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Abstract— Recently, several three-axial MEMS-based force
sensors have been developed. This kind of force micro sensor
is also called tactile sensor in literature for its similarities in
size and sensitivity with human mechanoreceptors. Therefore,
we believe these three-axial force sensors being able to analyse
textures properties while sliding on a surface, as would do a
person with his finger. In this paper, we present one of these
sensors packaged as an artificial finger, with a hard structure for
the bone and a soft rubber for the skin. Preliminary experiments
show a good sensitivity of the finger, as its ability to sense the
periodic structure of fabrics or to differentiate papers from
fabrics calculating a friction coefficient. Its performance for
discrimination of different surfaces is then estimated on fine
textures of 10 kinds of paper. Supervised classification methods
are tested on the data. They lead to an automatic classifier of
the 10 papers showing good performances.

I. INTRODUCTION

Research on tactile sense has stirred up a growing interest
in the past few years. Giving a robot the perception of forms
and textures would open to lots of applications, as object
manipulation or objective texture recognition, in fields as
different as paper and fabric manufactures, surgery [1] or
cosmetics [2].

During the ten last years, several artificial finger prototypes
were developed for texture recognition. To reproduce texture
sensing, an approach is to develop sensors by mimicking the
structural features of a human finger. Howe [3] and Tanaka
[4] developed sensors composed of several layers of different
elasticity to imitate the bone and the layers of skin (dermis,
epidermis...). Mechanoreceptors were represented by strain
gauges and piezoelectric elements as PVDF (polyvinylidene
fluoride) integrated in the artificial skin. Howe manages to
detect a 6.5 pm high knife-edge probe. Tanaka discriminates
rubbers of different hardness and roughness (450-100 pm
grain size). Mukaibo [5] went a little further adding skin ridges
to its artificial finger, as well as a cantilever system measuring
the overall normal and shear forces. Hosoda [6] integrated two
kinds of receptor, strain gauges and PVDF films, in the two
layers of an anthropomorphic fingertip, reproducing by this
way the four kinds of mechanoreceptors of human fingertips.
These two last prototypes integrate mono-axial strain sensors
and the studies were limited to differentiate textures of quite
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different materials (cork, aluminium, wood...). Moreover,
these prototypes size is quite large compared to a human finger.
This can be a problem for finer texture studies.

Recently, several three-axial MEMS (Micro Electro Me-
chanical Systems) measuring forces in the three dimensions of
space have been developed [7], [8], [9], [10]. Except Beccai
et al. [11], who report some slip detection results with a
tactile device for an artificial hand, very little results have
been published on the use of three-axial MEMS force sensor
in artificial tactile sensing experiments. On the basis of Yao’s
model [12], CEA-LETI is producing one of these innovative
sensors as individual elements and as arrays of 10 x 1 and
10 x 3 elements.

Among the four kinds of mechanoreceptors we own in the
fingertip, Pacinian Corpuscules (PC) are responsible for the
detection of vibrations occuring while rubbing a surface. The
size of a PC is about 1 mm large and its sensitivity about 1
mN. As it is implanted quite deeply in the skin, its receptive
field is large. But what makes the PC interesting is its high
frequency response (15 Hz-400 Hz) and therefore its capability
to detect small vibrations coming from fine texture exploration
[13].

The sensor produced by CEA-LETI is similar in size and
sensitivity to those of a PC. As it is a silicon MEMS it has a
high frequency response. Our approach is to use such a sensor
to study fine textures discrimination. We integrated this silicon
MEMS to a finger shaped structure and covered it with a soft
rubber skin to protect it. We expect this artificial finger to be
able to discriminate fine textures exploring surfaces as would
do a human person.

The first part of this paper describes the sensor and the
tactile exploration system. The second part presents two
preliminary experiments to state on the sensitivity of the
sensor: the discrimination of coarse textures such as paper
and fabric, and the reconstruction of forces and friction
coefficient images exploring a printed paper. The last part
describes an experiment of fine texture classification for 10
different kinds of paper. This document presents the results
of two classification algorithm among several tested. First,
a supervised classification method, using spectral features,
gave us a classification rate of 60%, which is good compared
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Fig. 1. Three-axial sensor made in a silicon mono-crystal. Top,Left: Scanning
Electrnical Microscopy (SEM) photo of the three-axial sensor. Top, Right:
bottom view of the diaphragm. Bottom: Diaphragm deflection when a force
is applied. Here, red gauges are stretched by the deflection, blue gauges are
compressed.

to the 10% random classification rate. The second applying
neural networks shows similar results but using only 5 selected
features.

II. ARTIFICIAL FINGER AND EXPLORATION SYSTEM
A. Artificial finger

The artificial finger has three components: a hard structure
for the bone, a tactile element for the mechanoreceptor and a
rubber for the artificial skin.

The silicon force sensor (see figure 1) is a sensor measuring
stress in three dimensions of space. It consists of a mono-
cristal silicon element, composed of a small mesa surrounded
by a thin diaphragm under which 8 piezoresistors are diffused.
The piezoresistors are implanted on orthogonal axis x and y.
As a force is applied on the mesa, the diaphragm will deflect.
The resulting strain of the diaphragm induces a compression
or a stretch of the piezoresistors, changing their resistor values.
Connecting these resistors to Wheatstone bridges, we can
measure three voltages U,;, Uy, U, respectively proportional to
the three components F, F,, F, of an equivalent force on the
mesa as demonstrated in [12]. Figure 1 (bottom) illustrates the
strain of the diaphragm when a force is applied on the mesa.
This silicon sensor is able to support a 1M Pa pressure and a
2N tangential force on top of the mesa.

The silicon tactile sensor is flush-mounted on a cylindrical
piece of hard epoxy and wire-bonded to its electronic. The
electronic is composed of three amplifiers, one for each output
voltage.

To protect the silicon sensor and also to transmit friction
forces when exploring a texture, the sensor is covered by a
soft rubber skin made of polyurethane as shown in figure
2. The rubber shape is composed of two parts: a cylindrical
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Fig. 2. Artificial finger composed of the 3-axial force sensor flush-mounted
on a hard epoxy layer and covered by a soft rubber skin
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Fig. 3. Loading response of the artificial finger covered with 80 shore A

rubber, for three loading-unloading cycles.

basis over the silicon sensor and a semi-spherical top part
that will be in contact with the sample to be explored. The
semi-spherical shape of the top part was designed to keep
the contact surface quite constant even with the wear. The
size of this top part was chosen to keep a contact surface
small enough (¢ ~ 3 mm) to detect texture details such as
fine roughness and small friction events of textures. The basis
of the rubber, which is in contact with the silicon sensor, is
chosen just a little larger than the size of the silicon diaphragm,
so that it optimizes the measurement of the global force
applied at on the top when exploring a texture. At first the
rubber was made of polyurethane AXSON URS5801/UR5850
of hardness 50 shore A. This rubber was used for preleminary
experiments presented in section III. But as it weared out
fast, we decided to change it for a polyurethane LOCTITE
3957 of hardness 80 shore A. This rubber is hard enough
to limit considerably the wear, but it is still soft enough to
keep a contact surface sufficient to be sensitive to friction
without deteriorating paper or fabrics samples while rubbing
them. The 80 shore A rubber was used for the fine texture
classification experiment presented in section IV. The artificial
finger covered with poluyrethane was characterized in loading,
showing a very good linearity with both kind of rubber. Figure
3 presents the loading characteristic of the sensor covered with
the 80 shore A rubber.

B. Exploration and acquisition systems

The artificial finger is fixed on the dart of an HP plotter
machine (sort of printer) used as the sample exploration system
(see figure 4). The plotter has two step motors allowing to
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Fig. 4. Plotter machine used as the exploration system. The artificial finger
is fixed on the dart usually dedicated to take a pencil. On this picture, the last
experiment paper samples presented in section IV is installed on the plotter.

explore surfaces in both x and y directions. One is dedicated to
move the sensor along a bar representing the x-axis. The other
one is used to move the samples along the y-axis thanks to
rollers. An electromechanical system lifts up the sensor when
not exploring. A 0.4N normal force is applied thanks to a string
on the electromechanical system. The plotter is connected to
a PC workstation by a National Instrument GPIB-USB cable
in order to control the moving speed and the position of the
artificial finger. The acquisition system is composed of an
electronic circuit of amplification, an analogue Nyquist filter
(SCXT 1000 Nat. Inst.) and a data acquisition card (DAQCard
6036E Nat. Inst.). The exploration and acquisition systems are
synchronously controlled by a dedicated Labview software.

III. PRELIMINARY EXPERIMENTS

To state on the sensitivity of the artificial finger two ex-
periments were built up as a preliminary to the classification
experiment. The first experiment aims at testing the ability of
the sensor to discriminate coarse textures easily discriminable
by touch. The purpose of the second experiment is to recon-
struct an image of the forces felt by the artificial finger when
exploring a printed paper.

A. Coarse texture discrimination

In this experiment four samples were explored: two papers
and two fabrics. The papers (P1 and 2) have a special texture
called Soft Touch (ArjoWiggins) which is quite soft and grips
a little. The samples of fabric are both made of cotton, but
each one has its own periodic weave form: one with a jean
weave (T1), the other with a plain weave (T2). The experiment
consisted in exploring the four samples in = and y directions
with two different speeds (v = 3.8 ¢cm/s,7.6 ecm/s).

Firstly, observing the spectrum of U, voltage for fabrics,
we detect easily the lines corresponding to the periodic weave
forms. Figure 5 presents a photo of the jean texture and
the corresponding spectrum of an z-direction exploration. We

U, spectrum of F1 exploration in z-direction
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Fig. 5. Top: Jean texture (F1) photo. In z-direction the Jean weave is about
0.83 mm periodic. Bottom: Spectrum of Uy voltage for v = 3.8 ¢m/s in red
and v = 7.6 ¢cm/s in blue. The common line (A &~ 0.85 mm) for both speed
exploration spectra corresponds to the weave periodicity. The extensibility and
the deformability of the material explain the difference between theoretical
and measured wavelength.

Friction Coefficient gy
5 T T T T

I |

Hu

N Paper Fabrics
AN -
2 1 1 {I
Pl P2 Fl1 F2
Fig. 6.  Friction coefficient (ug7) of paper samples (P1, P2) and fabrics

samples (F1, F2).

can note the common line for both speed of exploration
corresponding to the weave wavelength (A = 0.85 mm).

Secondly, we calculated, for each sample, a friction coef-

. \VU:24U,2 .
ficient defined by puy = “—F——, that we consider to be

proportional to the usual friction coefficient defined by pup =
%, where Fr and F)y are the tangential and normal forces
at the contact surface. We find a higher friction coefficient
for the Soft Touch papers than for the fabrics. The difference
in the friction coefficients seems quite representative of the
difference in stickiness we feel rubbing Soft Touch paper and
fabric samples. Figure 6 shows the mean friction coefficient
with bars representing standard deviation.

B. Image of forces

The second preliminary experiment consists in reconstruct-
ing the images of forces during the exploration of a texture.
With images of forces we could expect a better visualization of
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Fig. 7.  Left: Original printed grid explored horizontally (x-direction) at
v = 38 mm/s. Right: 1680 x 32 pixels image of the friction coefficient
py - The friction coefficient is greater for inked zones than for clean zones.

what is occurring to the sensor during exploration. The sample
explored was a grid printed on white paper with a classical
laser printer. The thickness of the ink layer was estimated, with
an optical profilometer, to be of the order of 10 yum. Figure 7
(left) shows the dimensions of the printed grid.

The grid was scanned by the artificial finger on 32 lines
in z-direction finger with a speed v = 38 mm/s and a
sampling frequency of 2 kHz. Scanned lines are spaced of
1 mm. After slightly low filtering signal to avoid artefacts, we
reconstructed a 1680 x 32 pixels image of friction coefficient
o . Figure 7 (right) presents the reconstructed image of the
friction coefficient. The image shows the great sensitivity of
the sensors and the good repeatability of measures. We can
note a greater friction coefficient for inked zones than for clean
zones.

IV. FINE TEXTURE CLASSIFICATION

Both preliminary experiments show a good sensitivity of
the sensor and an easy discrimination of coarse and periodic
textures. The first preliminary experiment shows it is easy to
discriminate papers from fabrics with the friction coefficient.
But it seems quite difficult on figure 6 to discriminate one
paper from the other. The next step of this study was then to
evaluate the ability of the artificial finger to discriminate quite
similar, fine and random textures, like paper textures.

This new experiment consists in classifying 10 textures
of paper, each texture of paper representing a class. We
constructed an important database to evaluate the efficiency
of several classification algorithms. One simple and fast al-
gorithm using spectrum of U, gives rise to good results. The
second presented below reduces signal to 5 features and uses
a neural network as classification algorithm.

A. Samples and database

The study of classification was based on paper samples
because it is particularly adapted to our exploration system and
it offers lots of possibilities in terms of texture. Paper is also
a material we are used to manipulate. For this classification
experiment we selected 10 samples that we could identify
relatively easily blind-rubbing them (easy for experts but much
more difficult for a common person). Among the 10 paper

TABLE I
10 PAPER SAMPLES TO BE CLASSIFIED. EACH SAMPLE IS ASSOCIATED
WITH A CLASS NUMBER ARBITRARLY CHOSEN

Class n Paper sample
1 Printer paper
2 Soft Touch
3 Skin Touch
4 Tracing paper
5 Large grain size drawing paper
6 Blotting paper
7 Newspaper
8 Coated paper
9 Small grain size drawing paper
10 Photo paper

samples, 8 are found in everyday life: newspaper, magazines
(coated paper), printer paper, tracing paper, drawing paper
with two grain size, photo paper and blotting paper. The last
two papers are special Soft Touch and Skin Touch textures
(ArjoWiggins), which are soft and grip a little. An arbitrarly
chosen class number is associated to each paper sample, as
shown in Table I.

The experiment consists in scanning the samples in different
zones along one direction, here x-axis of the plotter. The wear
of the artificial finger can be considered as insignificant when
sliding on a few centimetres. But for the experiment, the
artificial finger is sliding on a total distance of 20 m (2 m
on each sample) making the wear more important. To make
following classification independent of the wear of the artificial
finger rubber, the paper samples must be explored randomly.
The trick we found to achieve this goal easily and to avoid any
manipulation of samples during the experiment consisted in
placing 10 paper strips of 25 x 185 mm, one of each sample,
on the same support (see figure 4). For the support, an A4
sheet of transparency is chosen for its non-compressibility and
smoothness, so that it doesn’t disturb the sample perception.
The strips are fixed along the x-axis with a 3M spray adhesive
repositionable that won’t penetrate the samples. Thanks to its
rollers, the plotter can move the transparency support along
the y-axis and choose randomly the sample to be explored
without any manipulation.

The sample exploration method consists in scanning 4 cm
segments on the sample, along the z-direction, with the artifi-
cial finger. The samples were explored at a speed of 3.8 mm/s
with a sampling frequency of 1 kHz. Compared to previous
experiments, the speed of exploration was reduced in order
to reduce rubber wear. The samples are randomly scanned
50 times each resulting in a database of 50 acquisitions of
(Uz, Uy, U.,) per class.

B. Feature selection

Among the three voltage components, U, (measuring the
force F), parallel to the movement) seemed to be the more
relevant since U,, measuring the force F), perpendicular to
the movement, is quite reduced, and U, measuring the loading
force F), controlled by the string, is almost constant. Hence,
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Fig. 8. U, voltages for the exploration of Soft Touch paper, grained drawing
paper and photo paper. These signals illustrate the differences found in friction
coefficient, variance and kurtosis features which can be identified respectively
as easiness in sliding, texture roughness and stick-slip.

to simplify the analysis, we restricted ourselves to the use of
U, for this classification study.

To identify characteristic features of the sample explored,
signals are analysed in the complementary temporal and spec-
tral domains. Three features were found to be characteristic
of the samples in the temporal domain:

« Friction coefficient yy: for a constant normal force pgs is

identified as the mean tangential force necessary to slide.

o U, variance o2 representing the variations of forces
around its mean. It can be identified as a representation
of texture roughness.

o U, kurtosis (4th statistical order) measuring the peacked-
ness of a distribution. A gaussian distribution has a
kurtosis value of 3. A flat distribution is giving a kurtosis
value below 3 and a peack distribution a kurtosis value
over 3. The kurtosis can be interpreted as a measurement
of the amount of infrequent extreme deviations of the
signal, as opposed to frequent modestly-sized deviations
measured by variance. We identify the kurtosis as a
measure for the stick-slip effect occurring when exploring
a flat adherent surface, as photo paper.

Figure 8 presents U, signals of Soft Touch paper (blue),
grained drawing paper (green) and photo paper (red). This
figure illustrates well the three features presented above.
Figure 9 presents the mean temporal features of the 10 classes
sorted in ascending order. Soft touch paper (class 2) is soft
but grips a little. Its corresponding signal, blue signal on
figure 8, has a low U, mean and a quite important density of
small peaks. This is characterized by a low friction coefficient
but a kurtosis value slightly over 3, as shown on figure 9.
Grained drawing paper (class 5) has an important roughness
which is characterized by an important variance (important
U, variations on green signal). Photo paper (class 10) is
very adherent which can be seen on red signal as a high

Temporal features

x 10
B2
Sost i 1
& E o1
ES
oL = £ % T . .,
1 2 3 8 4 7 10 9 5 6
40 . . . : . : : . . .
Z30r |
s
220} T
g
Z 10t * -
; 1
bt t + v o+ 0= 7 0
5 9 3 2 7 1 6 4 8 10
Class number
Fig. 9. Mean values of the three temporal features, friction coefficient,

variance and kurtosis, versus class number. The mean values are calculated
on the training data. Bars represent the intra-class standard deviation of the
feature. Classes are sorted in ascending order. One can note that the friction
coefficient is almost 10 times smaller than the one presented in figure 6. It
could be attributed to the 80 shore A rubber that is about 10 times harder
than the 50 shore A rubber used in previous experiments. The 80 shore A
rubber slips much easier on the paper surfaces giving a lower tangential force
for the same normal force applied.

density of big peaks. It shows the stick-slip characteristic of
the movement. Therefore, it has an important kurtosis value.
On figure 8 the discrimination between the three samples
seems easy. But as one can see on figure 9, some classes are
overlapping in feature space making the classification much
more difficult.

The spectrum of each acquisition was extracted from the U,
component. As the plotter exploration system was quite noisy,
due to the step motors, we extracted the band 20 — 250 Hz
from the spectrum and filtered out motors vibrations. Figure 10
presents the preprocessed spectra of Soft Touch, drawing and
photo paper samples converted in decibel. On this figure we
can observe three features that seem to differ from a sample
to another:

o the decibel spectrum mean
« the decibel spectrum slope
« the decibel spectrum form, that is to say the resonances

Figure 11 illustrates the mean spectral features of the 10
classes sorted in ascending order. Paper samples submited to
a stick-slip movement are showing a higher spectrum mean
and a lower spectrum slope than the other classes of samples.
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C. Classification algorithms

The data features are of two types. On one side the 5
features that are the friction coefficient, variance, kurtosis,
spectrum slope and mean. On the other side the spectrum form
that is composed of 822 frequency coefficient. Therefore, two
classification algorithms were tested to classify the ten paper
samples. The first consists in classifying the spectrum forms
with a minimum euclidean distance to the mean spectrum.
The second uses the 5 features left as an input to an artificial
neural network. This last method permits to reduce the space
of classification inputs and to take into account non-linearities.
The following is presenting these two methods.

1) Minimum euclidean distance to mean spectrum: The
generic classification method usually consists in training a
model for each class, comparing a test sample to the models
via a criterion and, according to the result, deciding if it
belongs to a class or another. Here, the training method is
doing the mean characteristic of each class, which is expressed
as follows:

N .
PI(f) g5 = 10 -logy (3 S7(f))

=1

(D

where P7(f)qp is the mean of N spectra of class j converted
in decibel and S?(f) is the spectrum of the " acquisition
belonging to class j. As the form of the spectrum seemed
to contain most of the discriminative information between
samples, the criterion chosen was the minimum euclidean
distance to the mean spectrum, where the euclidean distance
between two spectra S; and S; is defined as:

d(Si, Sj) = \/Z (Si(f)as = ;(f)as)” @)
f
Hence the decision is given by:
C = min [d(S7 Pj)] 3)
J

where S is a spectrum to be classified and C' the attributed
class.

2) Neural Network algorithm: Multi-layer perceptron
(MLP) neural networks are known to be well suited for
non-linear classification problems. But its structure must be
chosen carefully. For multi-class classification tasks several
configuration can be tested. The configuration that gave us
the best results was a one-against-rest classification method.
That is to say 10 MLPs, one for each class, each MLP having
a unique output neuron with target 1 for its associated class
examples and O for others. Each MLP is composed of a
5 inputs layer, one input for each of the 5 features, which
distributes the data to a hidden layer itself connected to an
output neuron. A log sigmoid transfer function is chosen for
both hidden layer and ouptut neurons, giving then an output in
the interval [0;1]. Between the 10 outputs of the 10 MLPs, the
class attributed is the class associated with the MLP having
the greatest output. To avoid overfitting, we decided to restrict
to a hidden layer with a maximum of 5 neurons.

The weights of the networks are trained using a Bayesian
regularization backpropagation algorithm. This algorithm
trains fast and produces networks that generalize well.

D. Classification evaluation

To test the classification algorithms, the 50 acquisi-
tions/class database is first split in 40 acquisitions training
dataset and 10 acquisitions generalisation dataset. To eval-
uate accurately the classifications rates we performed a 10-
fold cross-validation on the training dataset [14]. The basic
processing steps can be summed up as follows:

1) separate the feature dataset into 10 folds per class

2) use 9 folds for training



TABLE I
SPECTRUM CLASSIFICATION RATE OF 10 DIFFERENT PAPERS

Training Validation Test
Original spectrum | 67.5 = 0.7% | 58 £2% | 53 + 5%
Centered spectrum | 71.8 £ 0.7% | 60 £2% | 61 &+ 5%

3) use the remaining fold for testing
4) repeat the two previous steps until all folds are used
5) store the average classification score

The different datasets are equally distributed between the
10 classes. But each MLP gives a one-against-rest output. To
avoid an over training of the rest-class, the training dataset
is partially replicated before entering each MLP. This way
the binary output targets get equally distributed between the
one-class and the rest-class. This replication is only applied
during the training of MLP. It does not present any interest
for classification evaluation, neither for the whole Euclidean
classification (training nor evaluation). The original datasets
as described above are used in these cases.

E. Results

1) Spectrum classification: We noted a quite important
variance in decibel spectrum means between acquisition of
the same class. Therefore, the classification algorithm was
tested with original spectrum but also with centered spectrum
(meanless decibel spectrum). Table II shows the classification
results. In both cases, original or centered spectrum, we
obtain good results with a classification rate of about 60%
to be compared to the 10% classification rate of a random
classification. As expected, the classification works slightly
better on centered spectrum with more equilibrated results
between validation and test.

2) 5 features classification: The spectra extracted from the
signal are of large dimension (822 frequency components).
With the aim of enlarging the database with much more
samples of all sorts of material, it can be useful to reduce
the number of features. The euclidean distance algorithm
applied on the 5 features left gave worse results than spectrum
classification. Taking into account non-linearities thanks to
the neural network classification algorithm, we obtain results
similar to spectrum classification but with much less features.

An essential parameter to be chosen in neural networks
is the number of neurons in the hidden layer. A too large
hidden layer will overfit the training dataset without increasing
validation and test classification rates. The amount of data
limits us to a maximum of 5 neurons. Figure 12 shows
classification results of training and validation datasets as a
function of the number of neurons. More than 2 neurons
increases only the training classification rate giving then the
limit over which the MLP is overfitting the training dataset.
Table III gives the training, validation and test classification
rates for the 10-class MLPs with 2 hidden neurons each.

The two hidden neuron classifier reaches a 71% validation
rate but limits to 58% test rate. This difference between val-
idation and test enhance the limit of classifier generalisation.
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Fig. 12. Classification rates function of the number of neurons of the hidden
layer. Note that the training classification rate increases continuously with
number of hidden neurons while the validation rate stays constant over 2
hidden neurons. This is significant of overfitting over 2 hidden neurons.

TABLE III
10-CLASS WITH 2 HIDDEN NEURONS NETWORK CLASSIFICATION RATE

Test
58 + 5%

Validation
71 £ 2%

Training
74.1 £ 0.7%

The training and validation datasets would need to be enlarged
with the examples that are misclassified, and test dataset to be
enlarge to better estimate the generalisation rate.

However, taking the 58% as a minimum classification rate
of this last classifier, we can conclude to a similar and good
performance of both spectrum-based and neural-network based
algorithms. To compare the two algorithms, the differences
between them are to be found in there performances for a
particular application more than on these results. One major
argument in favour of neural network is its ability to encircle
classes by a non-linear limits. Therefore it should be more
efficient as texture classes are getting more and more similar.
One major drawback is a long training time due to the use of
the whole database for MLPs weights training. Therefore, for
a large and evolutive database of quite different textures, the
euclidean distance algorithm would be more interesting.

We are now thinking of an algorithm merging the two
precedent to increase the classification performances. At the
moment, we are also working at increasing the sensitivity of
our artificial finger prototype to enhance its texture perception
and classification results.

V. CONCLUSION

During this study, we managed to package the three-axial
force sensor as an artificial finger, with a quite biomimetic
structure and size. Studying different shapes and hardness for
the rubber-skin tested, we selected one that would be optimal
for a dynamic texture recognition task. The characterisation
of the artificial finger showed a great linearity in loading. For
this study, we have dedicated the artificial finger to explore
everyday life textures, like papers and fabrics. And the use of
a plotter as an exploration system allowed us to automatize



the exploration procedure and lead various kinds of texture
recognition experiments.

In this paper we presented two preliminary texture explo-
ration experiments that are attesting of the sensor sensitivity.
The first one shows its ability to discriminate periodic or
random coarse textures, for instance paper from fabric. The
second one, with the reconstruction of the images of forces
felt by the sensor, permitted to see the reproducibility of the
measures, even with small events such as 10 pm thick inked
zones. Going further in texture grain size and recognition
complexity, we finally evaluated the artificial finger with a
multi-class discrimination experiment. For this tactile discrim-
ination task we build up a sample set with 10 kinds of paper
((photo, drawing, blotting papers ...), a material commonly
manipulated in every day life and which texture is usually
tactily controlled for various reasons such as applications or
marketing purposes. We explored these samples several times
and applied different classification algorithms to the signal
database acquired. One algorithm was based on euclidean
distance to the mean spectrum, and another one on a neural
network with 5 features as input. Both showed good results and
testified of the sensor ability to discriminate fine textures. The
next step will be to go beyond classification and characterize
textures tactily, i.e. measuring softness, roughness, stickiness
with the artificial finger. This opens up perspectives for various
interesting applications.
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