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Abstract— This paper presents a novel approach to visual
homing for robot navigation on the ground plane, using only
the angles of landmark points. We focus on a robust approach,
leading to successful homing even in real, dynamic environments
where significant numbers of landmark points are wrong or
missing. Three homing algorithms are presented, two are shown
to be provably convergent, and the other shown to converge
empirically. Results from simulations under noise and robot
homing in real environments are provided.

I. INTRODUCTION

Visual homing is the problem of using information from

visual images to return to some goal or home location after

an agent has been displaced from that initial location.

Many approaches are possible. If some metric map of the

environment was constructed (eg: using laser, sonar, stereo

within a SLAM framework [1, 2]), the agent can plan its return

path using the map. Alternatively, the estimated camera motion

from two views can give the homing direction using computer

vision algorithms such as the 8-point algorithm [3]. Visual

servoing [4] and other approaches [5, 6] are also possible.

Here, we focus on local visual homing methods which

are typically used within graph-like topological maps [7, 8,

9] where connected nodes represent nearby locations in the

environment. A local homing algorithm is then used to drive

the agent from one node to the next. Various local homing

methods exist, including [10, 11, 12, 13, 14, 15, 16, 17] and

many others, which can be found in reviews such as [18]. The

elegance and simplicity of these methods make them attractive

not only for robotics, but also for modeling homing behavior

in insects. (Indeed, many of these algorithms were directly

inspired by or aimed at explaining insect homing.)

Using only the angles of landmark or feature points, we

follow in the footsteps of other biologically inspired hom-

ing methods. These include the snapshot model [16], which

matches sectors of the image snapshot taken at the goal

position with the sectors in the current image to obtain

‘tangential’ and ‘radial’ vectors used to perform homing. The

average landmark vector method [11] computes the average

of several unit landmark vectors (a vector pointing from the

agent to some landmark point) and obtains a homing vector

by subtracting the average landmark vectors at the current

and goal positions. The average displacement model of [15]

and the work of [19] are examples of other such methods.

These rely on some globally known compass direction in

order to perform a correct comparison of landmark vectors

observed at the current and goal positions. More recently,

[10, 20] proposed a compass-free framework which works

for any combination of start, goal and landmark positions

on the entire plane. This approach uses a ‘basic’ and a

‘complementary’ control law that performs homing with three

or more landmarks.

In our work, we assume that correspondences have been

found between the landmark points in an image taken at the

current position with those in an image taken at the goal

location. The robot starts at some point, calculates the homing

direction and moves in that direction. This is iterated and the

robot moves step by step, until it arrives at the goal loca-

tion. The landmark points used are image features obtained,

matched or tracked with methods such as Scale Invariant

Feature Transform (SIFT) matching [22], Harris corners [23],

KLT [24] and others. These are ‘naturally’ occurring landmark

points, rather than objects placed in the scene for the sole

purpose of being an easily tracked and unmoving landmark.

While we focus on local, short-range homing, this can be

integrated with a topological map framework [7, 8, 9, 20] to

perform long-range homing and localization tasks.

Section II introduces three algorithms. Firstly, a homing

algorithm with both the robot and landmark points lying on the

same plane is presented and shown to converge theoretically.

Next, we investigate the case of planar homing with general,

3D landmark points and present two algorithms - the conserva-

tive method, which has theoretically guaranteed convergence

and a non-conservative method which is demonstrated to

converge empirically. Implementation details are in Section

III and experimental results are in Section IV.

Motivation. We aim to address the issues of:

Robustness to outliers. In general, existing methods assume

that a correct correspondence has been found between land-

marks seen in the goal and current positions. However, if some

of these landmarks have moved, are moving, were occluded,

or were erroneously matched, there is often no provision to

ensure successful homing. We term such moved or mismatched

landmarks as outliers in the observed data. We propose a

voting framework that efficiently integrates information from

all landmarks to obtain homing cues that are extremely robust

to outliers and other types of measurement noise.

Provable convergence. Homing is not provably successful

in most of the cited local homing methods. The work of

[10] showed successful homing through extensive simulations.

[12] provided the first planar homing algorithm with a proof



of convergence. This paper differentiates itself from [12], by

proposing provably convergent algorithms for the more general

case where the relative rotation between current and goal

positions need not be known (compass-free), and where the

landmarks need not lie on the same plane as the robot.

II. THEORY

Let the goal or home be a point G and the current location of

the robot be the point C. Images of the environment are taken

at both points. At each step, the robot uses this image pair to

compute and move in some homing direction, h. Hence, C
changes location with each iteration and homing is successful

when C converges on G. Define convergence as moving the

robot to within some neighbourhood of G and having it remain

in that neighbourhood. We begin with the observation that:

Observation 1: The robot converges, if at each iteration, it

takes a small step in the computed direction h, such that the

angle between
−−→
CG and h is less than 90◦.

C lies on a circle centered on G with radius |
−−→
CG|. If the

movement of the robot is small, it will always move into the

circle if homing direction h deviates from
−−→
CG by less than 90◦

(At exactly 90◦ from
−−→
CG, the robot moves off the circle in a

tangent direction). This ensures that each step the robot makes

will take it a little closer to the goal (since it is moving into the

circle). Hence the robot-goal distance decreases monotonically,

and at the limit, it will reach G. (In practice, robot motion is

not infinitesimally small, but as long as the angle between h

and
−−→
CG is not too close to 90◦, the above still holds true.)

A. The Case of the Planar World

Consider the case in which both robot and landmark points

lie on a plane. Given 2 landmarks L1 and L2 (Figure 1(a)),

and the current position at point C, the inter-landmark angle

is the angle between the two rays
−−→
CL1 and

−−→
CL2. All points

on circular arc L1CL2 observe the same angle ∠L1CL2.

Following [10], we define a convention where angle ∠L1CL2

is consistently measured, going from
−−→
CL1 to

−−→
CL2, in a

anticlockwise (or clockwise) direction. Then any point on arc

L1CL2 will have acute ∠L1CL2 (or obtuse, if measuring in

the clockwise direction). The inter-landmark angle observed

at the current position, ∠L1CL2, is the current angle, whilst

that observed at the goal position, ∠L1GL2, is the goal angle.

The circular arc L1CL2 is termed a horopter. The dashed

landmark line L1L2 splits the plane into upper and lower half-

planes. Let the set of points on the horopter be R0; let the

region in the upper half-plane and within the horopter be R1;

the region outside the horopter (shaded region in Figure 1(a))

be R2; and the region in the lower half-plane be R3.

In the configuration of Figure 1(a) and using the anticlock-

wise angle measurement convention, if C lies on the horopter,

and G lies within R1, that is G ∈ R1, then ∠L1GL2 >
∠L1CL2. However, if G ∈ R2, then ∠L1GL2 < ∠L1CL2.

Furthermore, the anticlockwise convention for measuring an-

gles implies that if point P ∈ R1 ∪ R2, then ∠L1PL2 is

acute, but if P ∈ R3, then ∠L1PL2 is obtuse. Therefore,

C ∈ R0∪R1∪R2 and G ∈ R3, implies ∠L1CL2 < ∠L1GL2

since acute angles are always smaller than obtuse ones.

The acute-obtuse cases are reversed if C lies on the other

side of the line L1L2 (the lower half-plane). Angle ∠L1CL2

is now acute when measured in the clockwise direction and

obtuse if measured in the anticlockwise. An analysis will yield

relationships symmetrical to the above.

With this, given knowledge of whether the current or the

goal angle is larger, one can constrain the location of G to

one of regions R1, R2, R3. However, since distance from the

current point to the landmarks is unknown, we know neither

the structure of the horopter nor that of the line L1L2. Even

so, one can still obtain valid but weaker constraints on the

location of G purely from the directions of the landmark rays.

These constraints on G come in two types. Type 1: Define

a region RA1 that lies between vectors
−−→
CL1 and

−−→
CL2 (shaded

region in Figure 1(b)). Let the complement of RA1 be RB1 =
Rc

A1
= Π \ RA1, where Π is the entire plane and \ denotes

set difference. RB1 is the Type 1 constraint region (the entire

unshaded region in Figure 1(b)) and G must lie within RB1.

Type 2: Let RA2 lie between the vectors −
−−→
CL1 and −

−−→
CL2

(shaded region in Figure 1(c)). The Type 2 constraint region

is the complement set, RB2 = Rc
A2

(the unshaded region).

Lemma 1: If an acute current angle is greater than the goal

angle, then G ∈ RB1 but if it is less than the goal angle, then

G ∈ RB2. If an obtuse current angle is greater than the goal

angle, then G ∈ RB2 but if it is less, then G ∈ RB1.

Proof: If ∠L1CL2 is acute and ∠L1CL2 > ∠L1GL2,

the goal, G, must lie in R2. RA1 is the shaded area in Figure

1(b), which does not intersect R2. One can see that for any C
lying on the horopter, RA1 never intersects R2. R2 is a subset

of RB1. Hence, G ∈ R2 ⇒ G ∈ RB1.

Conversely, if ∠L1CL2 is acute and ∠L1CL2 < ∠L1GL2,

then G ∈ R1 ∪ R3 and G /∈ R2. RA2 is the shaded area in

Figure 1(c) and RA2 ∩ (R1 ∪R3) = ∅ for any point C on the

horopter. So, G ∈ (R1 ∪ R3) ⊂ RB2.

For obtuse ∠L1CL2 (when using the clockwise conven-

tion), the proof is symmetrical to the above (that is, if

∠L1CL2 > ∠L1GL2, then G ∈ R1 ∪ R3 and (R1 ∪ R3) ⊂
RB2 so G ∈ RB2. Also, if ∠L1CL2 < ∠L1GL2, then

G ∈ R2 and R2 ⊂ RB1 so G ∈ RB1).

From the constraints on G, we can now define con-

straints on
−−→
CG. Some region, R, consists of a set of points,

{P1, P2 · · ·Pi, · · · }. We define a set of direction vectors:

D = {dj | dj =

−−→
CPi

|
−−→
CPi|

, ∀ i > 0, j 6 i} (1)

such that for every point in set R there exists some k > 0
and some dj ∈ D such that Pi = C + kdj. (A robot starting

at C and moving k units in direction dj will arrive at Pi).

As an example, consider the case in Figure 1(b). Let
−−→
CL1

correspond to the polar coordinate angle, θ, of θ−−→
CL1

= 0,

and let the direction of θ vary in the anticlockwise direction.

Then, region RA1 maps to the fan of vectors with polar angle

0 < θ < θ−−→
CL2

whilst region RB1 maps to the vectors with

polar angle θ−−→
CL2

< θ < 360◦.



(a) (b) (c)

Fig. 1. (a) Horopter L1CL2 and line L1L2 splits the plane into 3 regions. (b-c) Regions RA1,A2 (shaded) and RB1,B2 (everything that is unshaded).

−−→
CG is the vector pointing from current to goal location.

Recovering it guarantees convergence (moving in the direction
−−→
CG repeatedly will, inevitably, bring the robot to G). It also

gives the most efficient path (the straight line) to the goal. In

the following, we are interested only in the direction of
−−→
CG

and we will use
−−→
CG, and the unit vector in the direction

−−→
CG,

interchangeably. Then:

Theorem 1: From one landmark pair, Lemma 1 constrains

G within regions RB1 or RB2. Equation 1 maps this to a set

of directions, D, where
−−→
CG ∈ D. For N landmarks, we have

up to NC2 vector sets {D1,D2, · · ·DN C2
}.

−−→
CG lies in their

intersection, Dres = D1 ∩ D2 ∩ · · · ∩ DN C2
.

Assuming isotropically distributed landmarks, as N → ∞,

Dres =
−−→
CG. In practice, successful homing only requires N to

be large enough, such that a homing direction can be chosen,

that is less than 90◦ from every vector in Dres. It will then

be less than 90◦ from
−−→
CG and from Observation 1, the robot

will converge. A stricter condition is to have the maximum

angle between any two vectors in Dres less than 90◦. Then

all vectors in Dres will be less than 90◦ from
−−→
CG.

B. Robot on the Plane and Landmarks in 3D

Whilst the robot can move on some plane with normal

vector, n, the observed landmark points will, in general, not

lie on that plane. Here, we extend the previous results to this

more general situation. It is not unreasonable to assume that

the robot knows which direction is ‘up’, that is, the normal to

the ground plane. Then, we can measure angles according to

the same clockwise or anticlockwise conventions as before.

Let C,G lie on the x-y plane (so normal vector n is the

z-axis) and suppose C lies in the negative-x region. There

always exists some plane passing through two 3D points such

that this plane is orthogonal to the x-y plane. So, without loss

of generality, we can let the landmark pair L1, L2 lie on the y-

z plane. There exists a circular arc passing through L1, C and

L2. Revolving the arc about line L1L2 sweeps out a surface of

revolution. The portion of the surface that lies in the negative-x

region of ℜ3 is the horopter surface. All points on the horopter

have inter-landmark angles equal to ∠L1CL2.

The intersection of this 3D horopter surface with the x-

y plane containing C and G is a 2D horopter curve (some

examples shown in Figure 2 (a-f)). Rather than a circular

arc, the curve is elliptical. Let region R1 be the set of all

points inside the horopter curve and in the negative-x region;

let R2 be the set of points in the negative-x region and outside

the horopter; let R3 be the set of points in the positive-x

region. Then, the inequality relationships between ∠L1CL2

and ∠L1GL2 if C lay on the horopter and G in one of regions

R1, R2 or R3, are similar to those discussed in Section II-A.

Since landmark distances are unknown, once again, we

attempt to constrain G using only landmark directions. The

difference is that we now use the projected landmark vectors
−−→
CL̃1 and

−−→
CL̃2 instead of the landmark vectors as was previ-

ously the case. The projection of a landmark ray vector,
−−→
CL1,

onto the plane is
−−→
CL̃1 = n × (

−−→
CL1 × n) where L̃1 is the

projection of L1 onto the plane and × is the cross product.

The horopter curve intersects the y-axis at H1,H2 and the

projected landmark rays,
−−→
CL̃1 and

−−→
CL̃2 intersect the y-axis

at L̃1, L̃2. However, whilst L1, L2 lie on the horopter, the

projected landmark rays are such that L̃1, L̃2 do not lie on

the horopter in general. (If they did, then the problem is

reduced to that of Section II-A.) Let Py be the y-coordinate of

point P . Three cases arise: (Case 1) both L̃1y, L̃2y lie in the

interval [H1y,H2y]; (Case 2) one of L̃1y or L̃2y lies outside

that interval; (Case 3) both L̃1y, L̃2y lie outside [H1y,H2y].

For Case (1), the results of Lemma 1 hold except that

the Type 1 and 2 constraint regions are now bounded by

projected landmark rays. Figure 2(a) illustrates the case of

G ∈ R2. The shaded region is RB1 = Rc
A1

, which is a Type

1 constraint bounded by
−−→
CL̃1,

−−→
CL̃2 such that G ∈ RB1 (since

R2 ⊂ RB1) for any C on the horopter curve. Meanwhile,

Figure 2(b) illustrates the case of G ∈ R1∪R3 and the shaded

region is the Type 2 constraint region, RB2 = Rc
A2

bounded

by −
−−→
CL̃1,−

−−→
CL̃2 such that G ∈ (R1 ∪ R3) ⊂ RB2. Using

Equation 1, these regions can be mapped to sets of possible

homing directions.

Unfortunately, Lemma 1 does not always hold for Cases (2)
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Fig. 2. Intersection of horopter with x-y plane. Regions RB1, RB2 constraining location of G are shaded. The complement regions, RA1, RA2 are unshaded.

(a-b) Case1: both L̃1y , L̃2y in [H1y , H2y ]. (c-d) Case 2: one of L̃1y or L̃2y outside [H1y , H2y ]. (e-f) Case 3: both L̃1y , L̃2y outside [H1y , H2y ]. (g-i)
Intersection of horopter surface with y-z plane. 3 cases arising from θ < 90◦, θ = 90◦ and θ > 90◦.

and (3) such as in the example configurations in Figures 2(c,

d) for Case (2) and (e, f) for Case (3). Regions RC are marked

with diagonal hatching. In Figure 2(c), the Type 1 constraint,

RB1 should contain R2. However, RC ⊂ R2 but RC 6⊂ RB1.

Likewise, in Figure 2(d), the Type 2 constraint, RB2 should

contain R1∪R3 but it misses out on RC ⊂ R1. This means that

if G lay in RC , there would exist configurations of L1, L2, C
where G would not lie in the constraint region.

Two approaches are possible - the first is a non-conservative

approach that uses all constraints arising from all landmark

pairs. This method will very probably converge and in all

(thousands of) experiments (Section IV), was indeed observed

to converge. A second approach uses only a subset of all the

constraints and its convergence is theoretically guaranteed.

1. Non-conservative Method - Likely Convergence

As a result of the above problem, Theorem 1 will no longer

hold. Dres was previously defined as the intersection of all sets

of possible homing directions arising from all the landmark

pairs. This may not exist, so we will instead define D̄res,

which is the intersection of the largest number of such sets.

One observes that the size of RC tends to be small relative

to the total region in which G can lie. For example, in the



case of G ∈ R2 and RB1 should contain R2 but misses out

the RC regions (Figures 2 (c, e)), RC is largest when C is at

the highest point on the horopter and L̃1y, L̃2y approach ±∞.

Even then, RC is small compared to all of region R2.

Therefore, the probability of G ∈ RC is actually rather

small. Assuming N randomly scattered landmarks, out of NC2

constraints, some proportion of constraints would give rise to

these ‘missed’ regions, RC , where there is potential for error.

Of these, an even smaller number will actually be erroneous

constraints, i.e. G ∈ RC . These erroneous constraints map to

a set of direction vectors that is ‘wrong’ in the sense that
−−→
CG

is not in this set.

The direction
−−→
CG might not lie in D̄res. However, there is

a good chance that
−−→
CG lies close to it, and in fact, there is a

very high probability that
−−→
CG is less than 90◦ from a homing

direction chosen from the set D̄res (eg: the average of all

directions in D̄res). In the highly unlikely event of a wrong

estimate, that is,
−−→
CG being greater than 90◦ from the homing

direction, the robot will make a step that takes it further away

from the goal than it was at its last position.

However, this alone is insufficient to cause non-

convergence. The robot will move to a new position, leading

to a change in the directions of the landmark rays, and a new

estimate of the new homing direction is found. In order for

the robot to not converge to G, it would have to obtain so

many wrong estimates that it was going in the wrong direction

most of the time. This requires a stacking of many improbable

odds and indeed, in no experiment was non-convergence ever

observed. Even so, there is a remote but finite chance of

failure, which leads us to the next method.

2. Conservative Method - Guaranteed Convergence

Assume the camera is mounted some distance above the

ground and the x-y plane (we are working in the camera

coordinate frame) is parallel to the ground. Homing motion

is then restricted to this x-y plane. As before, landmark pair

L1, L2 lies on the y-z plane and the horopter surface is the

surface swept out by revolving the arc L1CL2 about the line

L1L2, restricted to the half-space that has x-coordinates with

the same sign as the sign of Cx.

There is a strategy for picking landmark pairs so that

L̃1y, L̃2y lie in the interval [H1y,H2y]. This is the Case 1

configuration which is free of erroneous constraints:

Lemma 2: If a landmark pair, L1, L2 is chosen such that

one lies above the x-y plane and one lies below it, and such that

θ = cos−1(
−−→
CL1 ·

−−→
CL2) 6 90◦, then L̃1y, L̃2y ∈ [H1y,H2y].

Here, θ is always acute; it differs from the inter-landmark

angle which can be acute or obtuse depending on how it is

measured. The intersection of the horopter surface with the

y-z plane is as shown in Figures 2(g-i) which depict the three

cases arising when the angle, θ, between two landmark rays

as observed at any point C on the horopter, is greater than,

equal to or less than 90◦. With one landmark above and one

below the x-y plane, the line segment lying between L1 and

L2 intersects the y-axis. L̃1, L̃2 are the projections of L1 and

L2 onto the x-y plane, whilst H1 and H2 are the intersections

of the horopter with the plane.

If θ 6 90◦ (Figures 2(g) and (h)), it can be shown that

L̃1y, L̃2y ∈ [H1y,H2y] is always true for any L1, L2 satisfying

these conditions. However, if θ > 90◦, this is not always true,

as the counterexample of Figure 2(i) demonstrates.

Using only landmark pairs that have θ 6 90◦ is a conserva-

tive method that ensures only correct constraints are used, in

the noise-free case. However, most of the discarded constraints

will in fact be correct, according to the earlier argument that

the probability that G ∈ RC is low. (Note that if insufficient

pairs of landmarks meet the conditions of Lemma 2, one can

still use the earlier, non-conservative method to home.)

The conservative method ensures Theorem 1 holds and
−−→
CG ∈ Dres. Hence, if there are sufficient landmarks such

that a vector h which is within 90◦ of all direction vectors

in Dres can be found, then moving in the direction of h will

bring the robot closer to the goal. If this condition is met at

each step of the robot’s estimate and move cycle, convergence

on G is guaranteed as per Observation 1.

III. ALGORITHMS AND IMPLEMENTATION

Algorithm 1 Planar Robot, 3D Landmarks

1: while angular error, αave > αthres do

2: for j = 1 to K do

3: Select a pair Lj
1
, Lj

2
from set of landmark pairs with

known correspondence.

4: if (Conservative) and ((Lj
1
, Lj

2
are both above the

plane or both below) or (cos−1(
−−→
CLj

1
·
−−→
CLj

2
) > 90◦))

then

5: continue to next j.

6: end if

7: αj = |∠Lj
1
CLj

2
− ∠Lj

1
GLj

2
|.

8: Find regions RB1, RB2 as per Lemma 1 using pro-

jected landmark rays,
−−→
CL̃j

1
,
−−→
CL̃j

2
and

−−→
GL̃j

1
,
−−→
GL̃j

2

9: Find the set of possible homing directions Dj .

10: Cast votes for Dj .

11: end for

12: Find bin(s) with votes > votethres. Mean direction is

homing vector, h. Calculate average αave.

13: Move robot by StepSz ∗ h.

14: end while

The homing approach proposed in Section II involves

finding sets of possible homing directions and obtaining the

intersection of all or of the largest number of these sets.

A voting framework accomplishes this quickly and robustly.

The table of votes divides the space of possible directions

of movement into voting bins. For planar motion, voting is

done in the range θ = [0, 360◦). From the sets of possi-

ble homing directions {D1,D2, · · · ,Di, · · · }, votes for bins

corresponding to the directions in each Di are incremented,

and the bin(s) with maximum vote (or with votes exceeding a

threshold, votethres) gives Dres or D̄res. When more than one

bin has maximum vote, we take the average direction to be

the homing vector, h. The non-conservative and conservative



approaches for homing with planar robots and 3D landmarks

are implemented in Algorithm 1.

In the algorithm, K can be all NC2 combinations of

landmark pairs, or some random sample thereof. To sense

whether the robot is far from or close to the goal, we average

the inter-landmark angular error, αj = |∠Lj
1
CLj

2
−∠Lj

1
GLj

2
|

over all j. αave gives a measure of how similar the current

and goal images are. Ideally, as the robot approaches the goal

position, αave → 0. We specify that when αave < αthres,

homing is completed and the robot stops. αave may be used

to control the size of robot motion, the variable StepSz.

Note that Algorithm 1 is more efficiently implemented

by using the directions mapped from RA1, RA2 instead of

RB1, RB2, since the former regions are typically smaller. This

way, less computations (incrementing of votes) occur. h, is

then found from the minimum vote instead of the maximum.

IV. EXPERIMENTS AND RESULTS

A. Simulations

In the Matlab simulations, landmarks were randomly scat-

tered within a cube of 90 × 90 × 90 units. The robot moves

between randomly generated start and goal positions by iter-

ating the homing behaviour. h was taken to be the average of

the set of directions with maximum votes.

Firstly, for the noise-free case, 1000 trials were conducted

for each of the planar conservative and planar non-conservative

cases. Secondly, a series of experiments involving 100 trials

each, investigated homing under outliers and Gaussian noise.

Outliers were simulated by randomly replacing landmark rays

with random vectors. The circle of possible directions of

movement was divided into 360 voting bins (1◦ per bin). We

tested for up to 40% outliers and for Gaussian noise with

standard deviation up to 9◦.

The robot successfully homed in all experiments. This

confirms the theoretical convergence proof for the conservative

case, and gives empirical evidence supporting the statistical

argument for likely convergence in the non-conservative case.

In order to examine the quality of homing, we compute the

directional error (angle between
−−→
CG and h), which measures

how much the homing direction deviates from the straight

line home. The histograms in Figure 3(a-d) summarize the

directional error in the noise and outlier experiments.

Recall, from Observation 1 that a homing step will take the

robot closer to the goal if h is less than 90◦ from
−−→
CG. For no

noise and no outliers, all homing directions computed were

indeed less than 90◦ from
−−→
CG (even for the non-conservative

method). However, even with up to 40% of landmark rays

being outliers, the number of homing estimates that were more

than 90◦ from
−−→
CG was insignificant for the non-conservative

case (Figure 3(b)), and less than 8% for the conservative case

(Figure 3(a)). This means the robot was heading in the correct

direction the vast majority of the time in spite of the outliers,

hence homing was successful.

Successful convergence was observed in trials with Gaus-

sian noise. Figures 3(c-d) illustrate the performance as the

Gaussian noise standard deviation is varied from 0◦ to 9◦.

Performance degrades gracefully with noise but the proportion

of homing vectors with directional error greater than 90◦ was

once again insufficient to prevent convergence.

It is interesting to note that the planar non-conservative

case outperformed the planar conservative case. Voting proved

particularly robust to the incorrect constraints arising in the

non-conservative case. Since correct constraints dominate in

number, these form a robust peak in the vote space which

requires large numbers of incorrect constraints voting in con-

sistency with each other, to perturb from its place. However,

the incorrect constraints are quite random and do not generally

vote to a consistent peak at all; and the ‘missed’ RC regions

also tend to be small, so the total effect on the performance

of the non-conservative case is quite minimal.

Conversely, although the conservative case guarantees con-

vergence, that guarantee comes at the cost of throwing away all

constraints that are not certain to be correct. In the process,

many perfectly fine constraints are discarded as well. Thus,

the set of directions with maximum votes was larger, and

the average direction (taken as the homing direction) deviated

further from
−−→
CG, compared to the non-conservative method.

B. Real experiments

Grid trials: A camera captured omnidirectional images of

some environment at every 10 cm in a 1 m x 1 m grid. With

some point on the grid as the home position, the homing

direction was calculated at every other point on the grid. The

result is summarized in a vector-field representation where

each vector is the direction a robot would move in if it was at

that point in the field. By taking each point on the grid in turn

to be the home position, we can examine how the algorithm

performs in that environment for all combinations of start and

goal positions (marked with a ‘+’) within the grid.

All experiments were successful. Figure 3(e-h) shows sam-

ple results from the 3 different environments. Landmarks were

SIFT features [22] matched between current and goal images.

The high-resolution (3840 x 1024) Ladybug camera [25]

captured images of a room (Figure 3(k)) and an office cubicle

(l). Figure 3(e,f) are results for the room using conservative

and non-conservative algorithms respectively. Room images

were taken with the camera 0.85 m above the ground. This

is necessary for the conservative method, which requires

landmarks both above and below the image horizon. (In

contrast, cubicle images were taken with the camera lying on

the floor and were unsuitable for the conservative algorithm

since everything below the horizon is featureless ground.)

Both conservative and non-conservative methods homed

successfully in Figure 3(e,f). Since the conservative method

discards many constraints, the homing direction deviated fur-

ther from
−−→
CG, compared to the non-conservative method

which gave more direct homing paths. Nevertheless, it is clear

that a robot placed anywhere within the grid will follow the

vectors and eventually reach the goal position.

Figure 3(g) demonstrates successful homing in the cubicle

environment using the non-conservative method. We also
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Fig. 3. (a-d) Homing direction under outliers and Gaussian noise. (e-f) Grid trials for room, comparing conservative and non-conservative methods. (g-h)
Grid trials in cubicle and outdoors. (i) Effect of varying number of landmarks (j) Robot’s view in atrium experiment. (k) High-resolution panorama taken in
a room with an elevated camera and (l) taken in a cubicle with camera on the floor. (m) Low-resolution panorama taken outdoors.

tested the algorithm on a low-resolution (360 x 143) outdoor

image set supplied by authors of [17, 21]. Figure 3(m) is

an example image from the set and 3(h) is a sample result.

Interestingly, the low-resolution outdoor images gave smoother

vector fields than the high-resolution, indoor ones. We believe

this is due to a more even distribution of landmarks outdoors,

whereas indoors, features tend to be denser in some areas of

the image but are very sparse in other areas, leading to a bias

in some directions. However, convergence is unaffected and

homing paths remain fairly straight.

Robot trials: Videos at [26]. A holonomic wheeled robot

[27] homed in various environments including an office and a

building atrium. The robot performed local homing multiple

times to move along a chain of goal positions (simplest

instance of the topological maps mentioned in Section I) in

order to get from one part of the environment to another.

Snapshots were captured at intermediate goal positions and

stored in the chain. An Omnitech Robotics fish-eye lens

camera [28] was mounted pointing upwards, giving views such

as Figure 3(j), where the image rim corresponds to the horizon.

Homing was successful to within the order of a few centime-

ters, in the presence of mismatched landmarks, moving objects

(leading to bad landmark points) and illumination changes.

V. DISCUSSION

Robustness to outliers: In methods such as [11, 12, 10,

20], a series of vectors, {M1,M2 · · ·MN}, are derived from

landmark bearings by some rule, and the average direction is

taken as the homing vector, Mres = M1 + M2 + · · · + MN .

Unfortunately, this average is sensitive to outliers which can



potentially cause the homing vector to point in any random

direction. The experiments demonstrated that our voting-based

method was able to efficiently incorporate information from a

set of landmarks while being resistant to significant numbers

of mismatched and moved landmarks in the set.

Number of landmarks: More landmarks lead to more

direct homing paths. However, Observation 1 suggests that

homing is successful as long as homing directions are con-

sistently less than 90◦ from
−−→
CG. This condition is satisfied

even with as few as 50 landmark matches (Figure 3(i)). In the

experiments, images typically gave hundreds of SIFT matches.

Speed: Our algorithm runs in 35 msec (28 fps) on a Linux

OS, Pentium4, 3GHz, 512Mb RAM machine (∼200 land-

marks). The inputs to the algorithm were SIFT matches in the

experiments, but these can take several seconds to compute.

However, real-time SIFT implementations (for example, on a

GPU) do exist. Alternatively, faster feature tracking methods

such as KLT are also possible.

Poor Image Resolutions: The trials with low-resolution

(360 x 143 pixels) outdoor images demonstrate that the algo-

rithm works well even with poor image resolutions. This is in

agreement with the results of the simulations under increasing

Gaussian noise. The image noise in most cameras is generally

in the order of a couple of pixels (typically less than a degree),

which is far less than the amounts of Gaussian noise used in

the simulations (up to 9◦). Therefore, what these large noise

trials do in fact simulate is the degradation of accuracy caused

by using very coarse image resolutions causing uncertainty in

the landmark ray.

Voting Resolution: Lower voting resolutions (currently 1◦

per bin) could achieve even greater speeds without affecting

convergence (it will, however, lead to a less direct path home).

As an extreme example, the conditions of Observation 1 are

satisfied even with as few as 4 voting bins (90◦ per bin), if h

is the center of the bin and conservative voting was used. Such

a minimalist version of the method is well-suited for small,

resource limited robots.

Flexible Probability Maps: Whilst our experiments (and

most existing methods) obtained a single homing vector, the

voting table is in fact a weighted map of likely directions

for homing. This leads to a flexible and natural framework

for incorporating additional navigational constraints such as

obstacle avoidance, kinematic constraints (in non-holonomic

robots), centering behaviour and path optimality planning. For

example, directions blocked by obstacles can be augmented

with negative votes so that the robot is discouraged from

moving in that direction.

VI. CONCLUSION

We investigated the problem of planar visual homing using

landmark angles and presented three novel algorithms and

demonstrated their performance in simulations and real robot

trials. Videos available on the author’s website [26].

Acknowledgments: We thank Jochen Zeil for providing

the outdoor image set and Luke Cole for help with the robot.

NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the

Digital Economy and the ARC through the ICT Centre of

Excellence program.

REFERENCES

[1] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, MIT Press, 2005.
[2] A. Davison, Real-time simultaneous localisation and mapping with a

single camera, Proc. International Conference on Computer Vision, 2003.
[3] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision, Cambridge University Press, 2000.
[4] S. Hutchinson, G. Hager and P. Corke, A tutorial on visual servo control,

IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp. 651-670, 1996.
[5] D.T. Lawton and W. Carter, Qualitative spatial understanding and the

control of mobile robots, IEEE Conf. on Decision and Control, vol. 3,
pp. 1493-1497, 1990.

[6] J. Hong, X. Tan, B. Pinette, R. Weiss and E.M. Riseman, Image-based

homing, IEEE Control Systems Magazine, vol. 12, pp. 38-45, 1992.
[7] M.O. Franz, B. Schölkopf, H.A. Mallot, H.H. Bülthoff, Learning view

graphs for robot navigation, Autonomous Robots, vol. 5, no. 1, 1998,
pp. 111-125.

[8] M.O. Franz, H.A. Mallot, Biomimetic robot navigation, Biomimetic
Robots, Robotics and Autonomous Systems, vol. 30 no. 1, 2000, pp.
133-153.

[9] B. Kuipers and Y.T. Byun, A robot exploration and mapping strategy

based on a semantic hierarchy of spatial representations, Robotics and
Autonomous Systems, vol. 8 no. 12, 1991, pp. 47-63.

[10] K.E. Bekris, A.A. Argyros, L.E. Kavraki, Angle-Based Methods for

Mobile Robot Navigation: Reaching the Entire Plane, in Proc. Int. Conf.
on Robotics and Automation, pp. 2373-2378, 2004.
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