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Abstract— As robots become more ubiquitous in our daily lives,
humans and robots are working in ever-closer physical proximity
to each other. These close physical distances change the nature
of human robot interaction considerably. First, it becomes more
important to consider safety, in case robots accidentally touch
(or hit) the humans. Second, touch (or haptic) feedback from
humans can be a useful additional channel for communication,
and is a particularly natural one for humans to utilize. Covering
the whole robot body with malleable tactile sensors can help to
address the safety issues while providing a new communication
interface. First, soft, compliant surfaces are less dangerous in
the event of accidental human contact. Second, flexible sensors
are capable of distinguishing many different types of touch (e.g.,
hard v.s. gentle stroking). Since soft skin on a robot tends to
invite humans to engage in even more touch interactions, it is
doubly important that the robot can process haptic feedback
from humans. In this paper, we discuss attempts to solve some of
the difficult new technical and information processing challenges
presented by flexible touch sensitive skin. Our approach is based
on a method for sensors to self-organize into sensor banks for
classification of touch interactions. This is useful for distributed
processing and helps to reduce the maintenance problems of
manually configuring large numbers of sensors. We found that
using sparse sensor banks containing as little as 15% of the
full sensor set it is possible to classify interaction scenarios with
accuracy up to 80% in a 15-way forced choice task. Visualization
of the learned subspaces shows that, for many categories of touch
interactions, the learned sensor banks are composed mainly of
physically local sensor groups. These results are promising and
suggest that our proposed method can be effectively used for
automatic analysis of touch behaviors in more complex tasks.

I. INTRODUCTION

Robots are becoming more ubiquitous in our daily lives
[11[2][3][4], and humans and robots are working in ever-closer
physical proximity to each other. Due to this proximity, there
is increased potential for robots to inadvertently harm users.
Physical nearness also increases the need for robots to be able
to interpret the meaning of touch (or haptic) feedback from
humans. Covering the whole robot body with malleable tactile
sensors allows us to address both of these concerns. First, soft,
compliant surfaces are less dangerous in the event of accidental
human contact[5]. Second, flexible sensors are capable of
distinguishing many different types of touch (e.g., hard v.s.
gentle stroking). This is important, as soft skin actually invites

more natural types of touch interaction from humans, so it is
critical that the soft surfaces of robots be touch sensitive.

To extract information about humans’ physical contact with
robots, the distribution density of tactile sensor elements,
sampling rate, and resolution of kinesthetic sense all must be
high [3], resulting in a high volume of tactile information that
must be processed. To do so, the following three problems
must be solved. First, there is the problem of reduced system
robustness due to an increased number of possible failing
components. The second is the high cost of data processing.
The third is the administration of the sensors’ configuration.

The previous study of [6] proposed highly dense dis-
tributed skin sensor processing based on interconnecting a
self-organized sensor network. Spatiotemporal calculation in
each node with spatially seamless tactile information gathered
from adjacent nodes enabled haptic interaction features to be
extracted, solving the first and second challenges. For instance,
an edge detection method is applied to extract features of
haptic interaction within the local sensor, yielding an efficient
data compression. This type of distributed processing requires
that the configuration of tactile sensor position is described
in the distributed programs of network nodes, which is the
remaining third challenge. Manually describing 3-dimensional
tactile sensor positions, changing with robot’s postures, is
very labor intensive and error prone. Moreover, distributed
processing typically requires predefined sensor banks, defining
which tactile sensors are used in distributed processing for
each network node, also a labor intensive task.

In [7], we found that interaction scenarios could be suc-
cessfully classified simple k-nearest neighbors (KNN) using a
novel feature space based on cross-correlation between tactile
sensors, achieving performance of 60% in a 13-way forced
choice task. We also found that many categories of touch
interactions can be easily visualized by arranging sensors
into a “Somatosensory Map” using MultiDimensional Scaling
(MDS)[8] applied to this feature space as a similarity measure.
These promising results suggest that this feature space can be
effectively used for automatic analysis of touch behaviors in
more complex tasks.

In this paper, we propose a method for learning “self-



organizing tactile sensors” using the feature space from [7] to
solve the remaining third challenge. In the proposed method,
a classifier is constructed using CLAss-Featuring Information
Compression (CLAFIC) [9], a type of a subspace method,
applied to a data set consisting of the full cross-correlation
based feature space of [7]. Instead of directly using a learned
subspace as the input for a classifier, we select the sensor pairs
that are most “useful”, i.e., have the highest relevance for the
classifier output, to form a more compact sensor bank to be
used as input to the classifier. Since now different sensor nodes
are involved in different classifiers, it is possible to distribute
processing around the body, which can be implemented as in-
network processing on the self-organizing sensor network [6].
We call each learned sensor bank a “self-organizing tactile sen-
sor”. We found that classifiers based on self-organizing tactile
sensors could classify interaction scenarios with an accuracy
of up to 80% in a 15-way forced choice task, a significant
improvement over prior work. The learned subspaces can also
be visualized in a “Somatosensory Map”’, showing sensor point
distribution in a 2D plane.

The rest of this paper is organized as follows. In Section
we II describe related work, and contrast our study with
others. Section III describes the basic idea, and then details the
proposed method for self-organizing tactile sensors. Section
IV describes experiments dealing with human-robot haptic
interaction used to construct a haptic interaction database. In
section V, using the database, the performance of the proposed
method is shown. Also, the learned subspaces are visualized in
the Somatosensory 2D Map. Section VI discusses the results,
and Section VII concludes.

II. BACKGROUND AND COMPARISONS

Prior work on studies of robots with tactile sensors has
tended to focus on the development of the physical sensors and
transmitting sensor data. For instance, [10] proposes a Large-
Scale Integration (LSI) technique for processing data from tac-
tile sensors. Iwata et al.[4] demonstrated physical interaction
with users via a skin equipped with 6-axis-kinesthetic sensors.
Pan et al. [11] and Inaba et al.[2] described tactile sensors
using electrically conductive fabric and strings as a whole-
body distributed tactile sensor for humanoid robots. And
Shinoda et al.[12] proposed a wireless system for transmitting
tactile information by burying wireless sensors under the robot
“skin.” Thus so far, this research is mainly limited to the
problems of collecting tactile information, and solving the
necessary wiring and physical implementation problems.

Compared to other sensory modalities such as vision and
audio, relatively little prior work has been done on process-
ing haptic interaction from incoming tactile sensor signals.
Miyashita et al. [1] estimated user position and posture in
interaction using whole-body distributed tactile sensors. Naya
et al. [3] classified haptic user interaction based on output
from tactile sensors covering a robot pet. Francois et al. [13]
also classify different two touch styles, namely “strong” and
“gentle”. Though the above research classifies human-robot
interaction using tactile sensors, these and other prior studies

have not to our knowledge been successful in classifying
several haptic interactions while robots are interacting with
users.

Pierce and Kuipers [14] proposed self-organizing techniques
for building a “cognitive map”, which represents knowledge
of the body corresponding to physical position of sensors.
This map shows the position of each sensor installed on the
surface of a robot. However, this method will not work out
for a robot having high degree of freedom and soft skin
because the positions of the tactile sensors in 3-d “world”
coordinates dynamically change during an interaction. Rather
than construct spatial maps to acquire physical sensor positions
our objective is to use, interpret and visualize underlying
haptic interaction features.

Kuniyoshi et al. [15] proposed a method for learning a
“Somatosensory Map,” showing the topographic relationship
of correlations between incoming signals from tactile sensors
distributed on the whole body surface of a simulated baby. In
their somatosensory map highly correlated sensor points are
plotted on a 2D plane close to each other. As the result, the
map showed the structure of robot body parts rather than the
physical sensor positions as in Pierce and Kuipers[14].

In this paper, our goal is similar to that of [15], so that highly
correlated sensor points will be located close to each other, and
thus we keep the name “Somatosensory Map[15].” However,
we use a different technique to acquire the map, and use real-
world human-robot interaction rather than a simulated baby.
Moreover, we attempt to classify haptic interactions using
correlations between incoming signals from tactile sensors
distributed on the whole body surface.

III. SELF-ORGANIZING TACTILE SENSOR METHOD TO
DECIDE SENSOR BOUNDARIES

A. Basic idea

Suppose that N tactile sensors are implemented on a robot,
and that i-th tactile sensor stream during one human-robot
interaction is called S; (¢ = 1,..., N) where S; is a vector of
the n time-step sampling result of the sensor outputs (S; =
{(Si)1, -, (Si)n}, (Si)t € R). Features need to be extracted
from this time series of the data stream. However, less work
has been done on processing tactile features than on audio or
vision. In conventional works[3][13], since the data are high
dimensional, summary statistics, such as mean, standard error,
minimum, max, and coefficients of fast Fourier transformation,
are computed from one sensor or all of the sensors to be used
as features. A feature space defined from one sensor will not
be enough when several sensor are activated by touches, e.g.,
distinguishing a finger tap from a hand tap or a tickle. On the
other hand, the feature space computed from combining all the
sensors is less robust, since the features could be drastically
changed if e.g. one sensor is broken. Feature space defined
from several sensors, at least from two sensors, could be an
effective happy medium.

We proposed a feature space using cross-correlations com-
puted from sensor pairs, satisfying the above condition, in
[7]. The cross-correlation is one important statistics in human



tactile system — Dince et al.[16] reported that discrimination
ability of the two point stimulus is improved when correlated
stimulus is added continually to two close separated point of
a human finger. In fact, the visualization results of our feature
space, i.e., the Somatosensory Map, show characteristics of
many categories of touch interactions[7] by arranging sensor
point. Fig. 7 is the Somatosensory Map made from a 2 minute
interaction between human and a robot. This presentation
simplifies the haptic interaction; e.g., distinctive sensor point
cluster of both arms’ sensors are to the result of subject
touching the robot’s arms at the same time.

The cross-correlation based feature space has another advan-
tage that the choice of sensors to be included in a sensor bank
for a certain computation can be decided via the elements used
in the classifier’s selected subspace. Often the useful subspace
is composed of combination of sensors located in close spatial
proximity, since distant sensors usually have low correlated
signals and thus have less mutual information than adjacent
Sensors.

B. Feature space

A feature vector a is computed from the cross-correlation
matrix defined by equation (2) as follows:

t
a= (R, Ra,ny Res)yReny, Riv—1,3)
———

N-1, N-2, 1

ey
where R(; j) is cross-correlation matrix element at (7,5) be-
tween N sensors, i.e.,

Rij (Si8) = —=5=
iiCjj

(-1<R;; <1) (2

where
n

Cij =Y ((S)e = 5i) ((S): = S) 3)

t=1

is cross variation of (i, j), and S; is average of time series data
S;.

C. Overview

We construct a classifier for detecting haptic interaction
between robot and human uses the CLAFIC method[9], a type
of subspace method. This method represents each class as
eigenpairs computed from a training data set. The subspace
method starts from an idea of Watanabe et al.[9] that, as
the feature space grows, the data set will converge to a
limited small subspace. The CLAFIC method approximates
this subspace with eigenpairs. Since the feature space defined
in I1I-B is also a high dimensional space of O(N?), feature
vectors of a data set should also be restricted mostly to a
limited feature subspace.

In our proposed method, a dimension reduction of the
extracted subspace is additionally applied by selecting base
vectors having large inner product values. The classifier output
is then calculated from a selected subspace consisting of only
a few base vectors chosen from cross-correlation elements of
the coefficient R;; computed from all sensor pairs. Hence,

this subspace and feature selection results in useful subsets of
sensors that can be used to distribute processing. Since these
subsets are found automatically, we call this method finding
“self-organizing tactile sensors”.

D. CLAFIC method

Fig. 1 shows the overview of classification. At first, a data
set Xy, is prepared from py, feature vectors (ay) computed from

. . def
a time series of sensor streams labeled as a class k ( = wy),
where py is the number of training data set. Thus

Xk = {ak17"'7akpk} (4)

The approximated subspace of CLAFIC method begins by
performing singular value decomposition (SVD):

X, =UD,V! )

where the columns of U is left singular vectors; D, has
singular values and is diagonal; and V* has rows that are
the right singular vectors. We perform a forward feature
selection of singular vectors to perform classification using
a low dimensional subspace. First, we arrange the vectors
obtained from the SVD performed only on data from class
k in decreasing order of the ((dk)1, (dr)2, - , (dk)smaliest)
singular values, and compute a discrimination function DF'y
of class k, which takes input an unknown vector x, and
computes

m
DFy, (x) = > (x'ug;)’ (6)
j=1
using only the first m vectors, where uy; is a left singular
vector derived only from data in class k. We choose m by
starting at mm = 1 and increasing m until the cumulative
contribution ratio in eq. 6 exceeds a threshold value C;. The
output of the discrimination function corresponds to the square
of the length of an unknown vector orthographically projected
onto the low dimensional subspace. The classifier outputs the
class name which has maximum DF' output.

| max {DFy (x)} = DF; (x) = xcuw )
Using the fidelity value 7 as Watanabe et al. proposes[9],
the unknown is vector classified as “unknown” class if the
maximum DF is not significantly difference from the second

maximum DF, i.e., if
DF[ (X)
. S 1/7_ (8)
max (DFy (x))

evaluates to “false”, the classification is “unknown”.

E. Learning Sensor Banks

A sensor bank for a classification task is decided by
selecting a useful subspace that has high relevance for the
classifier. As equation (6) shows, the output of the classifier is
composed of inner products. Considering the u;; elements are
weights for the unknown vector elements, if a p-th element
{uy;}, is close to 0, the element {x}, could be ignored. In



computer vision, Ishiguro et al.[17] has proposed this type of
idea, describing it as a form of “attention control”.

Let u;; be an approximated subspace ignoring the all ele-
ments close to 0, where all {u;;},, smaller than C are simply
replaced by 0. Now we construct approximated discrimination
function DF, (x) as follows.

m
* % \2
DFy (x) = Z (x"uy;) €))
j=1
where uj. are assumed to be nearly orthogonal, and are
normalized (uj; = Qy;/ [[Qk; ).
The approximated discrimination function DF7} (x) is also
composed of inner products of uj; and x, however now we
need to know only the g-th elements ({x},), where

{q : {qu}q 7 O}

From the definition of feature space in equation (1), only
elements R, ) need to be computed, where (14, s,) is a
sensor pair needed to compute g-th element {x} ¢ = Rrgs0)-
These sensor pairs define whether the sensor is used or not
used in the sensor bank, facilitating distributed processing,
since each classifier only needs a subset of sensors.

(10)

Fig. 1. Overview of the classification

FE Somatosensory Map

To visualize feature vectors and sensor banks, we define
dissimilarity as d;; converted from the coefficient of the cross-
correlation matrix R;; with the following equation (11),

dij(Rij) = —log (|Ryjl) - (11)

This dissimilarity definition defines a “distance” between
(i,4) sensors, i.e., higher correlated (or negatively correlated)
sensor pairs have smaller dissimilarity. (Note that it does not
satisfy all properties of a true distance notion.) Since the self-
correlation coefficient is always 1, the dissimilarity with itself
is always 0, i.e.,

(0 <di; < o0)

(S; # constant) (12)

In the Somatosensory Map, the [N sensor points are arranged
into a 2D map using MDS[8] based on the dissimilarity
definition of the equation (11). This 2D map can be used to
visualize a vector of the cross-correlation feature space, e.g.,
fig. 7 is the Somatosensory Map plotted using a feature vector
during a human-robot interaction[7]. In section V we apply
this method to u;; to interpret experimental results.

TABLE I
SCENARIO BASED DEFENITION OF THE INTERACTION CLASSES

Class name Approaching a person m
(step) (C1 =0.15)
classl “Hello.” 4
class2 “Let’s shake hands.” 4
class3 “Nice to meet you.” 5
class4 “What’s your name?” 5
classb “Where are you from?” 5
class6 “let’s play!” 5
class7 “Do you think I'm cute?” 4
class8 “I wish you’d pat me 3

on the head”
class9 “Whee!” 6
class10 “I want to play more.” 5
classll “Tickle me.” 7
class12 “That tickles!” 3
class13 “Thanks” 4
classl4 “Give me a hug.” 7
classlb “Bye-bye!” 4
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Fig. 2.  Overview of our tactile sensor system

IV. EXPERIMENTS
A. Hardware

The hardware on which we are testing our proposed tech-
nique is detailed below. Fig. 2 shows an outline of the
hardware for the experiments described in this section. Fig. 2
(a) shows the communication robot Robovie-I1IF[20], provided
with high-density soft tactile sensors and a sensor network
consisting of a RS422 bus network via which nodes connected
to a host PC (Fig. 2(b)). Fig. 3 shows the structure and
materials of the skin sensors installed on the Robovie-IIF
surface, and Fig. 4 is the location of embedded piezofilms.

#—— Thin silicone rubber (5 mm)
/ Piezo film sheet (PVDF)
Thick silicone rubber (10 mm)

Urethane foam (15 mm)

Fig. 3.

Architecture of skin sensor devices
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Fig. 4. Position of the skin sensors (PVDF films) on the deployed surface
of the Robovie-IIF

(a) pat the head

(b) Hug

(c) Touch the robot

Fig. 5. Observed haptic interactions between the robot and the visitors at
Osaka Science Museum May. 2005

274 Piezofilms (3 cm x 3 ¢cm, or 5 cm x 5 cm) are embedded
in soft silicone rubber. Sampling time for the 16 bit A/D
converter is set to 100 Hz, and tactile sensor outputs are read
to the host PC of Robovie-IIF at every sampling. Using this
hardware, we conducted two experiments detailed below and
shown in Fig. 5 and Fig. 6.

B. Field experiment

Our research group conducted several events in the Osaka
Science Museum with socially interactive robots[19]. The first
experiment is a field experiment during the event named
“Let’s play with Robovie”. In the event, the Robovie-IIF was
displayed in the Osaka Science Museum during May 2005. We
asked visitors to play with the Robovie-IIF and with the goal
of investigating what kind of haptic interaction can be realized
between humans and the Robovie-IIF. Figs. 5 (a) to (c) show
the three haptic interactions such as (a) Patting on the head, (b)
Hug and (c) Touch the robot body, observed in this experiment.
From these observations we designed a “haptic interaction
scenario” for a second experiment to encourage human-robot
interaction in which we expected subjects to touch Robovie-
IIF, detailed below. Table I shows the interaction scenario
stages. Each stage in the scenario consists of the control rule

(a) “I wish you’d pat
me on the head.”

(b)“Tickle me.”

(c) “Give me a hug.”

Fig. 6. Observed subject’s behaviors in each step of the scenario during the
experiment for database construction

that the Robovie-IIF tries to sustain interest of a subject to keep
interaction going and proceeds to the next stage after finishing
each interaction. (See “approaching a person” of Table I.)

C. Construction of the haptic interaction database

In a second experiment, using a “Wizard of OZ” method
[18] based on the scenario-based rules described in Section I'V-
B, Robovie-IIF is controlled by an experimenter with several
monitoring displays. We expect the robot to be touched by
subjects during these interactions. We constructed a scenario
based interaction database which includes the monitoring
videos, all of the tactile sensor signals, the command signals
sent to control the robot, with all data time stamped using a
common clock.

Each subject was asked to interact with Robovie-IIF in 3
trials separated by 10 minutes each. There were a total of
48 subjects, 24 males and 24 females, all of them college
students. Each trial took around 5 minutes and was set up
with the same condition except for the subject’s position at
the start of the scenario. These positions were each 2m away
from Robovie-1IIF, at 45 degrees to the right, 45 degrees to the
left, and O degrees (where O degree is defined as in front of the
robot). We asked the subjects to simply play with Robovie-IIF
(which has a child-like voice and uses other cues to encourage
humans to treat it as a child), and explained to them before
each trial the following rules: (1) The subjects can touch the
whole body of Robovie-IIF, (2) The subjects are required to
listen carefully to what Robovie-IIF is saying, and (3) The
subjects are required to be close to the robot in order to turn
on the robot by touching it at the start of each trial.

Fig. 6(a) to (c) show the observed haptic interactions in the
experiment, such as (a) “I wish you’d pat me on the head.”
of class8, (b) “Tickle me.” of classll and (¢) “Give me a
hug.” of classl4. Excluding approximately 24 cases in which
there were technical difficulties, approximately 120 cases of
data were acquired to form a “haptic interaction database” of
data collected from real interaction scenarios. Segments of the
tactile sensor data are automatically clipped and labeled using
the time stamps for when each scenario stage (as defined in
Table I) begins and ends. Thus, unlike previous work in which
interaction segments were hand-labeled by an experimenter,



we do not perform any manual coding of the data.

V. RESULTS

To emphasize the tactile sensor data when subjects touch
the robot, we prepared S, from the output of tactile sensors
as shown in the equation (13) since our database includes lots
of information caused by the robot movements.

S,i:{ @',(Si—@ >0i) }
Si, (|8 = 8| < o)
where S; is the i-th sensor output, average of time series data
of S; is S;, and standard deviation of S; is o;. If the absolute
difference between S; and S; is smaller than standard variation
0, S; is replaced by the average S;. In this section, all of the
results are from 5‘1

Fig. 7 shows the 2D Somatosensory Map obtained from
a cross-correlation matrix of each tactile sensor during an
interaction in a field experiment between the Robovie-IIF and
a subject (Fig. 5 (c¢)). Figs. 8 and 9 show the results of Leave-
One-Out cross validation tests for evaluation of the classifier
using the K-nearest neighbor (KNN) method (¢ = 3) and
the currently proposed method, respectively, on the whole
dataset. Figs. 9 through 12 show the results of choosing
different values of C; and C using the proposed method.
In these figures, class k (kK = 1,...,15) corresponds to the
classes defined in Table I. For example, the data set labeled
class?2 consists of tactile sensor data collected between the
time when the start command of class2 (“Let’s shake hands”)
was sent to the Robovie-IIF and the time when the start
command of class3 (“Nice to meet you”) was sent. (The
data sets include some cases in which subjects did not deliver
expected interaction.) As can be seen in Fig 8, the KNN
method achieved classification of over 60% for many haptic
interactions such as class2, class6, class7, class8, classll,
and class15, using only the correlation patterns of all tactile
Sensors.

Fig. 9 shows the correct recognition rates for the proposed
method, while figure Fig. 10 shows the “false alarm” rate,
computed for each class as the number of times an example
was incorrectly classified as belonging to that class, divided by
the number of examples that actually belong to that class (thus
these numbers can be greater than 1). For these experiments,
the fidelity value 7 was experimentally fixed to be 0.95,
which did not change the recognition rate but improved the
false alarm rate. Each figure has 6 conditions that are in
the set {(Cy,C5) : C1 = 1,0.15 Cy = 0,1, 2}. The number of
orthogonal base vectors (that are left singular vectors, u;;,) is
decided by the parameter C1, shown in Table. I. The parameter
C5 determines the reduction of size of the feature space, e.g.,
the reduced feature space in case Cy = 0, 1, 2 were 0%, around
80 — 85%, and around 94 — 96%, respectively.

The proposed method improved classification to 80% for
most haptic interactions, including classl, class2, class6,
class?, class9, classll, classl4, and classlb when using
(C1,C3) = (0.15,0). This performance was almost the same
as for (C1,C3) = (0.15,1), which used only 15% of the

13)

feature space. When the feature space size is reduced to 5%
in the condition (Cy,C5) = (0.15,2), performance is still as
high as 60% for haptic interactions of classl, class8, classll,
and class1b (note that random, “by chance” performance is
less than 7%).

Fig. 11 shows the result of the feature space reduction.
Elements of vector ug; are arrayed onto a matrix of the
same size as a cross-correlation matrix, and large weighted
cross-correlation elements are visualized with darker (more
black) colors. Adjacent tactile sensors usually have closer
numbers, and are displayed as square line boxes corresponding
to their part names. As expected, the useful feature spaces are
composed mostly of adjacent sensor pairs. The boxes shown,
which include several highly weighted elements, are the result
of self-organizing results corresponding to the boundaries of
tactile sensors. These self-organizing results are also shown
in Fig. 12 (a) and (b), which shows the arrangement of
sensors in a 2D Somatosensory Map using ugy; and uiyy;.
Closer sensor pairs have larger weight in their cross-correlation
element. Fig. 12 (a) shows that head sensors, probably touched
in the “pat me” interaction, are clustered apart from other
sensors. Fig. 12 (b) also clustering of the front side of the body
(F-body) and of the left and right side of the body (LSide-
body and RSide-body), which are often touched together in
the “tickle” interaction. Note that these results do not make
use of any knowledge about the spatial position of sensors but
only using sensor streams from the whole robot body.

VI. DISCUSSION

Comparing our Somatosensory Map with previous work
[14][15], we found that haptic interactions form clusters in
the map that often can be grouped by body part. Using
this representation for human-robot interaction we achieved
good classification results for those interaction categories in
which there was some human touching. In previous work for
classification of haptic interaction [3][13], the data sets for
learning classifiers were hand labeled by the experimenter. In
our case, the database is self-labeled during scenario based
interactions. The label of each data point is based on what the
current designed scenario is, rather than given post-hoc by the
experimenter asking subjects to touch the robot. We assume
this is a more natural and practical database construction.

The Somatosensory Map shows large weighted elements
mainly between spatially-localized sensors. This is consistent
with the idea of Watanabe et al. that, as the feature space
grows, data sets converge to limited subspaces. Additionally,
the learned subspace was composed mainly of adjacent sen-
sor pairs in the tactile system, as seen in Fig. 11. Thus,
the CLAFIC method is able to achieve higher classification
performance even when using smaller subspaces of 15%
size. In fact, performance of 80% classification was achieved,
improving over the KNN method of 60%, despite a much more
challenging evaluation than in previous work. Instead of using
static objects consisting of tactile sensors, we constructed
the database from real human robot interactions. Since the
robot has malleable tactile sensors embedded under soft skin,



and the robot is moving during the experiment, it is possible
that the results come from the classification of self-sensations
provided by self-movements. However, it seems like more
classification is provided from subject’s touches, because the
recognition rate of the classes that we don’t expect to see
subject’s touches had low recognition rates. Nevertheless, this
problem is unavoidable while the robot moving during the
touch from other, so in the future we probably will also need
to use proprioception in the tactile system.

VII. CONCLUSIONS

In conclusion, the proposed method was found to be effi-
cient with the classification of real human-robot interactions,
and was able to be implemented as distributed in-network
processing.

In this paper, we describe a haptic interaction classification
method using cross-correlation matrix features, and propose a
self-organizing technique to define a bank of sensors to be used
in distributed processing of each class. The cross validation
rests results in recognition of 80% for those interactions in
which we expect subjects to touch the robot, using only 15%
of the feature subspace. The Somatosensory Map visualization
shows that the selected feature space was composed mainly
of spatially-adjacent sensor pairs. These promising results
suggest that our proposed method may be useful for automatic
analysis of touch behaviors in more complex future tasks.
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