Multi-priority Cartesian Impedance Control

Robert Platt Jr. Muhammad Abdallah, Charles Wampler
Computer Science and Artificial Intelligence Laboratory Manufacturing Systems Research Lab
Massachusetts Institute of Technology General Motors
rplatt@csail.mit.edu {muhammad.abdallah,charles.w.wamp@gm.com

Abstract— Manipulator compliance is well known to be im-  joint velocities that attempt to achieve a second-priaoijec-
portant to robot manipulation and assembly. Recently, this has tive (such as avoiding obstacles or manipulator singigas)it
been highlighted by the development of new higly-compliant while achieving a desired end-effector velocity [4, 5, 8].

robot manipulators such as the Barrett arm or the DLR Chi . id d d-least . f th
lightweight manipulator [1, 2]. It is also clear that dexterous laverini consiaers a damped-ieast-squares version @

manipulation involves touching the environment at different control law that is robust to algorithmic singularities .[9]
locations simultaneously (perhaps at different points on the robot Antonelli provides a Lyapunov analysis demonstrating that

hand or fingers). In these _situations, iF is_pa_lrticularly attractive  pasic approach is stable [10]. Related approaches have been
to control the system using a multi-priority strategy where applied in more general contexts [11, 12].

several contact points are commanded in parallel. Multi-priority A sianificant bodyv of K | th | bl ¢
Cartesian impedance control is the natural combination of these signiicant body of work explores thé genéral problem o

two ideas. The system realizes several impedances with differentimpedance control in the context of redundant manipulators
reference positions at different points on the robot with a specifi¢  Building on Hogan's early work [13], Natalet. al. propose
order of priority. We find a controller that minimizes an arbitrary a version of the impedance controller that correctly hamdle
guadratic norm on the second-priority impedance error subject angular impedances [14]. Albu-Schaffer and Hirzinger pssp

to constraints deriving from the first priority impedance task. N .
We also show that the locally optimal controller does not require a dual-priority impedance architecture where the endetdfe

force feedback in its implementation for passive desired inertias. impedance and null space joint impedance are controlled

The results are illustrated in simulation. separately using a stiffness formulation [15] and @hal.
propose an impedance control formulation where task and
|. INTRODUCTION! redundant space tasks are dynamically decoupled [16}tOtt

al. demonstrate stability even though the redundant space is
Since the earliest days of robotics, researchers have beeh-integrable [17].
aware of the possibility of controlling second-priority jeb- In contrast to the above, the current paper considers the
tives using degrees of freedom (DOFs) that are redundajufestion of simultaneously controlling the impedance atmu
with respect to a first-priority task [3, 4, 5]. However, theiple end-effectors. Rather than stabilizing an arbitraayam-
advent of high-DOF humanoid robots make it possible fgterization of the redundant space, this paper optimizes fo
consider executing more than two tasks simultaneously Mn integrable operational space objective. To our knovéedg
7]. This approach to robot control is particularly relevarthe most closely related work on the subject is the multi-
to manipulation tasks where high-DOF hand-arm systerpsiority framework of Sentis and Khatib [6, 18]. In their
must be controlled so as to interact with an environmeork, the multi-priority objectives are realized by prdjeg
at a few desired contact regions. However, it is ironic th@wer-priority objectives into the dynamically consistemull
although end-effector compliance is important to robust mgpace. Although this formulation keeps the first prioritgkta
nipulation, relatively little research exists that stwdmulti- independent of the lower-priority tasks, it does not optierfor
priority impedance control. This paper addresses thisitiefic second-priority performance. The current paper explones t
proposing a locally-optimal dual-priority impedance Idrst, point. We provide a control law that minimizes quadratioerr
we propose a general law that uses force feedback to realigen respect to the desired lower-priority impedance while
an arbitrary dual-priority impedance. Then, we charaegeristill ensuring independence of the first-priority objeetivt
the subset of impedances that can be realized using torqugs out that for the optimal dual-priority controller, ii
controlled manipulators without force sensors. In conttas possible to identify the operational space directions whke
prior work, we consider the space of all possible controlslavsecond-priority task is independent of the first-prioriagk.
that realize the first-priority impedance and select thetbaé These independent directions can be adjusted by changing th
is optimal with respect to an arbitrary quadratic optimi@at weighting matrix used by the optimization criterion.
criterion.
The multi-priority approach to robot manipulator contrakh
been studied extensively. Many early approaches calcllaft Generalized equation of motion
The dynamic motion of a robot arm with revolute joints
portions of this publication have patents pending. is typically understood in terms of the following generatiz

Il. BACKGROUND



equation of motion: as completely as possible given the mechanics of the manip-
.. ulator, where

Mgt ="7at, fi = Biiy + K13y, 3)
where M is the n x n manipulator inertia matrixg is an

n-vector of manipulator joint accelerations,is an n-vector

of joint torques resulting from externally applied loads,

is a vector of actuator torques, amddescribes the sum o
frictional, coriolis, centrifugal, and gravitational tpres [19]. e
The dependence of these terms on manipulator configuratiofffiPedance objective,

implicitly e_lssumed._ln prder to simplify notation, we inthace Qoiis + [ = fo, ()
the following substitution:

Q, is the desired inertia3; is the desired dampindy; is the

desired stiffness, and; is the pose error in the first-priority
£ POR. In addition, dual-priority Cartesian impedance aaintr

must also minimize error with respect to the second-psiorit

to the greatest extent possible while not impacting perfor-
mance with regard to the first-priority objective, where

such that the equation of motion can be expressed in terms of o -

a command vecton,: f3 = Btz + K>, )

T =U+1,

Qs is the desired inertial3, is the desired dampindy is the
desired stiffness, andl, is the pose error at the second-priority
B. Operational space POR.

It is frequently useful to design controllers defined i S -
operational space coordinates rather than in joint spacdieWRB' Optimization criterion
the term “operational space” may refer to any coordinate The possibility of realizing two Cartesian space impedance
system relevant to a robot task, it usually refers to theespac depends on the degree of mobility between the two PORs. In
positions and orientations of the end-effector represehyea general, it is not possible to realize both Cartesian impees
parameterization af F(3). In this paperSF(3) is parameter- concurrently because the two PORs are not necessarily suf-
ized using exponential coordinates whereby a Cartesiamiposficiently mobile with respect to each other. Therefore, the
encoded by a 6-vector with the first three numbers describiAgyitiple-priority approach applies actuator torques sthet
position and the last three numbers describing orientatighe primary impedance objective is achieved while miningzi
using the axis-angle representation [20]. The Cartesian & optimization criterion associated with the secondsjtyio
locity of the end-effector will be represented as a twist arilpedance objective. We restrict our attention to the case
the acceleration as the derivative of twist. Similarly,dedn Where the optimization criterion is the weighted squared
Cartesian space will be written as wrenches (six-vector thagnitude of the Cartesian acceleration at the secondiprio
concatenates a force and a moment) [20]. The end-effecRfPR:
Jacobian,J, relates joint velocitiesg, to Cartesian twists at
the end-effectori: & = Jgq.

Mi=u+rT. Q)

¢ = (i2— ) Wi — i)

2Tz, (6)
II1. DUAL PRIORITY CARTESIAN SPACE IMPEDANCE
CONTROL where 7}, is the desired Cartesian space acceleration at the

Dual priority Cartesian impedance control is defined Witﬁecond—priority POR and:

respect to two points of reference (PORs). A POR is a 2= W2 (& — i) @
reference frame attached to the manipulator that is the ob-

ject of Cartesian control. In general, dual priority Caigas The goal of dual-priority Cartesian impedance control is
impedance control realizes two different impedance laws d@ minimize Equation 6 while realizing the first-priority
fined with respect to two different PORs simultaneously. Ori@pedance in Equation 2.

impedance objective is first-priority while the other is @ed-
priority. Dual-priority Cartesian impedance control nmmzes
error with respect to the first-priority impedance objeetiv The first-priority Cartesian impedance constrains the spac

while also realizing the second-priority objective to thheas- Of joint accelerations that must be considered. Substguti
est extent possible. J1G+ J1qg for #; in Equation 2 and taking the pseudo-inverse,

we have:

C. Control law

A. Problem statement N L .
Let z1, 41, #1, and f; be the pose, twist, acceleration, q=Jp {Ql (fr = fi) = Jq} + N1, (®)
and externally applied wrench associated with the firstrjiyi where N, = I - JJy and X is arbitrary. Usingis — Jadi +

POR. Definexy, #s, #2, and fo similarly for the second- . . . .
- TN . Jog, the space of Cartesian accelerations at the secondtypriori
priority POR. The goal of dual-priority impedance contrsl 'POR consistent with the first-priority impedance is:

to realize the first-priority impedance objective,
i+ fi = fi, @  da=DJf Q7N ) - i+ i+ BN ©)



Among those joint accelerations permitted by the congtraifds a result, Equation 13 becomes:
we must find one that minimizes the optimization criterion. . S . .
This can be achieved by solving Equation 9 for the valua of ¢ = NoJy [91 (fi =17 = qu}
that minimizese (Equation 6), or equivalently; (Equation 7). J {Q*l(f - J }
Solving Equation 4 for the desired acceleration at the s&:con 22 V22 24

POR, we have: +N; No Ny 8. (15)
$/2292_1(f2_f2*) where
Substituting Equation 9 into Equation 7 fés and using:, Ny =(I = JaJo). (16)
above, we have: Substituting into the equation of motion (Equation 1) fr
. we have:
z = W§<.’fg — .17/2)
= W[ B (M= 1) - hd) + ad wo= Mg-7
= 2 1—J1) = Y1 2 $ — * .
1 ' *l = MN2J1+ [Q1l(f1_f1)_J1Q}
—Qy (f2 = f3) + J2NiA] . (10) o .
o . +MJy |:QQ_ (f2—f2*)—J2d]
The value of) that minimizesz”z can be found using the N
pseudo-inverse: TMN N2 NS — . @)

STy . . In order to realize Equation 17 in practice, it is necessary

A= {Qz (f2 = f3) - ng} to measure the externally applied loads. This might be ac-
_7 +lo=-1/s _ g\ _ 7 4 complished by measuring the loads, and f», applied at the

T2 J2 ) [Ql (1= 1) qu} first- and second-priority PORs and assuming that no externa

+(I - j2]2N1)/8’ (11) loads are applied elsewhere on the manipulator. Accorging!
we have:
where r=JLf1 +JLfs.
Jy = (W32 J,Ny) "Wz, (12)

Substituting into Equation 17, we have:

The term (I — J2J2N1)ﬁ (for arbitrary 3) represents the u = Mg—T
additional freedoms left over in the case that the second- - MN,J* [Q_l(f - q}
priority optimization criterion does not completely deténe 2t U ! !

the motion of_allljoints. The matrix/ — J_2J.2N1) i; an +MJ, {92—1“2 ) - jzd}
orthogonal projection matrix that spans the joint acceiena . T ’
irrelevant to either objective. +MNiNoN1 B — Ji f1 = J3 fa. (18)

~ The joint accelerations that realize the first-priorityrhe control law in Equation 18 solves the problem proposed in
impedance (Equation 2) while also minimizing the optimizasection I1I-A while minimizing the Cartesian acceleratioh
tion criterion with respect to the second-priority impedan the second-priority POR and assuming that externally agpli
(Equation 4) can be found by substitutingback into Equa- \yrenches at each POR can be measured directly.
tion 8:
) D. Analysis
g = J {Qfl(fl = /1) —Jld} The closed-loop behavior of the dual-priority Cartesian
o P impedance controller (Equation 18) can be understood inger
N {QQ (£ = f2) ng} of the Cartesian accelerations at the first- and secondifyrio

—NiJyJoJ} [Ql_l(fl — ) - J'uj} PORs. First, note that:
. R i )
+N1(I — J2JoNy)B. (13) JiJy = J1(W2J2N11)+V§/2 1 1
= JiN1JgW2(W2JoNyJg W2) T Wz
0.

This equation can be simplified by using the fact that for an
matrix, 4, the following is true:A* = AT (AAT)*+. Therefore, 1herefore, we have that:

we have that: SNy = S —Jydo)
NiJy = N(WiLN) Wi = A (19)
= Ny(MV 3 3 J, N1 JTW2)t W Using the above results and substituting Equation 15inte:
Ni(NyJg W2 ) (W 5 .
_ (N1J2TW%)(W%J2N1J2TW%)+W% J14 + J14, the Cartesian acceleration at the first POR is:

— ] (14) i =07 (A - D),



thereby realizing the desired first-priority impedance. Substituting back into the equation of motion (Equationtid a
The Cartesian acceleration of the second-priority POR caalving for #,, we arrive at Equation 2, demonstrating that

be calculated using, = Joi + Jog: the second-priority objective does not influence the dyeami
) STy . . . of the first-priority objective. However, substituting anthe
Iy = JaJy [Qz (f2—13) - J2CI} + J2g equation of motion and solving fai, we get:
H(I = Jd) 2T Q7 (1 = 1) = ] o = JMTITAQTN(f = )
—|—J2N1N2N1ﬁ. +J2M71J§1A2|192_1(f2 7f2*)

The last term of this equation can be eliminated by noting: It should be noted that the second term above is not
orthogonal to the first term as is the case in Equation 20.

JoN1NaoNy = JoNi(I — JaJa) Ny This begs the question of whether this control law is optimal
= JoNy — JoNyJoJo Ny for any criterion of the form of Equation 6. This question can
— J,N; — J2N1(W%J2N1)+W%J2Nl be answered using the Lagrange multiplier method. We are
interested in control laws that minimize

- w3 [W%JQN1
£(G) = (J2i — B)"W (Jai — B)

—W2 LN, (W2 JoN) W2 N,
— 0 subject to
9(¢) = g —a=0,
wherea = Q7 (fi — f1) —Jig and B = Q31 (fa — f3) — Jad.
iy = Jodo {Qz—l(f2 — ) - jQ(j} + Jag Differentiating f and g and constructing the Lagrangian, we
R . have
(I = Ta2) i[9 (f = £1) = Did] - (20) W gy 4 T TTW Ty — BTW ., = 0, 23)

Therefore, the resulting closed-loop impedanceats:

Equation 20 can be understood by recognizing thaf, where h is the Lagrange multiplier. Equation 23 must be
and (I — J».J,) are orthogonal weighted projection matricessatisfied for some value of at an optimum. Equivalently,
JoJo(I — JyJy) = 0. The first term is projected throughwe can require:

JoJ, and describes the contribution of the second-priority T B
impedance to the closed-loop accelerationffThe last term N [J2 WJaG — J3 Wﬁ] =0.

is projected througi/ — .J,.J>) and describes the effect thatg|ying for j by substituting Equation 22 into Equation 1 and
the first-priority impedance objective has on the C|°Se¢|°%ubstituting into the above, the condition becomes:
behavior at the second-priority POR. Notice that the second

priority impedance operates completely independentiyhn t N, [J2TWJ2M—1 (J1TA1a + J2T|1A2|13) - J2TW5} =0.
range space of/,.J5. Multiplying both sides of Equation 20

by Jo.Jo, we have: Since we must assumeto be arbitrary, the condition is only

. N satisfied when
JQJQ.%'Q = JQJQQz (f2 — fz*) (21)

E. Comparison to Sentis-Khatib

These closed-loop dynamics may be compared to the
namics of the multi-priority Sentis-Khatib control law. &=d
on [6], the Sentis-Khatib control law is:

N JIW LM~ JF A = 0. (24)

Jiowever, since there is no fixdd” such that Equation 24 is
tP,ue for arbitrarya, Equation 22 cannot be optimal.

IV. IMPEDANCE CONTROL WITHOUT FORCE SENSORS

T o= J'A [Qfl(fl - 1) - qu'} An important concern with multi-priority impedance cortro
T . . . as it is expressed in Equation 18 is the need to sense exyernal
+Japn A2 [92 (fa—f2) — J2q} : (22) applied loads at two different points on the manipulator. /hi

this may be feasible in some cases, it is important to address

In the above control law, we have used the case where such feedback is not available.

-1 77 \—1
Ao = (lelM JQH) A. Control law

and Consider Equation 17, and suppose that the joint torque

Jop = J2Nw, caused by all externally applied loads) (is substituted for
i T T _ —1 7T\—1
whereN 4 is the inertia-weighted null space of the first priorit)faach instance oF; fl_or % f2'_ Let_ AL = (‘_IlM ) i) )
objective: be the passive manipulator inertia described in Cartesian
coordinates at the first-priority POR. L&t = (Jo M ~1JI) =1
Ny =1—-M*Jbo =g, be the similar quantity at the second-priority POR. Set the



desired Cartesian inertias to these passive vallgs= A; Note the similarities between the closed-loop impedanocseab

and Qs = A,. Then, Equation 17 becomes: and the desired impedance in Equation 2. When aIITexternal
uw = —MNyJ;i [Aflf{‘ I Jﬁq} L(r)]z;?f are applied to the first-priority POR such that Ji f1,
~M s [Az_lfz* + J'zq} A M7l = f.
+MNJT M~ and Equation 27 is identical to Equation 2. When external

loads are applied to both PORs such that J{ f; + JI fa,

T —1
+MJ2J%M T then loads applied to the second-priority POR, are pro-
+M N1 N2N1 3 jected throughA; J; M ~1.J] onto the first-priority POR:
—T. (25)

A1J1M_1T = f1 + AlJlM_ngfg.
Since the value off does not affect the closed-loop behavior

of the control law with respect to the first- or second-ptiori
impedance objectives, sét= M ~17++~, wherey is arbitrary.
Then the last four terms of Equation 25 are:

Substituting Equation 26 into the equation of motion (Equa-
tion 1) and using the fact that, = J>4 + J24, the dynamics
of the first-priority POR are:
= JQM_lT_ JQNQJfr(Aflfl* + qu)
—Joda(AT f5 4 Jog) + Jag
= LMt — (I = Jodo) I (AT f + J14)
—JoJo AT f5 + (I = Jada) Jag.

M NQJ#Jl +j2<]2 +N1N2N1 M71T7T+N1N2N1’y. T2

This expression can be simplified using Equation 14 to find
that

NiNoNy = Ni(I— JoJo) Ny

(N1 = N1JaJo) Ny
(Nl — JQJQ)Nl . R . L
= (I-— j2J2)N1 JodoZe = JQJQ(JQM_ T—AS fz*) (28)

= NyN;. If all external loads are applied to the second-priority POR
then = JI f, and Equation 28 becomes Equation 21 for
?22 = A,. If loads are applied to both PORs= J{ fo+JZ fo,
then the load applied to the first-priority POR is projectetbo
M [Nngrjl + Jody + NgNl} M~'7 — 7+ N,N,y the second-priority POR.

Multiplying the above by.,.J,, the resulting closed-loop
behavior at the second-priority POR is:

Therefore, the last four terms of Equation 25 can be simglifi
as follows:

= M [N2+JA2J2} MYt — 74+ NyNyy V. SIMULATION

— MM 714+ NN The dual-priority approach proposed in this paper is com-
. T 207 pared to both a single-priority approach and the Sentigtikha

= MMy dual-priority control law (Section IlI-E) in the context af

As a result, Equation 25 can be re-written without theerms:  simple regrasp problem.

uw = —MNyJf [A;l fr +jlq} A. Overview
N Figure 2 illustrates the simulation scenario. Both fingers
—MJ; [A2 fa + ng] are intially in contact with an object and touching it lightl
+MN5Ny 7. (26) (the entire manipulator is illustrated in Figure 1). The troh
) ) problem is to move one finger while the other finger applies
This control law has the same closed-loop impedance as dgegmall inward force resulting from a constant impedance.
Equation 18 in the special case taf = A, and2; = As. For example, this behavior could be important in an assembly
Since it does not require Cartesian force sensors to be @@URgypjication where one finger needs to maintain a constace for
at the first- and second-priority PORs,'th'ls control law il (perhaps in order to keep a part in place) while the other finge
referred to as the “zero-force” dual-priority control lafhe  moves into a new grip position. What makes this a potentially
forces are not zero, but we do not need to measure them.yjiticult problem is that the first finger is not fully mobile thi
B. Analysis respect to the second finger. In view of Figure 1, notice that
The analysis of the zero-force dual-priority Cartesiathe two fingertips may only move independently in a plane;
: . T : ﬁHe wrist must swivel in order to move one of the fingers out
impedance _control _Iaw (Equation 26.3) IS similar to_ the arla_lysof plane. It is not possible to move one finger to an arbitrary
e s 09, Eauation 26 tdosiion i keepbol he posion and oreniaon of
#1 — Jiéi+ Jic the dynamics of the first-priority POR are: e second finger fixed. If the position reference of the first
1="gT N y prionty " finger cannot be fully reached while maintaining the pose and

Ay + ff = My LM 7 (27) impedance of the second finger, then one or the other olgectiv



and should only be discarded when significant advantages are
offered by a dual-priority law.
1) Single-priority control law: The single-priority law is:

u=JTf* + MJ*JG+ MNB;q. (29)

Upper arm

This achieves a desired impedance,
Asis + f3 = fs,

where i = (j1,w,2) is a generalized acceleration, is

z the passive manipulator inertia projected into the cowrdp

ing operational space coordinates, afidis the generalized
force. Both desired impedances are combined into a single

impedance objective:

J10 Fingers

B 0 0 KF 0 0
ff=1 0 B 0 |i,+| O K 0 |z,
POR1 POR 2 0 0 Bg 0 0 Kg

where K¥ = diag(45) (Newtons per Meter) and3! =
_ _ _ _ diag(25) (Newton-seconds per Meter) are the desired transla-
Fig. 1.  The bifurcated manipulator (not drawn to scale) usedthe . | tiff dd . f POR K7 — di 10 d
simulations. A POR is defined at the end of each “finger.” tional stifiness and damping o Kl_ = diag(10) an )
B} = diag(5) are the desired angular stiffness and damping
of POR 1, andK?} = diag(20) and BY = diag(25) are the
desired translational stiffness and damping of POR 2. The
corresponding Jacobian is
%t
J=1Ji |,
J3
where J and Jj describe the Cartesian translational and
angular velocities (respectively) at POR 1 ad§ is the
translational Jacobian for POR 2.
, o _ , o 2) Dual-priority control law: The single-priority control
Fig. 2.  The manipulation scenario. The two-finger manipuléoinitially | b d he dual L. ]
contacting the object lightly. At the start of the simulatidhe right finger aw above was compared to the dual priority control law

impedance position reference changes so that the finger wilenio the Of Equation 18. The first priority objective was to realize a

direction of the dashed arrow. The left finger impedance resnaiithanged translational and angu|ar desired impedance at POR 1
so that it will continue to apply a light inward force on thejedt. The '

dual-priority control law must move the right finger withoutaetying the Aq i K
impedance of the left finger. 1@+ fi = fie

%1 = (P1,wr) is the acceleration it E(3). A, is the corre-
sponding passive operational space inerfia,is the desired
must be “sacrificed.” In this application scenario, it isicesle damping and stiffness,
to sacrifice those aspects of the first finger objective so that . BY 0 . KP 0 .
regardless of how the finger is commanded to move, the second 1= ( 0 BT >$1 + ( 0 KT >x1, (30)

finger is assured of maintaining a constant impedance. is th : I i | h
The entire manipulator is illustrated in Figure 1. The thre@d /1 IS the corresponding externally applied load. The

links proximal to the bifurcation will be referred to, in @d Second priority objective was to realize just a translaion
proximal to distal, as: the “upper arm”, the “forearm’”, aebt impedance at POR 2 — not an angular impedance,

“palm.” The two branches will be referred to as the *fingers.” Nopa + f5 = fo,

The lengths, masses, and moments of inertia are given in ) ) ) ) . . .

Table I. Note that the finger masses and inertias are lajB€reAs is the passive manipulator inertia projected into the

enough to be of the same order as the arm. A POR is defirfgdslational Euclidean coordinates for POR 2, gids the
at the tip of each of the two fingers. externally applied force at POR 2. The desired POR 2 damping

and stiffness is:
B. Comparison with a single-priority control law
. ) f5 = BYpo + K3, (31)
For reference, the dual-priority control law proposed iis th
paper was compared to a single priority control law. Comghare Figure 3 compares the performance of the two control laws
with the dual-priority control law, this is a simpler altative when the first-priority POR reference pose is the same as



Link Length | Mass | I, Ly 1.
upper arm| 0.38m | 6.8Kg | 0.082 | 0.082 | 0.0082
forearm 0.35m | 5.5Kg | 0.056 | 0.056 | 0.0056

palm 0.1m 2Kg 0.01 | 0.01 | 0.001
finger link | 0.1m 1Kg | 0.005 | 0.005 | 0.0005
TABLE |

DYNAMIC PARAMETERS OF SIMULATED ARM. I, IS THE MOMENT OF INERTIA ABOUT THE LINK AXIS. I;5 AND Iyy ARE THE REMAINING TWO
ORTHOGONAL MOMENTS OF INERTIA ALL FINGER LINKS HAVE THE SAME DYNAMIC PARAMETERS.

POR1 position POR1 orientation about y—axis POR2 position
1

-1 12
038

Meters
Degrees

1 1 1
Seconds Seconds Seconds

(@) (b) ()

Fig. 3. Comparison between the dual-priority control lawgm®ed in this paper (the solid black line) and a single-fivi@ontroller (the shaded blue line).

in the starting configurationp; = p2(0) and 5 = r(0), compared the Sentis-Khatib control law in Equation 22 with
the second-priority POR reference position is changéds= the proposed dual-priority control law in Equation 18. Both
(0.96,1.016,0), and no external forces are applied to theontrol laws are parameterized with the desired first- and
manipulator. First, notice that the dual-priority contial (the second-priority impedances given in Equations 30 and 31.
solid black line in Figure 3) keeps POR 1 in approximately Figure 4(a) and (b) demonstrates that both dual-priority
the same position and orientation during the interactioitewh control laws realize the first-priority impedance almosaty
the single-priority control law (the shaded blue line) a#o well (the proposed control law does a bit worse in keeping the
POR 1 to move. This is not suprising because the singbeientation constraint.) This is expected since it is passio
priority control law does not enforce the prioritizatiorec®nd, substitute either control law into the manipulator dynasnic
notice that Figure 3(c) shows that the single-priority coht (Equation 1), solve for the POR 1 accelerations, and arrive
law gets closer to achieving the POR 2 objective than tla¢ Equation 2. However Figure 4(c) illustrates the diffeen
dual-priority controller. Since the single-priority cooller regarding POR 2. The control law of this paper (the solid
allowed POR 1 to move and rotate from the referencexthe black line) converges to the position nearest (Euclidiammo
coordinate of the POR 2 position (the glue line in Figure B(cjhe POR 2 reference position while the Sentis-Khatib cdntro
moves toward th&.96 reference (although it does not reachaw converges elsewhere (the shaded blue line). This result
the reference because it is balancing the POR 1 objectidemonstrates that the theoretically suboptimal perfooman
as well). Nevertheless, since the PORyalimension (the demonstrated in Equation 24 can have a significant practical
top line in Figure 3(c)) is unconstrained with respect to thienpact.
POR 1 objectives, both the single- and dual-priority cdntro
laws realize the-dimension objective with approximately the VII. CONCLUSION
same performance. In contrast, the dual-priority conta® | Multi-priority Cartesian impedance control is important
maintains constant POR 1 position and orientation. PORp2cause it enables the robot programmer to control a complex
position error is minimized in the directions that do notmg@ manipulator in terms of desired Cartesian impedances at
POR 1 orientation and ignored in the directions that do.  multiple PORs. This is the natural extension of single end-
effector control to branching manipulators. The priogtian
is necessary to resolve conflicts between different oljesti
Section IlI-E demonstrated that the proposed dual-pyioriAlthough multi-priority motion control can achieve pritzied
control law has certain theoretical advantages relativehéo motions that are similar to what can be achieved with multi-
Sentis-Khatib control law. These differences have an igmdr priority impedance control, these motions are not robust an
effect on the overall performance of the control law. The twpredictable when the possibility of contact exists. Matapu
control laws are compared under the same conditions ugadh and assembly applications, in particular, requirectya
above to compare with the single priority law. The simulatiothe type of behavior that this paper has considered: motion

VI. COMPARISON WITH SENTIS-KHATIB



POR1 position

POR1 orientation about y—axis

POR2 position

Meters
Degrees

1
Seconds
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1
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(b)

1
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(©

Fig. 4. Comparison between the dual-priority controllergm®ed in this paper (the solid black line) and the Sentis idatal-priority controller (the shaded
line). (a) and (b) show similar performance for both contrevdawith respect to the first priority impedance objective whit) shows that the proposed
controller has better performance with respect to the sepoiodity impedance.

of a second-priority POR while the first-priority POR act$l4] C. Natale, B. Siciliano, and L. Villani, “Spatial impedee control

with a constant desired force or impedance. This paper makes

two main contributions. First, we propose a locally optimqk]
dual-priority impedance control law for the general casergh

end-effector load measurements may or may not be availa
Second, we analyze the performance of the control law

theory and relative to the existing multi-priority impedan
control literature.
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