eliminating the “roughness” Nonetheless, in the remainder of this paper we restrict our
requires analysis of “super-singular’ deformations.) Such aitention to spherical polygonal-gon loops in which each
DSpace parametrization is very similar to that for a planaedge is minor; equivalently, in the language of foldable objects,
loop with n links given in [14]. An important difference is to single-vertex folds in which the angle of each panel at the
that, whereas [14] proves thBXStretch of a planar loop with cone apex is at most.

n revolute joints and fixed link lengths is a convex polyhedron Spherical geometry shares many theorems with Euclidean
of dimensiom j 3, in the present cadeStretch is still convex plane geometry, but not all; so our triangle approach to spher-
but (forn , 5) it is no longer a polyhedron. ical n-gon loop kinematics is very similar, but not identical,

The geometry of its various curvilinear faces is reveald@ OUr triangle approach in [14] for Euclidean plamagon
by separate analyses of the constraint (2) in the cases wHERPS: Below, we emphasize the points of difference.
the corresponding tetrahedron includes exadtly2, or 3 Spherical Triangle Trees and Parameters.
diagonals: a single diagonal’s squared length is constrainedl'he construction trees of triangles in [14] have no branching
to lie in an interval; a pair of diagonals’ squared lengths ateecause the triangles are anchored (share a common vertex);
constrained to lie inside or on a certain ellipse; and a triple bbwever, as noted in the proof of Theorem 1, the results and
diagonals’ squared lengths lie inside or on the boundary ofasguments in [14] extend to arbitrary construction trees of
certain semi-algebraic (cubic) convex body. triangles, Euclidean or spherical. In particular, for migon

1 1 1 1

0 D(0;1) D(0;2) D(0;3)
D(1;0) 0 D(1;2) D(2;3) = 0 (2
D(2;0) D(2;1) 0 D(2;3)
D(3;0) D(3;1) D(;2) 0

=)



Following our general simplex-based approach, we define
spherical-triangle-based parameters for the deformations of a
spherical loop, and thus that of a polyhedral cone allowing
rotation about the edges. Namely, we use (a) the spherieal 4. (a), (b) Two embeddings, with different relative orientations, of one

diagonal length§I[T](1);:::;fI[T](n i 3), and (b) the spherical pair of spherical triangles. (c) A deformation obegon loop, differing in the
orientation of exactly one triangle from that shown in Fig. 3(a).

loop each construction tree hasj 2 nodes andh j 3 edges
(loop diagonals); Fig. 3 shows this for a spheriéajon with
central angleg€50; 97; 151; 82; 35; 59) (in degrees).

(a) Like. (b) Unlike. (c) Cf. Fig.‘3(a)

is a construction tree of spherical triangles for the spherical
loop, f![T](i)_ is the central angle of di:?\gonal an.ds[T].(i) is 62 ‘ B Mg Ml
the orientation sign+, i, or 0) of the ith spherical triangle m
in T. One way to define this sign is as the orl_entatpn sign B1 b O
of the tetrahedron formed by the triangle vertices (in their B3 U
given order) preceded by the center of the sphere; as usual
0 means that the tetrahedron is degenerate (equivalently, that
the triangle is contained in a great circle). Reasoning like that
in [14] shows that the orientation sign valugid](i) are es- Fig.5. (a)DStretch for a flat origami vertex with six creases and cone angles
sentially uncoupled from the central angle paramefi¢fg(j); (45: 30; 65; 50; 70; 100) degggegbagg)a lineelljrl pakth of Shr?gg gg(r)aTAest)er values
. : _ . ojning a gray interior point(60; 60; to a black corner(95; ; .
revers!ng Fhe Sllgn Of_a non degenergte triangle CorreSpond%b Space for a flat origami vertex with four creases; it is not a manifold.
reversing its orientation (compare Figs. 3(a) and 4(c)).

Constraints and DSpace Structures in Spherical Triangle Now, returning to Spherica| |00p5, we note that the |Oop

Parameters. To generalize the method given in [14], we neegdlosure constraint is the set of triangle inequality constraints

to find the necessary and sufficient conditions on three angig$ the diagonal lengths required for successful formation of

less than or equal to such that there exist a spherical trianglgy| spherical triangles in the construction tr&e As in [14]

with those central angles. This is easy to do in light of th@is implies thatDStretch, the set of feasible diagonal central

observation (true in both spherical and Euclidean geometiggles, is a convex polytope with a natural stratification.

that the length of one edge of a triangle is at most the symig. 5(a) illustrates the situation for a spheriGatjon loop

of the lengths of the other two edges. One issue here is thath central angles of45; 30; 65; 50; 70; 100) degrees.)

the spht_arical diste_lnce between any two points is restric_ted tOAgain as in [14], this construction endow@Space with

Losujll Su“r/riln ﬂimﬁn;viﬁ;glﬁégff;nzgggéz :]inlijlav’vg/i: a stratifica?ion: rgughly,DSpace is constructed by.gluing

if we definel theirspherical sumby remd ' together2"i? copies of DStretch (one for each assignment

of orientation signs to triangles im) along boundary strata

fly = fl, = min(fly + fly; 2. j fly + fly) (38) corresponding to singular deformations (with one or more sin-

] ) ) . . gular triangles). One essential fact used here is that reversing
then we find that their spherical sum is again betw@end..;  the orientation of a non-singular triangle, if possible, requires
and we see that given a spherical triangle with vertR¢®), passing through a singular deformation of the triangle.

P (), P (k) at spherical distancei(i; j), fl(j; k) andfl(k; i)
in [0;..], the triangle inequalities become

—ale - sle -

(@) (b)

As a simple example dbDSpace structures, consider a flat
origami vertex with4 panels. Let its cone angles BkO; 1),

fl(i;j) = fiG; k) = fik; i) 4 fl@;2), fi(2;3) = .. i fl(0;1), and fI(3;0) = .. § fI(1;2)

fl(j: k) = fl(k; i) = fi(i: ) (5) (here we use properties (a) and (b) of flat origami vertices as
. N w e quoted in section Il1). As the only shape parameter, we use the

filk; i) = (i 5) = G k) ®) central angle betweeR (0) andP (2). It is easy to verify that

Moreover, in the cubg0; ..]3, these inequalities (which are allDStretch is the interval with endpointffl (0; 1) i fl(1;2)j and

linear in the coordinates) cut out a convex polyhedron.  fl(0;1) = fl(1;2). Further, at these endpoints the two triangles
of the tree, one with verticeB (0), P (1), P (2) and the other

with verticesP (2), P (3), P (0), are simultaneously singular.
(Trying some concrete values fl(0; 1) andfl(1; 2) may help
understand this fact.) Thus wh&tspace is constructed from
4 copies of the intervaDStretch, at each end of the interval
all four copies are glued together; the resultiD§pace is
singular (.e., not a manifold), and looks like the union af
circles intersecting & points, as shown in Fig. 5(b). We see
Fig. 3. One deformation of a spherictédgon loop with3 sets of shape that all flat origami vertices oft panels (with generic cone
parameters derived fro different trees oR-simplices. angles) have topologically identicBISpaces.




(d)

Fig. 6. Deformations and motion of the flat origami vertex wiltstretch illustrated in Fig. 5(a); diagonal angles (in degrees) and orientation signs
are as indicated. (a) Query deformatidn((60;60;80); (i; i; i;+)); (b) query deformation 2 (60;60;80); (+; +; +;+)); (c) a flat deformation
((95; 120; 145); (0; 0; 0; +)); (d) a linear path between query deformatibrand the flat deformation (also shown in the copy$pace of Fig. 5(a)

that has orientation sig@i; i; i;+)); (€) singular deformation 1(95; 60;80); (0; i; i;+)); (f) singular deformation 2(@5; 120; 80); (0; 0; §; +)).

C. Results and Discussions parameters greatly simplifies path planning for single-vertex

The tetrahedron and spherical-triangle approaches exhfigids- That is, two query deformations in the closure of one
similarity in DSpace structures for single-vertex fold kine-DSpace stratum (roughly, the points @Space corresponding
matics, as summarized in the following theorem. to one copy oDStretch) can be joined by a straight-line path

Theorem2: For a single-vertex fold witm rigid panels, becauseDStretch is convex. Two deformations merely in the

DStretch is an(n j 3)-dimensional convex bodfFlip is the Same component obSpace can be joined by a piecewise-
discrete sef+; jg"i2, andDSpace consists oR2"i2 copies linear path,. once we determme_ critical singular deforma_nons
of DStretch properly identified along their boundaries. ¥ through which to move succgsswely between strata; again, the
Both approaches have significant advantages over gﬂnpl_e_nature of the constraints on our shape_ parameters leads
proaches that use joint angle parameters, thanks both to péfficient computation of singular deformations.
explicit constraints in our new parameters and the practicalFigs. 6(a) and 6(b) show two query deformations of a flat
convexity of DSpace in these parameters. As an illuminatingPrigami vertex withé panels, again having central angles of
example for the efficiency of our simplex-based approact#5; 30; 65;50; 70; 100) degrees: both deformations have diag-
consider the generation of loop deformations. In our ne@nal length values o(60; 60; 80) degrees, and have opposite
parameters, this can be done in two steps. orientations for all triangles except the one with vertigg),
First, we solve the shape parameters. Both Cayley—Mend(3), P (5). Each query deformation can be linearly connected
determinant and spherical triangle inequality constraints ctth @ flat deformation, like that in Fig. 6(c) with diagonal
be efficiently solved,e.g, with convex programming (or, lengths of(95; 120; 145) degrees. Fig. 6(d) illustrates a linear
for triangle inequalities, linear programming). We have algeath from the deformation in Fig. 6(a) to the flat deformation.
developed our own solving methods that take advantage of ¥lile a linear path between two points in a convex set is
highly structured constraints; in our computation study usirfflortest in the convex metric and mathematically optimal, it
Matlab, they beat the general methods by orders of magnitugenerally involves simultaneous motion (folding) of all crease
Second, we pair the shape parameter values with the relalids. Since in practice many folding motions are most easily
orientation sign parameters. For a generic single-vertex fal@ne by folding only one or a few creases at once, for folding
with n rigid panels, each set of diagonal length parametgfoblems Manhattan paths are likely to be more practical than
values of a non-singular deformation pairs wathi 2 distinct linear paths. The query deformation in Fig. 6(a) can reach the
sets relative orientation signs, generatifid 2 distinct (though flat deformation by using &-segment Manhattan path through
related) system deformations, all with the same simplex shae© singular deformations as in Figs. 6(e) and 6(f).
but differing simplex orientations. On a laptop computer, using For single-vertex fold systems, the spherical triangle ap-
linear programming in Matlab, a set of valid shape parametgmach will generally be more efficient than the tetrahedron
for a generic single-vertex000-panel fold can be generatedapproach, since triangle constraints (inequalities (4)—(6)) are
in aboutl millisecond. Paired with the points &@Flip, this generally simpler than determinant constraints (inequality (2)).
yields 2998 different deformations. We introduced both approaches since each has its own ad-
Knowledge and nice geometry of systeDBpaces have vantages in various situations;g, the tetrahedron approach
significant impact on many kinematics related issues such generalizes directly to multi-vertex folds (like that in Fig. 7)
system design and path planning. For example, it is foreseeable
for certain design tasks to favor systems in which having all (or

important) system configurations fall into a single connected Tet(0,1,2,7)
component oDSpace (or of DFree, when collision avoidance Te(0,2.3,7)
is taken into consideration). Explicit and efficient parame- Tet(0,36,7)
trization of DSpaces provides invaluable tools to designers Tet(0,3,6,4)
for the evaluation and improvements of design schemes. As Tel(0.4,5,6)

another example of the broad implications of our approach and
results, the piecewise convexity BfSpace in simplex-based Fig. 7. A multi-vertex fold with a construction tree of simplices.



that allow construction trees of tetrahedra. Note that a multi-
vertex fold contains multiple loops of panels; Fig. 7 is just one
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