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Abstract—We present an integral feedback controller that
regulates the average copy number of a particular assembly in
a system of stochastically interacting robots. The mathematical
model for the stochastic system is a tunable reaction network,
which makes this approach applicable to a large class of other
systems, including ones that exhibit stochastic self assembly at
various length scales. We prove that this controller works for a
range of set-points, and how to compute this range. Finally, we
demonstrate the approach on a physical testbed.

I. INTRODUCTION

Self-assembly of complex systems and structures promises

many new applications, such as easily combining different

micro-fabrication technologies [1] or building arbitrary, com-

plex nano-structures [2]. While many natural systems are

reliably self-assembled at vastly different length and time

scales, engineered self-assembled systems remain compara-

tively simple. The difficulties of engineering complex self-

assembling systems are associated with large configuration

spaces, our lack of understanding the relationship between

local and global dynamics, and the stochastic or uncertain

nature of their dynamic models.

In the context of engineering, the interplay between uncer-

tainty and sensitivity of global to local behavior can often

lead to a profound lack of modularity as small unintended

local interactions can drastically alter the behavior from what

is expected by composition.

In this paper we partially address this problem by designing

a feedback controller that can regulate the expected value of

the number of an arbitrary component type. This approach

could be used for composition in the sense that other subsys-

tems can rely on the presence of these regulated quantities.

We are guided by the application of stochastic self-

assembly, in which self-assembling particles interact randomly.

Such systems abound in engineered settings, such as in DNA

self-assembly [2], micro and meso-scale self-assembly [1, 3,

4], and robotic self-assembly [5, 6].

Self-assembly can be either passive or active. Designing

systems that passively self-assemble is a problem of engineer-

ing a favorable free energy landscape in configuration space.

Passive self-assembling systems often lack flexibility since a

specific design of the energy landscape can be difficult to adapt

to new tasks. In addition, there are physical limitations to how

much the energy landscape can be manipulated. The yield
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Fig. 1. Schematic representation of the different robot interactions. The
passive robots P1 and P2 can form heterodimers, which can disassemble
spontaneously. The active robot A can expend energy to undo bonds. When the
arms of an active robot are retracted, it is changed and can actively disassemble
a dimer. If the arms of an active robot are extended (denoted A′) then the it
is not charged, but may become charged via the recharge reaction, the rate of
which can be controlled.

of a desired output structure is a function of the shape and

depth of energy wells, as a result the limits in manipulating

the energy landsacpe in passive self-assembly generally lead

to low yields.

In active self-assembly, energy can be locally injected into

the system. In particular, we focus on the situation when we

have the ability selectively undo bonds that are formed by

passive dynamics. Active self-assembly can overcome the lack

of flexibility of passive self-assembling system by making

aspects of the system re-programmable while leaving other

areas in the energy landscape untouched. As a result, the

changes in the global dynamics remain tractable.

The particular model for active self-assembly we investigate

is that of a tunable reaction network. We present a system of

simple stochastically interacting robots that are well modeled

as a tunable reaction network and demonstrate the feedback

setpoint regulation scheme. Fig. 1 shows a pictorial repre-

sentation of the tunable reaction network investigated in this

paper. There are three robot types and several instances of

each (see Fig. 2(a)). The passive robots P1 and P2 are able to

bind and form heterodimer complexes P12, which in turn can

spontaneously disassemble. The active robots A can dock with

heterodimers and disassemble them. The disassembly reaction

leaves active robots in an uncharged state, denoted by A′. The



last reaction in Fig. 1 recharges uncharged robots at a rate that

is controlled externally. The control problem for this system is

to regulate the number of heterodimers P12 in the system by

adjusting the recharge rate. (This problem is re-stated formally

in Sec. IV.) While the tunable reaction network shown in Fig. 1

is comparatively simple, tunable reaction networks in general

can describe much more complicated systems.

For example, many biological systems can be viewed as

tunable reaction networks. Inside cells, enzymes are expressed

to control the rates of various metabolic reactions. Similar to

the problem solved here, one of the many functions of the

biochemical processes inside cells is maintaining equilibria of

chemical species. Regulating the concentration of chemical

species is a particular aspect of homeostasis, which can be

viewed as a control problem [7].

For the artificial systems depicted in Fig. 1 we propose,

analyze, and implement a feedback controller. However, the

proposed controller works for tunable reaction networks in

general, since the analysis and proof in Sec. IV do not rely

on any particular structure of the network. In the context of

engineering self-assembling systems, the proposed feedback

controller can be used to provide stable operating conditions

for other self-assembling processes, much like homeostasis in

biological systems. For example, in a hypothetical system with

a vat of self-assembling miniature robots, we might care that

the relative concentration of robot feet and robot legs is fixed in

order to maximize the yield of functioning miniature robots.

In general, we envision the self-assembling systems of the

future as having metabolisms of their own that regulate the

various species of partially assembled objects in the system to

maximize the yield of the desired final assembly.

II. EXPERIMENTAL ROBOTIC CHEMISTRY

The robots described here interact stochastically as in [5,

6], however, they are much simpler both mechanically and

electronically. Also, while other robotic platforms consist of

a homogeneous group of robots, the robotic testbed described

here is a heterogeneous mixture of three different robot types,

Fig. 2(b)(c). The assembly of the two passive robot types

P1 and P2 is driven by complementary shape and embedded

magnets. The magnetic force creates an energy well that tends

to pull two robots together and form a heterodimer. The

third, active robot type can expend energy to disassemble a

heterodimer into its constituents.

The energy for this disassembly is supplied to the active

robots via solar panels. Each active robot stores energy from its

solar panel in a capacitor, if the charge in the capacitor reaches

a threshold and an active robot A is bound to a heterodimer

it activates a motor and disassembles the heterodimer. Disas-

sembling heterodimers depletes the on-board energy storage

of active robots requiring more energy from the solar cells

to disassemble additional heterodimers. Adjusting the amount

of incident light changes the recharge rate of active robots

and thus indirectly affects the rate at which heterodimers are

disassembled.
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Fig. 2. Hardware of test-bed. (a) Picture of the air-table showing the
robots, the air-jets, the overhead lamps, and the overhead camera. (b) Picture
of the two passive component types showing the tracking targets and the
complementary shapes. (c) The active robot showing solar cells, contact
sensors, the spinning levers that pull bound passive complexes apart.

Although this indirect approach may seem unnecessarily

complicated, it possesses a key design feature that we believe

justifies the added complexity: the structural, energy delivery,

and computational functions reside on separate components of

the overall system. We think of P1 and P2 as the structural

components we want to control, the active robots as agents

of energy delivery, and the controller implemented on a

computer as the computational component. This division of

labor is analogous to many biological systems where different

cellular functions are largely separated into different types of

molecules. We believe that such a separation of functionality

in self-organization is essential to engineering large scale

complex systems. Distributing the functionality in this way

can yield much simpler individual components on average. For

example, the passive robots contain no electronic components

whatsoever, and the active robots only contain a simple circuit

made from discrete electrical components, a motor, and a solar

panel.

A. Physical Characteristics of Testbed

The body of each robot is machined from polyurethane

prototyping foam and painted black to aid the vision system.

This material is easy to machine, light, and stiff.

The robots float on an air-table shown in Fig. 2(a), which

has a large HVAC blower attached to the bottom of a perfo-

rated board (blower not visible in image). The blower is able

to maintain a high flow-rate of air through the table surface

and allows us to float relatively heavy pieces ≈ 2.5 g
cm2 . The

active area of the table is 60cm × 60cm. Mounted along the

perimeter of the table are computer controlled solenoid valves.

These valves can deliver short bursts of pressurized air from

a compressor (30psi). By randomly activating these air-jets

robots on the air-table are driven to perform a random walk.

The bursts are randomized and controlled via a MATLAB script,

which also updates the state of the controller and adjust the

intensity of four overhead lamps. These lamps determine the



amount of incident light to the solar panels, thereby setting

the recharge reaction rate.

Images from the overhead camera are used to extract the

number and position of targets, consisting of small, circular

disks with a pattern of concentric light and dark rings, see

Fig. 2(b). We detect targets in real time and use the data both

in the feedback loop to exert control and open loop to estimate

the system reaction rates and diffusion constants.

We determine the number of heterodimers by adjusting the

image processing parameters so that only whole targets register

in the vision system. Half of a target is attached each passive

robot in such a way that when a heterodimer forms the two

halves from a complete target that is picked up by the vision

system. The rotational symmetry of the targets simplifies the

image processing by reducing the convolution of the target

kernel from three to two dimensions, allowing sample rates of

≈ 1 Hz.

III. MATHEMATICAL MODEL

This section describes stochastic chemical kinetics [8] and

the associated chemical master equation (CME), used to model

the discrete configurations of the robotic testbed. This section

also describes a stochastic hybrid system (SHS) model that

extends stochastic chemical kinetics to include continuous

state variables, needed to model the closed loop feedback

system.

A. Model for Stochastic Chemical Kinetics

The idea is to create a stochastic model that reflects our

understanding of how chemical reactions occur at a micro-

scopic level, as opposed to mass action kinetics, which is a

deterministic model of the evolution of chemical concentra-

tions. When the number of molecules involved in a set of

chemical reactions grows, the approximations of mass action

kinetics become very good. The large number of molecules

averages stochastic effects away [9, Ch. 5.8]. However, when

only a few molecules are involved, the stochastic nature

of chemical reactions dominates the dynamics and requires

explicit modeling.

Let

S = {A,A′, P1, P2, P12},

denote the set of chemical species, in this case the robot types

of the testbed. The symbol A stands for an active robot that

is charged, A′ is an uncharged active robot. The symbol P1

and P2 are the two different types of passive robots and P12

is a heterodimer of passive robots, see Fig. 1 and 2. The copy

number of each species is the number of instances of that

particular species and is denoted by a capital N subscripted

with the appropriate symbol, i.e. NA specifies the copy number

of species A. The state q of the system is described by the

vector of copy numbers q = (NA, NP12
, NA′ , NP1

, NP2)T .

The set of all possible states is denoted by Q.

Events that affect the state q are called reactions. This paper

considers the set of reactions in Fig. 1. In General, if reactions

are indexed by a set L and the state of the system is q before

a reaction l and q′ after the reaction, then we have

q′ = q + al,

where al is a vector that is specific to the reaction type. The

chemical species that correspond to negative entries in al are

called reactants and those that correspond to positive entries

are called products. For example, the reaction

P1 + P2

k
GGGGGGGB P12

where two different passive robots form a dimer has the

associated a vector

a = (0, 0,−1,−1, 1)T .

Both P1 and P2 are reactants and P12 is a product. The

multiplicity of a reaction from a given state q, denoted

M(a,q), specifies the number of different ways the reactants

of a can be chosen from state q. In addition to the a

vector each reaction has associated with it a rate constant

kl, that depends on the underlying stochastic behavior of the

interacting species. Determining these rate constants for the

system of robots is the topic of Sec. III-D.

Stochastic chemical kinetics defines a discrete state, con-

tinuous time Markov process with state space Q and the

following transitions rates. The transition rate between q and

q′ is given by

klM(al,q),

when q′ = q + al and al is applicable in q (i.e. q′ is

non-negative). Given that the process is in state q at time

t, the probability of transitioning to state q′ within the next

dt seconds is

klM(al,q)dt.

This property suffices to define the conditional transition

probabilities of the stochastic process and together with an

initial distribution over the states defines the Markov process

that comprises the stochastic chemical kinetics model. This

model is applicable to a set of interacting molecules if the

system is well mixed [9, 10]. In practice this assumption

is difficult to verify. However, in our system of robots we

can explicitly check the assumptions, since we can observe

the position of all involved particles. A description of the

procedures used to verify the well-mixed assumption is given

in Sec. III-C.

Conveniently, discrete state Markov Processes can be ex-

pressed as linear algebra in the following way. Fix an enu-

meration of Q and let pi denote the probability of being

in the ith state q ∈ Q. The enumeration is arbitrary but

assumed fixed for the remainder of this paper. The dynamics

of the probability vector p are governed by the infinitesimal

generator A defined as follows: All entries of A are zero

unless

• If i 6= j and qi + al = qj : Aij = klM(al,qi)
• If i = j: Aii = −

∑
m Aim.



By construction the rows of A sum to zero and all off-diagonal

entries are non-negative. Probability mass functions over Q are

expressed as row vectors and real functions on Q, y : Q→ R

as column vectors. The dynamics an arbitrary probability mass

function p is governed by

ṗ = pA, (1)

the CME.

B. A Reaction Network for the Testbed

The reaction network description for our robotic testbed

consists of four distinct reactions: two describe the sponta-

neous association and dissociation of passive robots P1 and

P2, one describes the disassembly of P12 by active robots, and

the last reaction describes recharging of active robots. Denote

the rate constant for association and dissociation by the natural

dynamics by k1 and k−1, for the disassembly reaction by k2,

and for the tunable recharge reaction by k3. The rate constant

for the tunable recharge reaction corresponds to the maximal

physically possible rate, in this case highest operating intensity

of the overhead lamps. These reactions are summarized in (2)-

(4).

P1 + P2

k1

GGGGGGGBF GGGGGGG

k−1

P12 (2)

P12 +A
k2

GGGGGGGB P1 + P2 +A′ (3)

A′
uk3

GGGGGGGB A. (4)

Note that the rate constant in (4) depends on u. As a result

the infinitesimal generator matrix A is a function of u.

The discrete state space Q is finite and obeys the conserva-

tion equations

NP1
+NP12

= NP2
+NP12

.
= C1, (5)

NA +NA′

.
= C2. (6)

The first relation (5) holds when the system has the same

number of both types of passive robots (C1 of each, which

we ensure in our experiments), while (6) asserts that there are

C2 active robots that can either be in a charged or discharged

state. As a consequence of (5) and (6), NP1
, NP2

, and A′ can

be expressed in terms of NP12
, A, and the constants C1 and

C2. Instead of five different species we can keep track of only

two. For the remainder of this paper we will assume that

q =

(
NA

NP12

)
∈ N

2

and note that the copy number for the missing species can be

reconstructed from this reduced state.

C. Checking the Well-Mixed Condition

There are several equivalent definitions of what it means

for a system to be well-mixed. Basically, all definitions are

sufficient conditions for guaranteeing that a process is Markov

and that each possible combination of reactants for a particular

reaction al is equally likely to be involved in the next reaction.
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Fig. 3. Observed distribution of robots on air-table. The left figure corre-
sponds to active robots, A or A′, the middle plot correspond to passive robots
P1/P2, and the right figure to heterodimers P12. These plots demonstrate that
the occupancy of parts on the air-table is roughly uniform on the table. The
area of low occupancy around the perimeter is due to the geometry of the
components interacting with the boundary of the air-table.

While being well-mixed in this sense is a strong assumption, it

allows for the characterization of a reaction by a single param-

eter, the rate constant kl. For the remainder of this section we

use the definition of well-mixedness from [10]. For alternative

conditions see [9, Ch. 7.2]. The two conditions that must be

checked are that: (a) the reactants are uniformly distributed

throughout the environment and (b) that the reactants diffuse

through the reaction domain faster than they react.

To estimate the distribution of the different types of robots

on the air-table we decomposed it into a 11 × 11 grid and

extracted the occupancy statistics for each grid box from video

data. Fig. 3 shows the resulting distributions. The red area

in the center of each plot is roughly at the same level and

indicates a uniform distribution. The area of low occupancy

around the perimeter results from the fact the position of each

robot is estimated at its center yet geometric constraints keep

the center away from from the air-table border.

The diffusion coefficient for a robot is defined as

D =
E r2(t)

4t
,

where r(t) denotes the displacement of the robot as a function

of time. We used the targets described in Sec. II to track the

position of different robot types. We averaged over multiple

experiments as well as the instances of of each robot type

to compute the expected value. The resulting estimates for

the diffusion coefficient are given in Tab. I. The subscripts

of D indicates what robot type the diffusion coefficient was

calculated for. For example, DP12
is the diffusion coefficient

of heterodimers.

Combined with the rate constants measured in Sec. III-D

we conclude that condition (a) and (b) are approximately met.

The testbed is well-mixed and the stochastic chemical kinetic

model is appropriate.

D. Characterizing Rate Constants

One method to determine rate constants is to measure the

average waiting time between reactions from a known state.

This quantity, together with the known inverse relationship

between the reaction rate and average waiting time, yields an

estimate of the rate [5]. Although useful in simulation, one

drawback of this method is that one needs to repeatedly re-

initialize the system to gather statistical data, which is tedious

and time consuming. An exception is k3, which was measured
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Fig. 4. Curve fitting results used to determine rate constants.

in this way. The reason is that the recharge reaction represents

a change in internal state, which is easy to re-initialize.

For the other rate constants we take a different approach. We

average multiple longer trajectories all starting from the same

initial condition. However, the system is allowed to continue

evolving for a set amount of time, possibly undergoing many

reactions. This has the advantage that each re-initialization

gives much more information than a single waiting time. We

then fit this empirical average to solutions of the CME (1).

We determined the remaining rate constants k1, k−1 and

k2 in two steps. First, we gathered trajectories starting from

NP12
= NA = 0 with u = 0 (lights off). This way the

disassembly reaction and recharge reaction do not influence

the natural dynamics. We then used MATLAB to numerically

fit the CME solution with the two free parameters k1 and k−1

to the empirical average, minimizing the mean squared error,

see Figure 4(a).

Using the values previously determined for k3, k1, and k−1

we then used the same approach (this time with u = 1)

for determining the only remaining parameter in the CME

solution, k2. The resulting curve fit is shown in Fig. 4(b).

Parameter Estimate Uncertainty Units

k1 0.0046 reaction

sec number2

k−1 0.00071 reaction

sec number

k2 0.0027 reaction

sec number2

k3 0.08 reaction

sec number

DA/DA′ 0.0018 0.0002 m
2
sec

sec

DP1
/DP2

0.0015 0.0001 m
2
sec

sec

DP12
0.00083 0.00001 m

2
sec

sec

TABLE I

ESTIMATES OF RATE CONSTANTS AND DIFFUSION COEFFICIENTS.

IV. CONTROLLER DESIGN AND ANALYSIS

This section describes an integral feedback controller for

the reaction network (2)-(4) and a stochastic hybrid system

(SHS) that describes the closed loop system.

The idea of the feedback controller is simple, increasing

light intensity recharges the active robots more quickly and

disassemble more heterodimers. An increase in u will decrease

NP12
. Decreasing the light intensity restuls in fewer charged

robots to disassemble heterodimers. A decrease in u increases

the average number NP12
. With the mathematical model for

the testbed in place we can state the problem formally.
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Fig. 5. Block diagram of the proposed control system. Only the air-table
state and output signal are discrete, all other signals are continuous.

Design a control system that measures NP12
and adjusts

intensity of the overhead lamps such that ENP12
= y∗ for a

given reference value y∗.

A. Integral Control

The discrete state q of the closed loop system develops

according to (2)-(4). Let y be the a vector corresponding to an

output function y : Q→ R, in this case y(q) = NP12
. Define

a new continuous part of the state that models the cumulative

error from a setpoint y∗ as

ẋ = f(q, x) = γ(y(q) − y∗) = γ(NP12
− y∗). (7)

In order to express saturation of the input, here the physical

limitations of the overhead lamps, define h : R → R by

h(x) =






0, x ≤ 0
x, 0 < x ≤ 1
1, 1 < x.

With this notation we can define an integral feedback con-

troller by

u = h(x). (8)

A block diagram of the control system is shown in Fig. 5. The

remainder of this section is dedicated to analyzing the closed

loop system.

B. Stochastic Hybrid System

Adding a continuous random variable whose dynamics

depend on the discrete state q of a Markov process results

in a stochastic hybrid system (SHS). This section is a brief

description of the notation and some specific mathematical

tools available for SHSs, for more information see [11, 12].

The key feature of an SHS is that the dynamics of the system

are stochastic and that the state are hybrid, meaning the state

space of the system has the form Q × X where Q is some

discrete set and X ⊆ R is continuous. The set of possible

discrete states Q is typically finite or countably infinite. We

use z ∈ Z = Q × X as shorthand for the pair (q, x). Let

Q, X , and Z denote the stochastic processes on the various

components of the state space.

In each discrete state, the dynamics of X are governed by

a differential equation,

ẋ = f(q, x) f : Q×X → TX. (9)

The dynamics of the discrete state Q are governed by a set

of transitions, indexed by a finite set L. Each transition l ∈ L
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Fig. 6. A schematic representation of the closed loop SHS. The boxes
represent discrete states and the arrows represent transitions. Each box shows
both the discrete state it represents and the ODE describing the continuous
states. An arbitrary state (NA, NP12

)T is highlighted in black. The transition

intensities for all transitions leaving (NA, NP12
)T are shown next to the

arrows.

has associated with it an intensity function

λl(q, x) λl : Q×X → [0,∞), (10)

and a reset map

(q, x) = φl(q
−, x−) φl : Q×X → Q×X. (11)

The intensity function is the instantaneous rate of the transition

l occurring, so that P (l occurs during(t, t+ dt)|Q = q,X =
x) = λl(q, x, t)dt. The reset map φl determines where the

process jumps after a transition is triggered at (q−, x−) at

time t. The minus in the superscript denotes the left hand

limit of q and x at time t. We think of this limit as the state

of the process immediately before the jump. Fig. 6 shows part

of the system representing the closed loop SHS. The boxes

represent discrete states and the arrows represent transitions.

C. Extended Generator

This section describes the extended generator L associated

with an SHS. This operator is analogous to the generator

matrix of a discrete state Markov process but in the hybrid case

is a partial differential equation describing the dynamics of the

expected value of arbitrary test functions on the state space. In

particular, the extended generator allows us to derive ordinary

differential equations (ODEs) that govern the dynamics of the

statistical moments of the state variables of an SHS.

Operator L in (12) is the extended generator for an SHS

described by (9)-(11). Let ψ be a real valued function on Q×X
and define

Lψ(z) =

∂ψ(z)

∂x
f(z) +

∑

l∈L

(ψ(φl(z)) − ψ(z))λl(z). (12)

The operator L has the following useful property relating the

time derivative of the expected value of a test function ψ to

Lψ
d Eψ

dt
= E Lψ (13)

[11]. The extended generator for the closed loop system is

given by

L ψ(NP12
, NA, x) (14)

=
∂ψ(NP12

, NA, x)

∂x
γ(NP12

− y∗)

+ (ψ(NP12
+ 1, NA, x) − ψ(NP12

, NA, x))k1(C1 −NP12
)2

+ (ψ(NP12
− 1, NA, x) − ψ(NP12

, NA, x))k−1NP12

+ (ψ(NP12
− 1, NA − 1, x) − ψ(NP12

, NA, x))k2NP12
NA

+ (ψ(NP12
, NA + 1, x) − ψ(NP12

, NA, x))x(C2 −NA).

It can be used to find ODEs describing the evolution of the

statistical moments of the SHS. Specifically, letting ψ = x we

obtain
d Ex

dt
= E γ(NP12

− y∗). (15)

If the closed loop system is stochastically stable, in the sense

that the probability distribution of states approaches a fixed

invariant distribution, then by (15) we can conclude that

ENP12
= y∗.

The controller works in expected value when the system is in

steady state. Now, the problem of showing correctness of the

controller reduces to showing that the system is stochastically

stable or ergodic, i.e. that the system always approaches a

unique steady state distribution.

D. Ergodicity

We use a Lyapunov function argument [13, THM 5.1] to

show that the closed loop SHS is ergodic. This allows us

to set the LHS in (15) to zero and argue that the controller

works in steady state. We show that the system is ergodic for

some reference values y∗ and give sufficient conditions for

ergodicity for a range of y∗.

Denote the generator matrices of minimum and maximum

input by Am = A(0), AM = A(1) and the corresponding

steady state probability mass functions by pm and pM re-

spectively.

Theorem: Let A(u) be the generator of a tunable reaction

network and y the vector corresponding to an output function

y : Q→ R of the discrete state. The feedback controller pro-

posed in (8) results in a closed loop system with a stationary

distribution that has Ey = y∗ when y∗ is in the controllable

region, pMy < y∗ < pmy.

Note: If pMy > pmy, then the theorem applies with the

sign in (7), and the upper and lower limits of the controllable

region reversed.

Proof: Let Z be the SHS corresponding to the closed loop

system. By [13, THM 5.1], Z is ergodic when there exists a



function V : Z → R
+ with the property that V (z) → ∞ as

|z| → ∞ and

LV (z) ≤ −f(z) ∀z /∈ C (16)

for some compact region C and positive function f . 1

For our system, we define the function V̂ to be

V̂ (q, x) =

{
x+ c+(q) for x > 0
−x+ c−(q) for x < 0,

where c+ and c− depend on q. Note that the function V̂
is neither differentiable (required to apply L) nor positive

(required by theorem) since the offsets can be negative. To

address this problem, let V be a function that agrees with

V̂ when x is outside some interval [vmin, vmax] for all q ∈
Q, and is both non-negative and twice differentiable. This

function always exists since Q is finite and V̂ increases with

|x| so that V̂ is positive for sufficiently large |x|.
Let the compact region required by the theorem be C = Q×

[min(vmin, 0),max(vmax, 1)]. Since we are only interested in

V outside C, we look at the cases when the feedback input is

saturated at either u = 0 or u = 1. This situation simplifies the

analysis, since the transition intensities λ(q, x) are independent

of x in the saturated regions. We now argue that for some range

of set points y∗ we can find c+ and c− to make V a Lyapunov

function in the sense of (16).

Choosing f = ǫ and considering saturation at u = 1 first,

we can rewrite the conditions of (16) in vector from,

y − y∗1 + AMc+ ≤ −ǫ1. (17)

Let ǫ̃ be an arbitrary vector with strictly positive entries, then

we can rewrite (17) as

y − y∗1 + AMc+ = −ǫ̃. (18)

We want to determine when this equation has a solution for

c+. Note that

AMc+ = −ǫ̃+ y∗1 − y

has a solution only if (−ǫ̃+y∗1−y) is in the column space of

AM , which we write (−ǫ̃+y∗1−y) ∈ ColAM . Equivalently

(ColAM )⊥ ⊥ (−ǫ̃+ y∗1 − y) (19)

(NulAT
M ) ⊥ (−ǫ̃+ y∗1 − y) (20)

(p∗
M )T ⊥ (−ǫ̃+ y∗1 − y) (21)

0 = p∗
M (−ǫ̃+ y∗1 − y) (22)

0 = −p∗
M ǫ̃+ y∗ − p∗

My, (23)

where Nul denotes the null space and ⊥ the orthogonal

complement. Since ǫ̃ has arbitrary, strictly positive entries, a

solution for c+ exists when

p∗
My < y∗.

1The theorem has some technical preconditions, which are fulfilled in our
case, namely that all compact sets are petite see [13]. This follows from [14,
THM 4.1], [12, THM 27.6] and the fact that every Feller process is also a
T-process.
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Fig. 7. Tracking data from robotic test-bed. This is the average of 25 different
experiments. Each experiment has 10 P1 and P2 each, and 4 active robots.
The grey shading in the background corresponds to the fraction of trajectories
with that number of pairs. Darker regions correspond to higher occupancy.
The two histograms on the right show the fraction of possible dimers taken
for the last half of each step. The red line is the mean, which demonstrates
correct behavior for the controller.

Similarly, for saturation with u = 0 we get

p∗
my > y∗.

Thus the system is ergodic if

p∗
My < y∗ < p∗

my.

Furthermore, by (15) the expected value of NP12
tracks the

reference value y∗ when it is in the controllable region.

The proof does not rely on any special structure of A(u) nor

the value of γ, as a result the theorem is generally applicable

to tunable reaction networks with saturating inputs.

V. EXPERIMENTAL RESULTS

We implemented the proposed controller on the robotic

test-bed described in Sec. II. The generator matrix A(u) is

defined by (2)-(4), and the output function is y(q) = NP12
.

To show its the tracking capability we tracked two periods

of a square wave. The low and high set-points were 0.7 and

0.8 (corresponding to 7 and 8 P12). Both of the setpoints are

inside the empirically determined controllable region for this

system, 0.60-0.86.

The combined results of 25 trajectories are shown in Fig. 7.

We let each trajectory run with a set point of 0.7 for 5 minutes

(a half period) before recording data, which allowed transients
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Fig. 8. Standard deviation of output for different set points and integrator
constants γ. The red line at the bottom corresponds the the standard deviation
when the system is under open loop control. The green line at the top
corresponds to the standard deviation of the system when driven with a bang-
bang controller and the input is always saturated.

resulting from the manual initialization to dissipate. After the

warm up period we collected 20 minutes of data for each

trajectory.

This experiment demonstrates the controller tracking a

reference signal in mean (Fig. 7(b)(c)). This experiment also

demonstrates the fundamental stochasticity in the system. The

spread in Fig. 7(b)(c) is not due to measurement uncertainty

or noise, but a fundamental property of the stochastic system

we are controlling.

We also present some preliminary simulation experiments

exploring how the variance of the copy number relates to

the integrator gain γ. The proof for tracking in mean did

not depend on the value of γ, so the proposed controller

will always yield the desired mean steady-state copy number.

However, it might differ in the degree of fluctuation around

the correct mean.

The relation between set-point, integrator gain, and standard

deviation at steady state are shown in Fig. 8. Each data point

was collected by setting γ and estimating the standard devia-

tion at steady state. This approach limits smallest value of γ we

can feasibly simulate, since small values slow down the system

dynamics and make simulations prohibitively computationally

expensive.

We observe that less aggressive values of γ result in a

smaller standard deviation of the output. The upper and lower

limits of the standard deviation correspond to open-loop and

bang-bang control. Another interesting feature of Fig. 8 is that

the standard deviation of the output seems to be less sensitive

to γ if the reference y∗ is close to the edge of the controllable

region.

VI. CONCLUSIONS AND FUTURE WORK

We proposed an integral feedback controller for controlling

the average copy number of an arbitrary species in a system

modeled by stochastic chemical kinetics. We proved that

the controller tracks a reference in mean and demonstrated

the approach on an robotic experimental platform. We also

presented some preliminary simulation results regarding the

variance of the the copy number as a function of the integrator

gain. We are currently working on analytical results describing

the steady state variance of the control scheme. We are also

investigating ways to decentralize the controller by using local

estimates of the global output.

Finally, we would like to emphasize the generality of our

approach. The functionality of the controller requires no tuning

of the integrator gain γ as long as the reference is in the

controllable region, which is easy to measure experimentally.

The detailed structure of the underlying Markov process does

not matter.
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