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Abstract— We consider the problem of multi-robot task-
allocation when robots have to deal with uncertain utility esti-
mates. Typically an allocation is performed to maximize expected
utility; we consider a means for measuring the robustness of
a given optimal allocation when robots have some measure of
the uncertainty (e.g., a probability distribution, or moments of
such distributions). We introduce a new O(n*) algorithm, the
Interval Hungarian algorithm, that extends the classic Kuhn-
Munkres Hungarian algorithm to compute the maximum interval
of deviation (for each entry in the assignment matrix) which
will retain the same optimal assignment. This provides an
efficient measurement of the tolerance of the allocation to the
uncertainties, for both a specific interval and a set of interrelated
intervals. We conduct experiments both in simulation and with
physical robots to validate the approach and to gain insight into
the effect of location uncertainty on allocations for multi-robot
multi-target navigation tasks.

I. INTRODUCTION

Task-allocation mechanisms are among the most successful
non-domain-specific means for coordinating the actions of
multiple robots. These involve treating the work to be per-
formed as a set of tasks and the robots themselves as workers
to be assigned to particular tasks. By estimating the expected
utility of a particular robot’s performance of a particular task,
algorithms can optimize the allocation of robots to tasks (or
vice versa) in order to maximize expected collective perfor-
mance. The complexity of the allocation problem depends on
the particular capabilities required to achieve the task, the
capabilities of the robots, and whether the allocation must
consider temporal scheduling aspects [1]. Generally the appro-
priateness of the task-allocation approach and the difficulty of
the allocation problem both depend on the degree to which
each of the robots and each of the tasks can be considered
independent.

We consider the archetype multi-robot task-allocation prob-
lem which involves performing an instantaneous assignment
of single-task robots to single-robot tasks (following the tax-
onomic characterization in [1]). This reduces to an instance
of the well-studied Optimal Assignment Problem (OAP) for
which the Kuhn-Munkres Hungarian algorithm, which was
first proposed by H. W. Kuhn[2] in 1955 and improved by
J. Munkres [3] in 1957, is a solution.

For multi-robot task-allocation, however, outstanding issues
remain. The Hungarian algorithm maximizes the utility for the
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team because it is provided with an estimate of each robot’s
expected utility. Calculating this estimate is costly because
every robot must provide estimates for each task, and the
optimality of the resultant allocation is only meaningful when
these estimates are accurate. Furthermore, the robots each
have to deal with uncertainty about the state of the world
in constructing these estimates. Even if the robots maintain
a representation of this uncertainty (e.g., a distribution over
potential states) the expected utility is only the first moment of
the utility distribution given a particular robot-task assignment
pair. Important questions are: (1) How much effort should the
robots invest in constructing the utility estimates? For n robots
and n tasks, n? estimates are provided—but only n elements
make up the optimum assignment; not all utility estimates
need to be known with equal fidelity. (2) Once an allocation is
computed, how stable is that allocation with respect to changes
in the matrix of utility estimates? (3) If these utility estimates
arise from an underlying probability distribution, what is the
likelihood that the assignment is sub-optimal?

This paper makes the following contributions toward ad-
dressing these questions:
o Identification of properties of intervals of utility estimates,

and proofs of these properties.

e Introduction of a new algorithm, the Interval Hungarian
Algorithm, ideally suited to multi-robot systems, although
broadly applicable to any OAP where the matrix of utility
estimates is subject to uncertainty.

e Introduction of an efficient method for quantifying the
effects of uncertainty on an allocation. This includes analysis
for instances with a single specific estimate and multiple
interrelated estimates.

e Analysis of the impact of uncertainty with concrete ex-
amples, using standard localization methods to produce real
utility distributions with physical robots and in simulation.

II. RELATED WORK

It is worthwhile drawing a distinction between multi-robot
coordination strategies that employ assignment methods in
which expected utilities for each robot’s task performance is
provided, and those that model the task performance itself in
greater detail. The former depend on an independence assump-



tion, because a linear function (like the sum) of the group’s
utilities is optimized. Other effects, like interference or inter-
robot synergy, can only be captured in the way they effect par-
ticular utilities in the expectation. Centralized and distributed
algorithms for performing allocations have been developed,
including greedy allocations [4], optimization techniques [1, 5]
and auction [6, 7] and market-based approaches[8, 9]. It is
within this framework that the present study falls. It uses little
information about the domain-specific aspects that lead to the
structure of the coordination problem, or even the source of
the uncertainty. However, aspects like interrelated utilities (or
in the present study, more generally, interrelated uncertainty in
the utilities) are not explicitly captured. If the effect of these
higher-order interactions on utility values can be calculated,
then the presented algorithm can still be of use.

Schemes that use a richer model of agent and task
in order to construct a probabilistic model, for ex-
ample, stochastic games/decentralized-MDPs[10], factored-
MDPs,[11], POMDPs [12], permit one to address explicitly the
question of when to perform particular actions (movement,
sensing, communication) in order to reduce uncertainty if
doing so is beneficial for the task performance. However, these
problems do not admit polynomial-time solutions, and often
factorization or independence assumptions are introduction in
order to make the problem tractable.

Algorithm II.1 The Hungarian Algorithm
Input:
A valid n x n assignment matrix represented as the equiv-
alent complete weighted bipartite graph G = (X,Y, E),
where | X| = |Y|=n.
Qutput:
A perfect matching, M.
1: Generate an initial labelling ! and matching M in G..
2: If M perfect, terminate algorithm. Otherwise, randomly
pick an exposed vertex v € X. Set S = {u}, T = @.
3. If N(S) =T, update labels:
5 = mines yey—r{l(x) + 1(y) — w(z,y)}

llv)—d ifvesS
U'(v)=¢ llv)+d ifveT
I(v) otherwise
4 If N(S) # T, pick y € N(S) — T.

(a) If y exposed, u — y is augmenting path. Augment M
and go to step 2.

(b) If y matched, say to z, extend Hungarian tree:
S =SU{z}, T =T J{y}, and go to step 3.

* Definitions:

o Equality graph G. = {e(x,y) : l(z) + l(y) = w(z,y);
o Neighbor N(u) of vertex u € X: N(u) = {v : e(u,v) € G}

III. HUNGARIAN ALGORITHM

The Hungarian Algorithm treats the optimization OAP as
a combinatorial problem in order to efficiently solve an
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Fig. 1. Hungarian algorithm solves the OAP using a complete bipartite

graph. (a) An assignment matrix and solution; (b) A complete bipartite graph;
(c) The perfect matching for assignment solution. The state of the graph after
an assignment, we term the resultant bipartite graph.

n X n task assignment problem in O(n?) time. The utility
estimates become edge weights in a complete bipartite graph
in which each robot and task becomes a vertex. The Hungarian
Algorithm (Algorithm II.1) searches for a perfect matching in
a sub-graph of the complete bipartite graph, where the perfect
matching is exactly the optimal assignment solution. In step 4
the search process either increases the matching size, or the
so-called equality graph in which the matching resides. (Graph
and matching definitions and notation are adopted from [13].)

Figure 1 shows an example assignment problem and the
corresponding perfect matching in form of the associated
bipartite graph. In Figure 1(a), the task assignment problem is
described as an assignment matrix (which need not be square
in general). An element u;; is an estimated utility, meaning
that robot 7; has an expected utility when assigned to perform
task ¢;. The algorithm generates the maximal allocation,
shown as shaded cells in the matrix. Figs. 1(b) and 1(c)
show the same information but in bipartite graph form. Edges
that are used during the calculation are differentiated by 3
colors: red (bold dark) edges comprise the matching, green
(thin dark) edges are unmatched but they are in the equality
graph G, grey (bold light) edges are also unmatched but do
not appear the equality graph. Edges within G, are termed
admissible (both red and green edges) and will have weights
that satisfy w;; = [(r;) + I(¢;). Bracketed integers beside
each vertex represent the labeling value I(-). Edge set M and
scalar m represent a specific perfect matching solution and the
corresponding optimum value, respectively.

Since the development of the Hungarian Algorithm many
variations have been proposed (see [14] for a recent survey).
Two relate directly to this paper: [15] provide an incremental
Hungarian Method, which is an O(n?) technique for inserting
a pair of new vertices in the bipartite graph resulting from a
previous assignment. An extension to this in [16] also permits
deletions, which enables one to solve assignment problems
with k utility changes in O(kn?) time. The current work
computes a description of an assignment problem (in O(n*))



which permits subsequent O(1) queries of whether or not
the assignment has changed. When assignments are being
recomputed frequently with small absolute changes in value
(e.g., frequent replanning of distances as a robot moves) this
can be a considerable saving.

IV. INTERVAL HUNGARIAN ALGORITHM

For each utility value, we compute the interval in which the
utility may be (independently) perturbed before the optimality
of the computed assignment is violated. Thus, given an input
matrix of utilities, the algorithm characterizes a set of inputs
which yield the same output. The intervals are computed based
on the three categories of edges described above.

A. Interval Analysis for Matched Edges

The allowable intervals for matched edge weights is ana-
lyzed as follows: for any such edge e,,(rq,%3), the interval
can be described as [Wimap — €m, +00), Where wy,q5 is the
edge weight of e, (r,t3) and €, is the rolerance margin that
the weight can decrease without violating the optimality of the
current matching solution. It is safe to increase the weight as
this is a maximization problem. We say a matched edge is
hidden if its weight has decreased so as to no longer form
part of a matching solution.

Lemma 4.1: With the resultant matching solution M, and
bipartite graph of Hungarian algorithm, if a matched edge
em(Ta,tp) is hidden, then the Hungarian algorithm can be
completed with one iteration rooted at exposed node r.
When a new perfect matching solution M’ exists, the labeling
reduction of the root r,, satisfies I(ry) —U'(ro) = mg — m’.

Proof: The proof is based on the Hungarian algorithm
solution method. If one matched edge e, (rq,ts) is hidden,
the bipartite graph remains feasible, but the equality graph G,
loses one matched edge. Hiding e, (7, t3) exposes o, and ¢,
requiring an iteration to complete the Hungarian algorithm. All
other unexposed vertices are on corresponding matched edges
and, thus, are included in G, and moreover the sum of their
labels is constant for all subsequent iterations. To grow G,
in bridging a new augmenting path', I(r,) may decrease, but
l(tg) remains constant because it is the end of augmenting path
and will be reached last. Therefore, {(r,,) is the only variable
that can reduce the optimum. This proves that the reduction
of I(r,) is exactly the reduction of optimum from M to M’,
namely, [(ry) — U'(ro) = mg —m/. [ ]

Theorem 4.2 (Matched Edge Interval): Hiding a matched
edge from the Hungarian solution leads to a new solution, and
the labeling reduction ¢,,, at the root of the Hungarian tree is
the tolerance margin for this element, i.e., the safe interval for
matched edge e, (ra,t8) 18 [Wmap — Em, +00).

Proof:  Assigning weight w = wWmaes — €m to edge
em(Ta,tg) results in optimum mg—e&,, for the original match-
ing My. Any new matching M’ which excludes e, (rq,tg)
also has an optimum of m’ = mg—¢,,, therefore both M, and

! Although the definition of augmenting path is not necessary to understand
Algorithm II.1, we note that here we deviate from [13, pg. xxxii], where they
use the term M-augmenting path.
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Fig. 2. Interval analysis for a matched edge. (a) Hide an objective matched
edge and assign it with weight w,; (b) New matching solution without the
hidden edge.

M’ are optimal matching solutions. Whenever the weight of
edge e, (rq,tp) satisfies w > wyap — Em, We have mg > m/
implying that M, is optimal, since otherwise M, would be
substituted by M’. Thus, the maximum allowable interval for
matched edge e, (ra,t3) IS [Wmas — Em, +00). [ |

Algorithm IV.1 Intervals of Matched Edges
Input:
A matched edge e, (rq,t3) and the corresponding resul-
tant bipartite graph.
Output:
Interval (lower bound &,,) for €, (rq,t3).
1: Hide ey, (rq,ts) by assigning it an unknown weight w,.
Set S ={r,}, T =0.
2: If N(S) =T, update labels:

0 = minxéS,yEY—T,e(:c,y)#em(W‘mta){l(x) + l(y) -
w(z, y)}
lv)—6 ifves
U'(v)=¢ lv)+d ifveT
1(v) otherwise

U(re) +1U(tg) —wy > 6 = wy <l'(ry) +1U(tg) — 9.
Update &, =U'(ro) + U'(tg) — 6.

3: If N(S)#T, pickye N(S)—T.
(a) If y = tg, there must be an augmenting path r, — 3.
Augment matching and terminate algorithm.
(b) If y matched, say to z, extend Hungarian tree:
S=SU{z}, T =T J{y}. Go to step 2.

Lemma 4.1 and Theorem 4.2 permit computation of the
interval of a matched edge e,,(ra,t3) in the following way:
first hide e,,(rq,ts) from the bipartite graph and assign it
an undecided weight w, that satisfies the constraint: w, <
l(ra) + l(tg). Next, let exposed vertex 7, be the root of a
Hungarian tree and construct an augmenting path excluding
em(Ta,ts). The algorithm terminates when such a path is
found that generates a perfect matching. Because [(t3) stays
unchanged but [(r,,) is decreased, w, will decrease per itera-
tion; the lower bound w3 — €, Occurs moment when the
new perfect matching exists.

Figure 2 illustrates an example. Hiding matched edge
e(rs,t1) requires construction of a Hungarian tree rooted at
newly exposed vertex r3. Here I(r3) decreases while search-
ing for an augmenting path, and a new matching solution
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Fig. 3. Interval analysis for an unmatched edge. (a) Hide all associated
edges of objective unmatched edge; (b) New matching solution formed with
the objective edge and matching solution in auxiliary bipartite graph.
{(e(r1,t1),e(ra, t2), e(rs, t3)) replaces the original one in aug-
menting path r3 — t3 — r; — ¢;. The reduction of labeling
for r3 is 5 —4 = 1 = &, and the interval for e(rs,t1) is
8, +00).

B. Interval Analysis for Unmatched Edges

An unmatched edge e, (r,,ts) has an interval (—oo,&,],
where the upper bound &, reflects the maximum value of the
utility for it to remain an unmatched robot and task pair.

Lemma 4.3: In the resultant bipartite graph of the Hungar-
ian algorithm, the weight of any unmatched edge e, (ry,t,)
can be increased to the sum of two associated labeling values
l(ry) + I(ty) without affecting the assignment optimum.

Proof: An increment of this form does not violate the
feasibility of the bipartite graph, nor does the modification
remove any admissible edges from G.. Therefore, the original
matching in G, remains perfect. [ |

However, the upper bound in Lemma 4.3 is not tight.
For example, e(ra,t1) in Figure 1(c), the weight can safely
increase to 12 rather than 4 + 7 = 11 (12 is the upper
bound because greater weights result in optimal matching
(e(r1,ta),e(ra, t1), e(rs, t3))), and there is a tolerance margin
of 1. Next we show how to find the tolerance margin ¢,, and
further improve the upper bound. At present we redefine the
interval as (—o0,1(ro)+1(t3) +¢€4]). Note that this also shows
that all unmatched edges, whether in G, or not, can be treated
uniformly once they become admissible.

To obtain ¢, for unmatched edge e, (rq, t3), hide e, (rq,t3)
and all other edges incident to vertices r, and tg from the
resultant bipartite graph. This yields a bipartite graph with
n — 1 vertices in each partition. We term this new bipartite
graph the auxiliary bipartite graph G,. Notice that auxiliary
bipartite graph is associated with a particular edge, and that
the auxiliary bipartite graph has only n — 2 matched edges.
It therefore requires the addition of one edge for a matching
solution.

Theorem 4.4 (Unmatched Edge Interval): Any unmatched
edge e, (7, ts) in the Hungarian resultant bipartite graph, has
interval tolerance margin €, = mg — (mq + 1(ra) +1(t3)),
where mg is the optimum of the original solution, and m,,
is the optimum of the auxiliary bipartite graph associated
with e, (74,ts). The allowable interval for edge e, (rq,tg)
is (—o0, mg — myg].

Proof: For an arbitrary unmatched edge e, (rq,t3) and
its associated auxiliary bipartite graph G, of size n — 1,

we add e, (rq,t3) to the matching solution M, of G,. This
forms a new matching M’ of size n. If the weight of edge
eu(ra,tg) satisfies wyap > Mo — My, then the matching M’
containing e, (r,%3) must satisfy m’ = wyag + mg > mo.
But this contradicts the fact that the original matching M)
was perfect. This proves that the upper bound for unmatched
edge e, (7q,ts) is mo —my, and that the allowable interval is
(—o00,mp — My |

Algorithm IV.2 Intervals of Unmatched Edges
Input:
An unmatched edge e,(rq,tg) and the corresponding
resultant bipartite graph.
Qutput:
Interval (upper bound &,,) for e, (rq,tg).
1: Assume e(rq,mate(ry)), e(tg, mate(ts)) are matched
edges, then set S = {mate(tpg)}, T = 2.
2: Hide e, (rq,t3) and all other edges incident to vertices 7,
and tg, and obtain the auxiliary bipartite graph G|,.
3: In G, if N(S) =T, update labels:
5 = mingesyey—r{l(@) +1(y) — wz,y)}

lv)—d ifvesS
U'(v)=¢ lv)+d ifveT
I(v) otherwise

4 In Gq, if N(S) # T, pick y € N(S) — T.
(a) If y = mate(r,), there must be an augmenting path
mate(tg) — mate(r,). Augment matching and go to step
5.
(b) If y matched, say to z, extend Hungarian tree: S =
S U{z}, T =T U{y}. Go to step 3.

5: & = Mg — My,

* Definitions:

o mate(v) is the other ending vertex with regard to vertex v;
e My is optimum of the original solution, m, is optimum of G,.

Consider Figure 3 as an example. Hiding e(r2,¢1) and all
edges incident to ro and t; leaves auxiliary bipartite graph
G, containing vertices 71, T3, to, t3 and associated edges
(see Figure 3(a)). The Hungarian tree is created rooted at
newly exposed vertex r3, and finally the matching solution
M, of G, is (e(r1,t2),e(rs,t3)), as shown in Figure 3(b).
The tolerance margin and allowable interval for e(rs,t1) are
€y =mg — (Mg +1(r2) +1(t1)) =1 and (—o0,12], respec-
tively.

C. Interval Hungarian Algorithm

Combining the interval analysis of matched and unmatched
edges, we have the Interval Hungarian algorithm described in
Algorithm IV.3. Figure 4 shows the corresponding intervals
for assignment matrix in Figure 1(a).

D. Computational Complexity

The algorithm has worst-case time complexity O(n?).

The Hungarian algorithm has a computational complexity of
O(n?). Obtain the intervals for n matched edges, needs an



Algorithm IV.3 Interval Hungarian Algorithm
Input:
A resultant bipartite graph from running Algorithm II.1.
Qutput:
An interval matrix max;,(n,n) storing all intervals.
I: mxi,(n,n) = NULL.
2: for all edges e(i, ) in bipartite graph
if e(7,j) is matched
compute interval I (7, j) with Algorithm IV.1.
mxit1}(i7j) = I(Zvj)
else
compute interval (7, j) with Algorithm IV.2.
mxitv(ivj) = I(@’])
3: return ma;g,.

ty t t3
ry| (-00,8] | (-00,6] | [2,+20)
Iy [(-00,12] 1 [6,+90) | (-00,7]
rs [ [8,+00) | (-00,8] | (-0,5]

Fig. 4. An example of an interval matrix

extra O(n x n?) = O(n?) operations since for each edge
requires construction and search of the Hungarian tree costing
O(n?). The computation of all the unmatched edges has a
worst case cost of O(n*) since, for each unmatched edge,
we do the same searching iterations in G,, which has a
size of n — 1 and thus needs a computational complexity of
O((n — 1)2). There are n?> — n unmatched edges, yielding a
total of O((n? —n) x (n —1)?) = O(n?).

V. QUANTIFYING THE EFFECT OF UNCERTAINTY

When the Hungarian algorithm is applied to a matrix of
expected utilities calculated from uncertain data (e.g., using
the mean of a utility distribution) one has little idea of the
impact the uncertainty has on the resultant assignment. The
output from the Interval Hungarian algorithm can be used
to analyze the changes in optimal allocation as changes are
made to particular utility values. This can be used to evaluate
likelihood that the calculated assignment will be sub-optimal.

A. Uncertainty Measurement for a Single Utility

Theorem 5.1 (Uncertainty of a Single Interval): With re-
gard to any specific single utility value, assuming other utilities
are certain, the perfect matching solutions are identical if and
only if any specific utility is within its allowable interval.

Proof: Assuming other utilities in the assignment matrix
are certain, taken together Theorems 4.2 and 4.4 prove that
if the matching solution remains the same, then any specific
utility must be within its allowable interval. To prove the
converse: suppose the matching solutions are not identical,
then there must be a new perfect matching M’ that replaces the
original one My i.e., m' > mg. However, this cannot happen
since any value within interval must produce a matching
solution with weight sum less than or equal to my. [ |

To analyze the effect of uncertainty on a specific utility in
the assignment matrix, we assume the other values are certain.
Given a probability density function f(z) for this specific
expected utility, and associated interval I as output from the
algorithm, the probability of a sub-optimal assignment is:

;;OO f(z), when I = [¢,,,+00)
P = (1
fféo f(m)7 when [ = (_Oovgu}'

For applications in which robots are actively estimating
quantities involved in producing f(z), one may set some
threshold 7', such that robots only commit to an assignment
if Pr > T, and instead invest resources in reducing the
uncertainty in the estimate if it is likely to have a major bearing
on the particular assignment. High values of 7" will ensure the
robots only commit to allocations that are robust to errors in
estimates of the expected utility.

B. Uncertainty Measurement for Interrelated Utilities

The previous subsection gives an approach for quantifying
the effect of uncertainty on the robot-to-task assignment when
only one utility was uncertain. Most often, however, multiple
utilities are uncertain, and they may all be related if they
involve inference over the same underlying state variables.
For example, a row in the assignment matrix represents all
relevant expected utilities for a specific robot. A change that
effects the performance of the robot (e.g., low battery) effects
all the entries in the row. Here we use the term interrelated
edges to represent all directly related utilities in a single row
or column. For the same assignment to be preserved, despite
n interrelated edges, there must be one and only one edge that
remains matched, and all the others should be unmatched.

Theorem 5.2 (Uncertainty of Interrelated Intervals):
Given a set of n interrelated edges, assume e,,, is the matched
edge with interval [w,, — &,,,+00), and e,; are unmatched
edges with intervals (—oo, wy; + €4i], (0 = 1,2,...,n — 1),
then for any & < ¢,,, the weight of e,, can be safely
substituted with w,, — €', and the interval for e,; becomes
(—00, Wy +eui — €', (1 =1,2,...,mn—1).

Proof: ¢ < g, indicates that new weight w], =
wy, — €’ is within the interval associated with edge ¢,,, thus a
substitution of w!,, will not violate the matching solution. To
prove the interval form for e,; (+ = 1,2,...,n — 1): suppose
my, is the solution optimum with substituted weight w/,,, then
we have m{ = mgy — €. From Theorem 4.4, the interval
for e,; is (—oo,m(y — mg], which can be substituted with
(—o0,mg — &' — my]. Because mg — my = wy; + €44, the
interval for e,; becomes (—o0, wy; + &4 — €']. [ |

Notice that Theorem 5.2 exploits the mutual exclusion
property of interrelated unmatched edges: at any time one and
only one interrelated unmatched edge can possibly become
matched. This means that as the matched edge’s weight is
decreased, one unmatched edge moves closer to it’s interval’s
upper-bound. However, as the matched edge’s value decreases,
the unmatched edge’s bounds decrease too. To allow the
simultaneous occurrence of interrelated matched edge and



Fig. 5. Reliability levels (shaded area) with Gaussian distribution density.
The horizontal axis represents the uncertain utility estimates.

unmatched edges, we compromise between them: intervals of
interrelated unmatched edges shrinks by ¢’, while interval for
interrelated matched edge shrinks by e, — ¢’. We design the
method for measuring the uncertainties of interrelated edges
in the following steps:

1) Determine €,,;, from all interrelated edges:
Emin = MIN(Em, €ui)y (1=1,2,....,.n—1)
2) Determine each interrelated interval I;:

|

xIy represents interval for the matched edge. k is an
empirical coefficient and k € [0, 1] which effects the
degree to which the matched and unmatched interval’s
are scaled.

3) Determine probability:

PIi:{

4) Determine reliability level:
The assignment is reliable when P;; > T', and unreliable
otherwise.

[wm —k- Emin, +OO)
(—OO,U)M + Eui — k- Emin]a (Z = 1,2, ey U — 1)

Q_noo f(x)’ (57/" = Wm — k- 6'rm'n)

ffi; f(z)v ( ;u = Wyi + Eui — k- 5min)
2

This approach utilizes a parameter k to balance the shrink-
ing intervals (generally, ¥ — O when the number of robots is
larger, which controls the loss of compromised ranges). In our
experiments involving 3 robots, we use k£ = 0.5 to guarantee
a margin of at least 0.5¢,,;, from each estimated utility).
This is most effective for Gaussian-like distributions in which
mean and medians of the distributions are close. Figure 5
illustrates the reliability levels (shaded area) under a Gaussian
distribution density for the matched and unmatched edges,
respectively. This method can measure the uncertainties for a
horizontal row or a vertical column in the assignment matrix,
assuming other non-directly interrelated rows or columns are
known with certainty. The uncertainty involving multiple rows
or columns is complex and beyond the scope of this paper.
In practical applications, however, a conservative approach
is simply to raise the threshold 7' so that the inaccuracy
arising from multiple interrelated rows or columns can be
compensated for.

VI. EXPERIMENTS AND RESULTS

We demonstrate, through simulation and physical robot
experiments, that the Interval Hungarian algorithm permits the
effect of uncertainty on the allocation to be quantified. We
consider the problem of dispatching a group of homogeneous

(@ (b)

Fig. 6. Multi-robot task assignment using localization. (a) Planned path with
wavefront driver; (b) Possible localization results of robot #3.

() (b)

Fig. 7. (a) Multi-robot task assignment and commitment in a maze; (b)
Uncertain hypothesis for uncertainty-robot (robot R1 in red).

robots to a set of destination locations. We selected this task
because it (and variations to it) have been used in the literature
for the purpose of evaluating task assignment methods (e.g.,
[7] and subsequent paper by Koenig’s group). Additionally, the
source of uncertainty and the means for actively estimating
this has been well-studied in the last decade. Other tasks
(e.g., Parker’s [4] Cooperative Multi-robot Observation of
Multiple Moving Targets (CMOMMT) task) have different
forms of uncertainty, but once a utility matrix is constructed for
purposes of robot task-allocation, the method applies directly.

The assignment matrix is a negative estimation of the
distance from current location to goal location and the un-
certainty in the assignment problem comes from localization
error. The robot attempts to localize itself in the environment
(with a given map) by employing an particle filter-based
approach [17]. Particles are clustered and the weighted means
of these clusters taken as pose hypotheses. A planner is used
to estimate the cost from estimated location to a given goal
location. Figure 6 illustrates three robots being dispatched to
three task locations in a maze-like room. The line segments
connecting to the task locations in Figure 6(a) are the planned
paths, and the path cost is the total length of each path.
Figure 6(b) shows the possible poses of robot #3.

A. Simulation

1) Experimental Setup: The simulation environment is de-
signed as in Figure 7(a) within the Stage simulator [18].
The maze was designed to be somewhat symmetric so as to
provide multiple uncertain poses for the localization method.
Three robots were randomly positioned within the maze and
dispatched to the three task locations shown as big dots in
the corners of Figure 7(a). Of the three robots, only one
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Fig. 8. (a) Uncertainty analysis of interrelated intervals for robot R1; (b) —
(d) Hypothesis distributions of interrelated utilities captured at 105th second.

(Robot R1 in red color, named uncertainty-robot) is using
the localization algorithm and thus has uncertain poses, the
other two (R2 in green and R3 in yellow, called localized-
robots) obtain ground-truth poses from the simulator. This
facilitates the verification of uncertainty measurement methods
provided in Section V, which assume other non-interrelated
utilities are known (actually non-interrelated uncertainties are
allowed and also can be measured so long as not more
than one set of interrelated uncertainties appear concurrently).
The uncertainty-robot uses a simulated scanning laser ranging
sensor and a map identical to the simulation environment.
Figure 7(b) shows the particles for uncertainty-robot.

A path cost distribution shows the effect of uncertainty on
a robot’s utility estimates; it is obtained by computing path
lengths from all available hypothesis of uncertainty-robot to a
specific task location.

To capture the uncertainty, we set a fixed period ¢ and
empirical reliability threshold 7', for example, ¢ = 5s and
T = 80%. After every period ¢, the following was performed:
check the number of hypothesis n, if n = 1, the the robot
is completely localized. If n > 1 then check the maximal
probability p,,., among all hypothesis, and if pq, > 7T,
it indicates the robot is sufficiently certain of its location,
otherwise, trigger the uncertainty measurement mechanism
provided in Section V.

2) Results and Analysis: Figure 8 is the correspond-
ing captured localization uncertainties at ¢ = 105s. Fig-
ure 8(a) is the assignment matrix with optimal solution
(shaded cells) and allowable intervals for all utilities. Fig-
ures 8(b)—8(d) are the path cost distributions for the un-
certainty robot. In each sub-figure, the bar with highest
probability (colored with stripe) is the path cost for the
current most-likely localization result and thus is used in

the assignment matrix. Other bars around it are the path
costs for all other uncertain hypotheses. Remember that here
only Robot R1 has imperfect localization, and the intervals
for the interrelated utilities (the first row Figure 8(a)) are
((—00,—2.2],[-12.5, +00), (—o0, —1.2]), thus we can com-
pute its tolerance margin €, = —9.7 — (—12.5) = 2.8. Using
the method discussed in Section V, we get the allowable in-
terrelated intervals ((—oo, —3.6],[—11.1, +00), (—00, —2.6]).
The intervals are flipped from negative to positive to fit the real
path cost distributions: ([3.6, +00), (—o0,11.1],[2.6, +00)).
In Figures 8(b) — 8(d), the bars within interrelated intervals
are filled red (dark), and the others are in pink (light). The
calculated results of Py are (94%, 83%,89%), and we use
the reliability threshold 7" = 80%, therefore all utilities are
considered reliable and we can trust the assignment solution.
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Fig. 9. (a)— (b) Multi-robot assignment simulation captured at 76th second;
(c)— (f) Uncertainty analysis of interrelated utilities.

Figure 9 is another example that illustrates the unreliable as-
signment solution. The reliability levels of interrelated utilities
are (82%, 39%, 55%), as shown in Figure 9(c). There are two
utilities below the reliability threshold, thus the assignment
solution is considered unreliable. In fact, from Figure 9(a)
and 9(b) we see that, if the localization of Robot R1 is
at its true location, then the assignment solution should be



(b)
Fig. 10. Physical robot localizing in a floor legend

rp — t3 (Robot R1 is assigned to the task location #3),
ro — t1 and r3 — to. The case illustrates the sensitivity of
the assignment solution to uncertainty, the algorithm’s output
suggests refining of the localization before committing to an
unreliable assignment.

B. Simulation vs. Real Robots

1) Experimental Setup: We also conducted experiments
with physical robot in our research building (Figure 10(b)
shows the floor plan, as drawn by hand, with pose estimates.)
A single iRobot create robot with Hokuyo URG-04LX-UGO01
laser sensor, as shown in Figure 10(a), was used to collect
pose estimates, which were in turn used to compute path cost
distributions. To best compare the distributions we used the
same parameters for the localization parameters and randomly
placed the robot in a corridor with the same initial poses and
goal positions at the same locations.

2) Results and Analysis: Compared with simulation, the
physical robot shows greater certainty and converges more
slowly. Figure 11(a) is a typical simulation result of the
hypothesis distribution captured at ¢ = 117s, and Figure 11(b)
is the result from physical robot captured at t = 319s.

Qualitatively both distributions are clustered Gaussian-
distributed bars. The simulation data have fewer clusters
than the physical robot data. The greater uncertainty and
slower convergence suggests that using the Interval Hungarian
Method can be particularly important for physical robots with
significant measurement error.

VII. CONCLUSION

This paper presents the Interval Hungarian algorithm and
an approach for measuring the effect of uncertainty on the
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(b) Path cost distribution from the
physical robot after 319 seconds.

Fig. 11. Comparison of hypothesis distributions between simulation (left)
and physical robot (right)

optimality and stability of the output from the OAP with
direct application to task-allocation in multi-robot systems.
The Interval Hungarian algorithm is based on the bipartite
matching variant of the Hungarian algorithm. Given an input
utility matrix it outputs an assignment matrix along with
intervals which are associated with each utility in the input.
Each interval conveys a tolerance of the optimal assignment
to perturbations in the utility value. We illustrated how uncer-
tainties in multi-robot assignment problems can be quantified
when probability distributions describe the utility estimates.
Data from simulated and physical robot implementations were
presented and compared.
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